Course Updates. 2) This week: Electromagnetic Waves +

Size: px
Start display at page:

Download "Course Updates. 2) This week: Electromagnetic Waves +"

Transcription

1 Course Updates Reminders: 1) Assignment #11 due Wednesday 2) This week: Electromagnetic Waves + 3) In the home stretch [review schedule]

2 Maxwell s Equations (integral form) Name Gauss Law for Electricity Gauss Law for Magnetism Faraday s Law Ampere s Law (modified by Maxwell) Equation r r Q E da = ε B r da r = r r E dl r B dl dφ = dt = μ ic + ε B dφ dt E Description Charge and electric fields Magnetic fields Electrical effects from changing B field Magnetic effects from current and Changing E field

3 Maxwell s Equations James Clerk Maxwell ( ) generalized Ampere s Law made equations symmetric: a changing magnetic field produces an electric field a changing electric field produces a magnetic field Showed that Maxwell s equations predicted electromagnetic waves and c =1/ ε μ Unified electricity and magnetism and light. All of electricity and magnetism can be summarized by Maxwell s Equations.

4 Electromagnetic Waves in free space A remarkable prediction of Maxwell s eqns is electric & magnetic fields can propagate in vacuum. Examples of electromagnetic waves include; radio/tv waves, light, x-rays, and microwaves.

5 On to Waves!! Note the symmetry now of Maxwell s Equations in free space, meaning when no charges or currents are present r A r = E r da r = B d r r E dl dφ = dt B r B dl Combining these equations leads to wave equations for E and B, e.g., 2 2 Ex E = με 2 2 z t = μ ε d Φ E dt x 2 2 Do you remember h 1 h = the wave equation??? x v t h is the variable that is changing in space (x) and time (t). v is the velocity of the wave.

6 Review of Waves from Physics 17 The one-dimensional wave equation: 2 2 h 1 h = x v t has a general solution of the form: h ( x, t) = h1 ( x vt) + h2 ( x + vt) where h 1 represents a wave traveling in the +x direction and h 2 represents a wave traveling in the -x direction. A specific solution for harmonic waves traveling in the +x direction is: h λ h x, t = A cos kx ωt ( ) ( ) k = 2π λ v = ω= 2π f = λ f = ω k 2π T A = amplitude λ = wavelength f = frequency v = speed k = wave number A x

7 Motion of wave (e.g. to right) Transverse Wave: A note how the wave pattern moves. Any particular point (look at the blue one) just moves transversely (i.e., up and down) to the direction of the wave. Wave Velocity: The wave velocity is defined as the wavelength divided by the time it takes a wavelength (green) to pass by a fixed point (blue).

8 Question 1 Snapshots of a wave with angular frequency ω are shown at 3 times: Which of the following expressions describes this wave? (a) y = sin(kx-ωt) (b) y = sin(kx+ωt) (c) y = cos(kx+ωt) y t = t = π ω 2 t = π ω x

9 Question 1 Snapshots of a wave with angular frequency ω are shown at 3 times: Which of the following expressions describes this wave? (a) y = sin(kx-ωt) (b) y = sin(kx+ωt) (c) y = cos(kx+ωt) y t = t = π ω 2 The t = snapshot at t =, y = sinkx At t =π/2ω and x=, (a) y =sin(-π/2) = -1 At t =π/2ω and x =, (b) y = sin(+π/2) = +1 t = π ω x

10 Question 2 Snapshots of a wave with angular frequency ω are shown at 3 times: y t = t = π ω 2 In what direction is this wave traveling? (a) +x direction (b) -x direction t = π ω x

11 Question 2 Snapshots of a wave with angular frequency ω are shown at 3 times: Which of the following expressions describes this wave? (a) y = sin(kx-ωt) (b) y = sin(kx+ωt) (c) y = cos(kx+ωt) y t = t = π ω 2 In what direction is this wave traveling? (a) + x direction (b) -x direction We claim this wave moves in the -x direction. The orange dot marks a point of constant phase. It thus moves in the -x direction as time increases!! x t = π ω

12 Velocity of Electromagnetic Waves We derived the wave equation E for E x (Maxwell did it first, in z ~1865!): Comparing to the general wave equation: 1 8 = = 3. 1 m / s με E t 2 2 x x = μ 2 ε h 1 h = x v t we have the velocity of electromagnetic waves in free space: v c This value is essentially identical to the speed of light measured by Foucault in 186! Maxwell identified light as an electromagnetic wave.

