EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

Size: px
Start display at page:

Download "EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves"

Transcription

1 EM waves: energy, resonators Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

2 Simple scalar wave equation 2 nd order PDE 2 z 2 ψ (z,t) 1 c 2 2 t 2 ψ (z,t) = 0 Assume separable solution 1 ( ) 2 f z z f (z) c 2 g t ( ) 2 t 2 g t ( ) = 0 ψ (z,t) = f ( z)g( t) Each part is equal to a constant A 1 ( ) 2 f z z f (z) = A, c 2 g t ( ) 2 t 2 g t ( ) = A f (z) = cos kz ( ) k 2 = A, g t ( ) = cos ω t ( ) ω 2 1 c 2 = A ω = ±k c Sin( ) also works as a second solution

3 Full solution of wave equation Full solution is a linear combination of both ψ (z,t) = f ( z)g( t) = ( A 1 coskz + A 2 sin kz) ( B 1 cosωt + B 2 sinωt) Too messy: use complex solution instead: ψ (z,t) = f ( z)g( t) = A 1 e ikz + A 2 e ikz ( )( B 1 e iωt + B 2 e iωt ) ψ (z,t) = A 1 B 1 e i ( kz+ωt ) i + ( kz+ωt) A2 B 2 e + A1 B 2 e i ( kz ωt ) i + ( kz ωt) A2 B 1 e Constants are arbitrary: rewrite ψ (z,t) = A 1 cos( kz + ωt +φ ) 1 + A 2 cos( kz ωt +φ ) 2

4 Interpretation of solutions Wave vector k = 2π λ Angular frequency ω = 2πν Wave total phase: absolute phase : Phase velocity: c φ Φ = kz ωt +φ Φ = kz k ct +φ = k ( z ct) +φ Φ = constant when z = ct ψ (z,t) = A 1 cos( kz + ωt +φ ) 1 + A 2 cos( kz ωt +φ ) 2 Reverse (to -z) Forward (to +z)

5 Maxwell's Equations to wave eqn The induced polarization, P, contains the effect of the medium: E = 0 E = B B = 0 Take the curl:" E ( ) = t Use the vector ID:" t B = 1 E c 2 t + µ 0 B = t ( ) = B( A C) C( A B) A B C P t 1 E c 2 t + µ 0 E ( ) = E ( ) ( )E = 2 E 2 E 1 c 2 2 E t 2 = µ 0 2 P t 2 P t Inhomogeneous Wave Equation "

6 Maxwell's Equations in a Medium The induced polarization, P, contains the effect of the medium: 2 E 1 c 2 2 E t 2 = µ 0 2 P t 2 Sinusoidal waves of all frequencies are solutions to the wave equation The polarization (P) can be thought of as the driving term for the solution to this equation, so the polarization determines which frequencies will occur. For linear response, P will oscillate at the same frequency as the input. P( E) = ε 0 χe In nonlinear optics, the induced polarization is more complicated: ( ) P( E) = ε 0 χ (1) E + χ (2) E 2 + χ (3) E The extra nonlinear terms can lead to new frequencies.

7 Solving the wave equation: linear induced polarization For low irradiances, the polarization is proportional to the incident field:" P( E) = ε 0 χe, D = ε 0 E + P = ε ( 0 1+ χ )E = ε E = n 2 E In this simple (and most common) case, the wave equation becomes:" 2 E 1 c 2 2 E t 2 = 1 c 2 χ 2 E t 2 Using:" ε 0 µ 0 = 1/ c 2 The electric field is a vector function in 3D, so this is actually 3 equations:" " 2 E n2 c 2 2 E t 2 = 0 ε 0 2 E x 2 E y 2 E z ( 1+ χ ) = ε = n 2 ( r,t) n2 2 c 2 t E 2 x ( r,t) n2 2 c 2 t E 2 y ( r,t) n2 2 c 2 t E 2 z ( r,t) = 0 ( r,t) = 0 ( r,t) = 0

8 Plane wave solutions for the wave equation If we assume the solution has no dependence on x or y:" 2 E( z,t) = 2 x E ( z,t ) y E ( z,t ) z E ( z,t ) = 2 2 z E ( z,t ) 2 2 E z 2 n2 c 2 2 E t 2 = 0 The solutions are oscillating functions, for example" ( ) = ˆx E x cos k z z ωt E z,t ( ) Where" ω = k c, k = 2π n / λ, v ph = c / n " This is a linearly polarized wave."

9 Complex notation for waves Write cosine in terms of exponential 1 E( z,t) = ˆx E x cos( kz ωt +φ) = ˆx E x Note E-field is a real quantity. It is convenient to work with just one part +i kz ωt E 0 e ( ) E 0 = 1 ( ) 2 E x e iφ We will use Svelto: Then take the real part. No factor of 2 i kz ωt e ( ( ) + e i( kz ωt+φ ) ) 2 ei kz ωt+φ In nonlinear optics, we have to explicitly include conjugate term

10 Example: linear resonator (1D) Boundary conditions: conducting ends (mirrors) Field is a superposition of + ve and ve waves: E x ( ) = 0 E x z = L z,t E x z = 0,t ( ) = A + e i k zz ωt+φ + ( ) = 0 ( ) z,t + A e i ( k zz ωt+φ ) Absorb phase into complex amplitude ( z,t) = ( A + e +ikzz + A e ik zz )e iωt Apply b.c. at z = 0 E x ( ) = 0 = A + + A ( z,t) = Asin k z z e iωt E x 0,t E x ( )e iωt A + = A

11 Quantization of frequency: longitudinal modes Apply b.c. at far end ( ) = 0 = Asin k z L z e iωt k z L z = lπ l = 1,2,3, E x L z,t Relate to wavelength: k z = 2π λ = lπ L z L z = l λ 2 Integer number of half-wavelengths Relate to allowed frequencies: ω l c = lπ c ν l = l L z 2L z Equally spaced frequencies: Δν = c = 1 2L z T RT Frequency spacing = 1/ round trip time

12 Wave energy and intensity Both E and H fields have a corresponding energy density (J/m 3 ) For static fields (e.g. in capacitors) the energy density can be calculated through the work done to set up the field ρ = 1 2 εe µh 2 Some work is required to polarize the medium Energy is contained in both fields, but H field can be calculated from E field

13 Calculating H from E in a plane wave Assume a non-magnetic medium µ 0 H t ( ) = ˆx E x cos( kz ωt) E z,t E = B t = µ 0 H t Can see H is perpendicular to E = E = ˆx ŷ ẑ x y z E x 0 0 Integrate to get H-field: = ŷ z E x = ŷk z E 0 sin( k z z ωt) ( ) H = ŷ k E z 0 sin( k µ z z ωt)dt = ŷ k E cos k z 0 z z ωt 0 µ 0 ω

14 H field from E field H field for a propagating wave is in phase with E-field H = ŷh 0 cos( k z z ωt) = ŷ k z E ωµ 0 cos( k z z ωt) 0 Amplitudes are not independent H 0 = k z ωµ 0 E 0 k z = n ω c H 0 = n cµ 0 E 0 = nε 0 ce 0 c 2 = 1 µ 0 ε 0 1 µ 0 c = ε 0 c

15 Energy density in an EM wave Back to energy density, non-magnetic ρ = 1 2 εe µ 0 H 2 ε = ε 0 n 2 ρ = 1 2 ε 0 n 2 E µ 0 n 2 ε 0 2 c 2 E 2 µ 0 ε 0 c 2 = 1 ρ = ε 0 n 2 E 2 = ε 0 n 2 E 2 cos 2 ( k z z ωt) Equal energy in both components of wave H = nε 0 ce

16 Cycle-averaged energy density Optical oscillations are faster than detectors Average over one cycle: ρ = ε 0 n T E 0 cos 2 ( k z z ωt)dt T 0 Graphically, we can see this should = ½ k z = k z = π/ Regardless of position z t/t ρ = 1 2 ε 0 n2 E 0 2