13 The ElectroMagnetic Spectrum

14 E & B in Electromagnetic Wave Plane Harmonic Wave: E x B y = = E sin( kz ωt) B sin( kz ω ) x t where ω = kc y B y is in phase with E x B = E / c The direction of propagation is given by the cross product sˆ = eˆ bˆ where ( eˆ, b ˆ ) are the unit vectors in the (E,B) directions. Nothing special about (E x, B y ); e.g., could have (E y, -B x ) ŝ z

15 Question 3 Suppose the electric field in an e-m wave is given by: r E = yˆ E cos( kz+ωt) In what direction is this wave traveling (a)? + z direction (b) - z direction

16 Question 3 Suppose the electric field in an e-m wave is given by: r E = yˆ E cos( kz+ωt) In what direction is this wave traveling? (a) + z direction (b) - z direction To determine the direction, set phase = : + t = Therefore wave moves in + z direction! Another way: Relative signs opposite means + direction ω k kz ω z = + t

17 Question 4 Suppose the electric field in an e-m wave is given by: r E = yˆ E cos( kz+ωt) Which of the following expressions describes the magnetic field associated with this wave? (a) B x = -(E o /c) cos(kz +ω t) (b) B x = +(E o /c) cos(kz -ω t) (c) B x = +(E o /c) sin(kz -ω t)

18 Question 4 Suppose the electric field in an e-m wave is given by: 3A r E = yˆ E cos( kz+ωt) Which of the following expressions describes the magnetic field associated with this wave? (a) B x = -(E o /c) cos(kz +ω t) (b) B x = +(E o /c) cos(kz -ω t) ) (c) B x = +(E o /c) sin(kz -ω t) B is in phase with E and has direction determined from: bˆ = sˆ eˆ At t=, z=, E y = -E o Therefore at t=, z=, b ˆ = sˆ eˆ = kˆ ( ˆ) j = iˆ r E B = + i kz t c ˆ cos( ω )

19 Question 5 An electromagnetic wave is travelling along the x-axis, with its electric field oscillating along the y-axis. In what direction does the magnetic field oscillate? a) along the x-axis b) along the z-axis c) along the y-axis

20 Question 5 An electromagnetic wave is travelling along the x-axis, with its electric field oscillating along the y-axis. In what direction does the magnetic field oscillate? a) along the x-axis b) along the z-axis c) along the y-axis

21 Note: the direction of propagation sˆ = eˆ bˆ where eˆ, b ˆ are the unit vectors in the (E,B) directions. ( ) ŝ ŝ xˆ = yˆ zˆ is given by the cross product In this case, direction of is x and direction of is y ê The fields must be perpendicular to each other and to the direction of propagation.

22 Properties of electromagnetic waves (e.g., light) Speed: in vacuum, always m/s, no matter how fast the source is moving (there is no aether!). In material, the speed can be reduced, usually only by ~1.5, but in 1999 to 17 m/s! Direction: The wave described by cos(kx-ωt) is traveling in the +xˆ direction. This is a plane wave extends infinitely in ŷ and ẑ. In reality, light is often somewhat localized transversely (e.g., a laser) or spreading in a spherical wave (e.g., a star). A plane wave can often be a good approximation (e.g., the wavefronts hitting us from the sun are nearly flat).

23 Plane Waves For any given value of z, the magnitude of the electric field is uniform everywhere in the x-y plane with that z value. x z y

24 Waves Carry Energy

25 Previously, we demonstrated the energy density existed in E fields in Capacitor and in B fields in inductors. We can sum these energies, Since, E=cB and then u in terms of E, => EM wave has energy and can transport energy at speed c B E u μ ε + = / 1 ε μ = c E E E c E E u ε ε ε μ ε = + = + = Energy Density

26 Waves Carry Energy

27 As you already probably know

28 PHOTONS We believe the energy in an e-m e m wave is carried by photons Question: What are Photons? Answer: Photons are Photons. Photons possess both wave and particle properties Particle: Energy and Momentum localized Wave: They have definite frequency & wavelength (fλ = c) Connections seen in equations: E = hf p = h/λ Planck s constant h = 6.63e -34 J-s Question: How can something be both a particle and a wave? Answer: It can t (when we observe it) What we see depends on how we choose to measure it! The mystery of quantum mechanics: More on this in PHYS 274

29 For next time Homework #11 due Wed. One more session on EM Waves, and then on to optics

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Maxwell s Equations & Electromagnetic Waves. The Equations So Far...