17 Intensity and the Poynting vector Intensity is an energy flux (J/s/cm 2 ) In EM the Poynting vector give energy flux S = E H For our plane wave, S = E H = E 0 cos( k z z ωt)nε 0 ce 0 cos k z z ωt S = nε 0 ce 0 2 cos 2 S is along k Time average: ( k z z ωt)ẑ S = 1 2 nε 0 ce 02ẑ Intensity is the magnitude of S ( ) ˆx ŷ I = 1 2 nε ce 2 = c 0 0 n ρ = V ρ Photon flux: F = I phase hν

18 General plane wave solution Assume separable function E(x, y,z,t) ~ f ( 1 x) f 2 y ( ) f 3 z ( )g t 2 E( z,t) = 2 x E ( z,t ) y E ( z,t ) z E ( z,t ) = n2 2 2 c 2 t E ( z,t ) 2 Solution takes the form: E(x, y,z,t) = E 0 e ikxx e ikyy e ikzz e iωt = E 0 e i ( k xx+k y y+k z z) e iωt E(x, y,z,t) = E 0 e i( k r ωt ) Now k-vector can point in arbitrary direction ( )

EM waves and interference. Review of EM wave equation and plane waves Energy and intensity in EM waves Interference

EM waves and interference. Review of EM wave equation and plane waves Energy and intensity in EM waves Interference EM waves and interference Review of EM wave equation and plane waves Energy and intensity in EM waves Interference Maxwell's Equations to wave eqn The induced polarization, P, contains the effect of the

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L 8.03 Lecture 1 Systems we have learned: Wave equation: ψ = ψ v p x There are three different kinds of systems discussed in the lecture: (1) String with constant tension and mass per unit length ρ L T v

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

Electromagnetic Waves

Electromagnetic Waves May 7, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 7 Maxwell Equations In a region of space where there are no free sources (ρ = 0, J = 0), Maxwell s equations reduce to a simple

More information

Electromagnetic Theory (Hecht Ch. 3)

Electromagnetic Theory (Hecht Ch. 3) Phys 531 Lecture 2 30 August 2005 Electromagnetic Theory (Hecht Ch. 3) Last time, talked about waves in general wave equation: 2 ψ(r, t) = 1 v 2 2 ψ t 2 ψ = amplitude of disturbance of medium For light,

More information

Electrodynamics HW Problems 06 EM Waves

Electrodynamics HW Problems 06 EM Waves Electrodynamics HW Problems 06 EM Waves 1. Energy in a wave on a string 2. Traveling wave on a string 3. Standing wave 4. Spherical traveling wave 5. Traveling EM wave 6. 3- D electromagnetic plane wave

More information

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015.

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. PHYS 408, Optics Problem Set 1 - Spring 2016 Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. 1. An electric field in vacuum has the wave equation, Let us consider the solution, 2 E 1 c 2 2 E =

More information

Course Updates. 2) This week: Electromagnetic Waves +

Course Updates.  2) This week: Electromagnetic Waves + Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr1/physics272.html Reminders: 1) Assignment #11 due Wednesday 2) This week: Electromagnetic Waves + 3) In the home stretch [review schedule]

More information

Chapter 4 Wave Equations

Chapter 4 Wave Equations Chapter 4 Wave Equations Lecture Notes for Modern Optics based on Pedrotti & Pedrotti & Pedrotti Instructor: Nayer Eradat Spring 2009 3/11/2009 Wave Equations 1 Wave Equation Chapter Goal: developing the

More information

Mathematical Tripos, Part IB : Electromagnetism

Mathematical Tripos, Part IB : Electromagnetism Mathematical Tripos, Part IB : Electromagnetism Proof of the result G = m B Refer to Sec. 3.7, Force and couples, and supply the proof that the couple exerted by a uniform magnetic field B on a plane current

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Waves Outline Outline Introduction Let s start by introducing simple solutions to Maxwell s equations

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

The Interaction of Light and Matter: α and n

The Interaction of Light and Matter: α and n The Interaction of Light and Matter: α and n The interaction of light and matter is what makes life interesting. Everything we see is the result of this interaction. Why is light absorbed or transmitted

More information

Chapter 2 Basic Optics

Chapter 2 Basic Optics Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter

More information

Multilayer Reflectivity

Multilayer Reflectivity Multilayer Reflectivity John E. Davis jed@jedsoft.org January 5, 2014 1 Introduction The purpose of this document is to present an ab initio derivation of the reflectivity for a plane electromagnetic wave

More information

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014 Physics 333, Fall 014 Problem Set 13 due Friday, Dec 5, 014 Reading: Finish Griffiths Ch. 9, and 10..1, 10.3, and 11.1.1-1. Reflecting on polarizations Griffiths 9.15 (3rd ed.: 9.14). In writing (9.76)

More information

Electromagnetic optics!

Electromagnetic optics! 1 EM theory Electromagnetic optics! EM waves Monochromatic light 2 Electromagnetic optics! Electromagnetic theory of light Electromagnetic waves in dielectric media Monochromatic light References: Fundamentals

More information

5 Electromagnetic Waves

5 Electromagnetic Waves 5 Electromagnetic Waves 5.1 General Form for Electromagnetic Waves. In free space, Maxwell s equations are: E ρ ɛ 0 (5.1.1) E + B 0 (5.1.) B 0 (5.1.3) B µ 0 ɛ 0 E µ 0 J (5.1.4) In section 4.3 we derived

More information

4: birefringence and phase matching

4: birefringence and phase matching /3/7 4: birefringence and phase matching Polarization states in EM Linear anisotropic response χ () tensor and its symmetry properties Working with the index ellipsoid: angle tuning Phase matching in crystals

More information

Module 8: Sinusoidal Waves Lecture 8: Sinusoidal Waves

Module 8: Sinusoidal Waves Lecture 8: Sinusoidal Waves Module 8: Sinusoidal Waves Lecture 8: Sinusoidal Waves We shift our attention to oscillations that propagate in space as time evolves. This is referred to as a wave. The sinusoidal wave a(,t) = A cos(ωt

More information

Green s functions for planarly layered media

Green s functions for planarly layered media Green s functions for planarly layered media Massachusetts Institute of Technology 6.635 lecture notes Introduction: Green s functions The Green s functions is the solution of the wave equation for a point

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

20 Poynting theorem and monochromatic waves

20 Poynting theorem and monochromatic waves 0 Poynting theorem and monochromatic waves The magnitude of Poynting vector S = E H represents the amount of power transported often called energy flux byelectromagneticfieldse and H over a unit area transverse

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Practice Problem Set 11 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Practice Problem Set 11 Solutions MASSACHUSES INSIUE OF ECHNOLOGY Department of Physics 8 Spring 4 Practice Problem Set Solutions Problem : Electromagnetic Waves and the Poynting Vector We have been studying one particular class of electric

More information

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001). Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) T.Thio et al., Optics Letters 6, 197-1974

More information

Non-linear Optics II (Modulators & Harmonic Generation)

Non-linear Optics II (Modulators & Harmonic Generation) Non-linear Optics II (Modulators & Harmonic Generation) P.E.G. Baird MT2011 Electro-optic modulation of light An electro-optic crystal is essentially a variable phase plate and as such can be used either

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Propagation of EM Waves in material media

Propagation of EM Waves in material media Propagation of EM Waves in material media S.M.Lea 09 Wave propagation As usual, we start with Maxwell s equations with no free charges: D =0 B =0 E = B t H = D t + j If we now assume that each field has

More information

Dielectric wave guides, resonance, and cavities

Dielectric wave guides, resonance, and cavities Dielectric wave guides, resonance, and cavities 1 Dielectric wave guides Instead of a cavity constructed of conducting walls, a guide can be constructed of dielectric material. In analogy to a conducting

More information

2 u 1-D: 3-D: x + 2 u

2 u 1-D: 3-D: x + 2 u c 2013 C.S. Casari - Politecnico di Milano - Introduction to Nanoscience 2013-14 Onde 1 1 Waves 1.1 wave propagation 1.1.1 field Field: a physical quantity (measurable, at least in principle) function

More information

1 Longitudinal modes of a laser cavity

1 Longitudinal modes of a laser cavity Adrian Down May 01, 2006 1 Longitudinal modes of a laser cavity 1.1 Resonant modes For the moment, imagine a laser cavity as a set of plane mirrors separated by a distance d. We will return to the specific

More information

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering)

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering) Scattering 1 Classical scattering of a charged particle (Rutherford Scattering) Begin by considering radiation when charged particles collide. The classical scattering equation for this process is called

More information

Class 15 : Electromagnetic Waves

Class 15 : Electromagnetic Waves Class 15 : Electromagnetic Waves Wave equations Why do electromagnetic waves arise? What are their properties? How do they transport energy from place to place? Recap (1) In a region of space containing

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

Guided waves - Lecture 11

Guided waves - Lecture 11 Guided waves - Lecture 11 1 Wave equations in a rectangular wave guide Suppose EM waves are contained within the cavity of a long conducting pipe. To simplify the geometry, consider a pipe of rectangular

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

THE PHYSICS OF WAVES CHAPTER 1. Problem 1.1 Show that Ψ(x, t) = (x vt) 2. is a traveling wave.

THE PHYSICS OF WAVES CHAPTER 1. Problem 1.1 Show that Ψ(x, t) = (x vt) 2. is a traveling wave. CHAPTER 1 THE PHYSICS OF WAVES Problem 1.1 Show that Ψ(x, t) = (x vt) is a traveling wave. Show thatψ(x, t) is a wave by substitutioninto Equation 1.1. Proceed as in Example 1.1. On line version uses Ψ(x,

More information

Maxwell s Equations & Electromagnetic Waves. The Equations So Far...

Maxwell s Equations & Electromagnetic Waves. The Equations So Far... Maxwell s Equations & Electromagnetic Waves Maxwell s equations contain the wave equation Velocity of electromagnetic waves c = 2.99792458 x 1 8 m/s Relationship between E and B in an EM wave Energy in

More information

12. Nonlinear optics I

12. Nonlinear optics I 1. Nonlinear optics I What are nonlinear-optical effects and why do they occur? Maxwell's equations in a medium Nonlinear-optical media Second-harmonic generation Conservation laws for photons ("Phasematching")

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Ranga Rodrigo University of Moratuwa October 20, 2008 Compiled based on Lectures of Prof. (Mrs.) Indra Dayawansa. Ranga Rodrigo (University of Moratuwa) Antennas and Propagation

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Massachusetts Institute of Technology Department of Physics Physics 87 Fall 25 Problem Set 1 Solutions Problem 1: EM Waves in a Plasma a Transverse electromagnetic waves have, by definition, E = Taking

More information

Physics 3323, Fall 2014 Problem Set 12 due Nov 21, 2014

Physics 3323, Fall 2014 Problem Set 12 due Nov 21, 2014 Physics 333, Fall 014 Problem Set 1 due Nov 1, 014 Reading: Griffiths Ch. 9.1 9.3.3 1. Square loops Griffiths 7.3 (formerly 7.1). A square loop of wire, of side a lies midway between two long wires, 3a

More information

9 Wave solution of Maxwells equations.

9 Wave solution of Maxwells equations. 9 Wave solution of Maxwells equations. Contents 9.1 Wave solution: Plane waves 9.2 Scalar Spherical waves 9.3 Cylindrical waves 9.4 Momentum and energy of the electromagnetic field Keywords: Plane, cylindrical

More information

Atomic cross sections

Atomic cross sections Chapter 12 Atomic cross sections The probability that an absorber (atom of a given species in a given excitation state and ionziation level) will interact with an incident photon of wavelength λ is quantified

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Diffraction I Basic Physics M.P. Vaughan Diffraction Electromagnetic waves Geometric wavefront The Principle of Linear Superposition Diffraction regimes Single

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info Light and Matter Thursday, 8/31/2006 Physics 158 Peter Beyersdorf Document info 3. 1 1 Class Outline Common materials used in optics Index of refraction absorption Classical model of light absorption Light

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Electromagnetic (EM) Waves

Electromagnetic (EM) Waves Electromagnetic (EM) Waves Short review on calculus vector Outline A. Various formulations of the Maxwell equation: 1. In a vacuum 2. In a vacuum without source charge 3. In a medium 4. In a dielectric

More information

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich Homework 1 Contact: mfrimmer@ethz.ch Due date: Friday 13.10.2017; 10:00 a.m. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch The goal of this homework is to establish

More information

4. The interaction of light with matter

4. The interaction of light with matter 4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again,

More information

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Daniel Sjöberg Department of Electrical and Information Technology September 2016 Outline 1 Plane waves in lossless

More information

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1 Chapter 29: Maxwell s Equation and EM Waves Slide 29-1 Equations of electromagnetism: a review We ve now seen the four fundamental equations of electromagnetism, here listed together for the first time.

More information

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9 WiSe 202 20.2.202 Prof. Dr. A-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Matthias Saba am Lehrstuhl für Theoretische Physik I Department für Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Characterization of Left-Handed Materials

Characterization of Left-Handed Materials Characterization of Left-Handed Materials Massachusetts Institute of Technology 6.635 lecture notes 1 Introduction 1. How are they realized? 2. Why the denomination Left-Handed? 3. What are their properties?

More information

This is the number of cycles per unit time, and its units are, for example,

This is the number of cycles per unit time, and its units are, for example, 16 4. Sinusoidal solutions Many things in nature are periodic, even sinusoidal. We will begin by reviewing terms surrounding periodic functions. If an LTI system is fed a periodic input signal, we have

More information

Set 5: Classical E&M and Plasma Processes

Set 5: Classical E&M and Plasma Processes Set 5: Classical E&M and Plasma Processes Maxwell Equations Classical E&M defined by the Maxwell Equations (fields sourced by matter) and the Lorentz force (matter moved by fields) In cgs (gaussian) units

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Fourier Approach to Wave Propagation

Fourier Approach to Wave Propagation Phys 531 Lecture 15 13 October 005 Fourier Approach to Wave Propagation Last time, reviewed Fourier transform Write any function of space/time = sum of harmonic functions e i(k r ωt) Actual waves: harmonic

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

H ( E) E ( H) = H B t

H ( E) E ( H) = H B t Chapter 5 Energy and Momentum The equations established so far describe the behavior of electric and magnetic fields. They are a direct consequence of Maxwell s equations and the properties of matter.

More information

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order Problem 1. A conducting slab A plane polarized electromagnetic wave E = E I e ikz ωt is incident normally on a flat uniform sheet of an excellent conductor (σ ω) having thickness D. Assume that in space

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Physics 322 Midterm 2

Physics 322 Midterm 2 Physics 3 Midterm Nov 30, 015 name: Box your final answer. 1 (15 pt) (50 pt) 3 (0 pt) 4 (15 pt) total (100 pt) 1 1. (15 pt) An infinitely long cylinder of radius R whose axis is parallel to the ẑ axis

More information

Light in Matter (Hecht Ch. 3)

Light in Matter (Hecht Ch. 3) Phys 531 Lecture 3 9 September 2004 Light in Matter (Hecht Ch. 3) Last time, talked about light in vacuum: Maxwell equations wave equation Light = EM wave 1 Today: What happens inside material? typical

More information

EXAM # AM PM, Wednesday March 14. Write your name and ID number at the top of this page and on pages 2-5.

EXAM # AM PM, Wednesday March 14. Write your name and ID number at the top of this page and on pages 2-5. NAME: SOLUTIONS Student ID: Score: Physics 322 Winter 2018 EXAM # 3 1030 AM - 1220 PM, Wednesday March 14 Write your name and ID number at the top of this page and on pages 2-5. Clearly show all your reasoning.

More information

Imaging Chain. Imaging Chain. Imaging Chain. 1. Light source. 2. Object interactions. 3. Propagation & Collection: optics (lenses & mirrors)

Imaging Chain. Imaging Chain. Imaging Chain. 1. Light source. 2. Object interactions. 3. Propagation & Collection: optics (lenses & mirrors) 1. Light source λ [nm] sunset blue sky 2. Object interactions 3. Propagation & Collection: optics (lenses & mirrors) 1 Optics: Lenses Objects Images Optics: Mirrors Object Image 4. Detector or Sensor Photographic

More information

Quantization of the E-M field

Quantization of the E-M field Quantization of the E-M field 0.1 Classical E&M First we will wor in the transverse gauge where there are no sources. Then A = 0, nabla A = B, and E = 1 A and Maxwell s equations are B = 1 E E = 1 B E

More information

Physics 511 Spring 2000

Physics 511 Spring 2000 Physics 511 Spring 2000 Problem Set #8: Due Friday April 7, 2000 Read: Notes on Multipole Radiation, Jackson Third Ed. Chap. 6.3-6.4, 9.1-9.4, Low 4.1-4.6 Problem 1. Electromagnetic radiation in one dimension

More information

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #5 Fall 005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased [.] Imagine a prism made of lucite (n.5) whose cross-section is a

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture 15 lectromagnetic Waves (H&L Sections 9.5 7) What We Did Last Time! Studied spherical waves! Wave equation of isotropic waves! Solution e! Intensity decreases with! Doppler

More information

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Basic reflection physics 2 Radar cross section definition

More information

Spin resonance. Basic idea. PSC 3151, (301)

Spin resonance. Basic idea. PSC 3151, (301) Spin Resonance Phys623 Spring 2018 Prof. Ted Jacobson PSC 3151, (301)405-6020 jacobson@physics.umd.edu Spin resonance Spin resonance refers to the enhancement of a spin flipping probability in a magnetic

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

Solution Set 1 Phys 4510 Optics Fall 2014

Solution Set 1 Phys 4510 Optics Fall 2014 Solution Set 1 Phys 4510 Optics Fall 2014 Due date: Tu, September 9, in class Scoring rubric 4 points/sub-problem, total: 40 points 3: Small mistake in calculation or formula 2: Correct formula but calculation

More information

EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq.

EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq. University of California, Berkeley EECS 117 Lecture 19 p. 1/2 EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq. Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS

More information

Physics 3312 Lecture 9 February 13, LAST TIME: Finished mirrors and aberrations, more on plane waves

Physics 3312 Lecture 9 February 13, LAST TIME: Finished mirrors and aberrations, more on plane waves Physics 331 Lecture 9 February 13, 019 LAST TIME: Finished mirrors and aberrations, more on plane waves Recall, Represents a plane wave having a propagation vector k that propagates in any direction with

More information

Representation of the quantum and classical states of light carrying orbital angular momentum

Representation of the quantum and classical states of light carrying orbital angular momentum Representation of the quantum and classical states of light carrying orbital angular momentum Humairah Bassa and Thomas Konrad Quantum Research Group, University of KwaZulu-Natal, Durban 4001, South Africa

More information

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, Complex Numbers Complex Algebra The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, and (ii) complex multiplication, (x 1, y 1 )

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

Want to review modes of electromagnetic radiation in cavity. Start with Maxwell s equations in free space(si units)

Want to review modes of electromagnetic radiation in cavity. Start with Maxwell s equations in free space(si units) 2 Quantization of Normal Modes 2.1 Wave equation Want to review modes of electromagnetic radiation in cavity. Start with Maxwell s equations in free space(si units) E = 0 (1) B = 0 (2) E + B = 0 (3) t

More information

4. Sinusoidal solutions

4. Sinusoidal solutions 16 4. Sinusoidal solutions Many things in nature are periodic, even sinusoidal. We will begin by reviewing terms surrounding periodic functions. If an LTI system is fed a periodic input signal, we have

More information

Question 1: Some algebra

Question 1: Some algebra October 13, 017 Cornell University, Department of Physics PHYS 337, Advance E&M, HW # 6, due: 10/4/017, 11:15 AM Question 1: Some algebra 1. Prove the vector identity used in lecture to derive the energy

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves As the chart shows, the electromagnetic spectrum covers an extremely wide range of wavelengths and frequencies. Though the names indicate that these waves have a number of sources,

More information

Radiating Dipoles in Quantum Mechanics

Radiating Dipoles in Quantum Mechanics Radiating Dipoles in Quantum Mechanics Chapter 14 P. J. Grandinetti Chem. 4300 Oct 27, 2017 P. J. Grandinetti (Chem. 4300) Radiating Dipoles in Quantum Mechanics Oct 27, 2017 1 / 26 P. J. Grandinetti (Chem.

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Polarization of Light Spring 2015 Semester Matthew Jones Types of Polarization Light propagating through different materials: One polarization component can

More information