Maxwell s Equations & Electromagnetic Waves. The Equations So Far... Maxwell s Equations & Electromagnetic Waves Maxwell s equations contain the wave equation Velocity of electromagnetic waves c = 2.99792458 x 1 8 m/s Relationship between E and B in an EM wave Energy in

More information

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30-

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30- Class 30: Outline Hour 1: Traveling & Standing Waves Hour : Electromagnetic (EM) Waves P30-1 Last Time: Traveling Waves P30- Amplitude (y 0 ) Traveling Sine Wave Now consider f(x) = y = y 0 sin(kx): π

More information

The equations so far... Gauss Law for E Fields. Gauss Law for B Fields. B da. inside. d dt. n C 3/28/2018

The equations so far... Gauss Law for E Fields. Gauss Law for B Fields. B da. inside. d dt. n C 3/28/2018 The equations so far... Gauss Law for E Fields E da S n 1 Q inside Gauss Law for B Fields B da S n C Faraday s Law d E dl dt S B da n Ampere s Law B dl I C 3/8/18 1 Ampere s Law B dl I inside _ path No

More information

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1 Chapter 29: Maxwell s Equation and EM Waves Slide 29-1 Equations of electromagnetism: a review We ve now seen the four fundamental equations of electromagnetism, here listed together for the first time.

More information

Clicker Question. Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no

Clicker Question. Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no Is the following

More information

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L 8.03 Lecture 1 Systems we have learned: Wave equation: ψ = ψ v p x There are three different kinds of systems discussed in the lecture: (1) String with constant tension and mass per unit length ρ L T v

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Maxwell s Equations and Electromagnetic Waves W13D2

Maxwell s Equations and Electromagnetic Waves W13D2 Maxwell s Equations and Electromagnetic Waves W13D2 1 Announcements Week 13 Prepset due online Friday 8:30 am Sunday Tutoring 1-5 pm in 26-152 PS 10 due Week 14 Friday at 9 pm in boxes outside 26-152 2

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

PHYS 1444 Section 003 Lecture #23

PHYS 1444 Section 003 Lecture #23 PHYS 1444 Section 3 Lecture #3 Monday, Nov. 8, 5 EM Waves from Maxwell s Equations Speed of EM Waves Light as EM Wave Electromagnetic Spectrum Energy in EM Waves Energy Transport The epilogue Today s homework

More information

Your Comments. What does signify?

Your Comments. What does signify? Your Comments WHAT? "POYNTING" VECTOR NOT "POINTING" VECTOR? I THOUGHT I COUGHT A SPELLING MISTAKE!!!!!!!! I must now see i

More information

Electromagnetic Theory (Hecht Ch. 3)

Electromagnetic Theory (Hecht Ch. 3) Phys 531 Lecture 2 30 August 2005 Electromagnetic Theory (Hecht Ch. 3) Last time, talked about waves in general wave equation: 2 ψ(r, t) = 1 v 2 2 ψ t 2 ψ = amplitude of disturbance of medium For light,

More information

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions Maxwell s equations Physics /5/ Lecture XXIV Kyoto /5/ Lecture XXIV James Clerk Maxwell James Clerk Maxwell (83 879) Unification of electrical and magnetic interactions /5/ Lecture XXIV 3 Φ = da = Q ε

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

CHAPTER 32: ELECTROMAGNETIC WAVES

CHAPTER 32: ELECTROMAGNETIC WAVES CHAPTER 32: ELECTROMAGNETIC WAVES For those of you who are interested, below are the differential, or point, form of the four Maxwell s equations we studied this semester. The version of Maxwell s equations

More information

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves I m surfing the giant life wave. -William Shatner David J. Starling Penn State Hazleton PHYS 213 There are three main types of waves in physics: (a) Mechanical waves: described by Newton s laws and propagate

More information

Maxwell Equations: Electromagnetic Waves

Maxwell Equations: Electromagnetic Waves Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Physics 2113 Jonathan Dowling Heinrich Hertz (1857 1894) Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Maxwell Equations in Empty Space: E da = 0 S B da = 0 S C C B ds = µ ε 0 0 E ds = d dt d dt S

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Solution Set 1 Phys 4510 Optics Fall 2014

Solution Set 1 Phys 4510 Optics Fall 2014 Solution Set 1 Phys 4510 Optics Fall 2014 Due date: Tu, September 9, in class Scoring rubric 4 points/sub-problem, total: 40 points 3: Small mistake in calculation or formula 2: Correct formula but calculation

More information

Electrodynamics HW Problems 06 EM Waves

Electrodynamics HW Problems 06 EM Waves Electrodynamics HW Problems 06 EM Waves 1. Energy in a wave on a string 2. Traveling wave on a string 3. Standing wave 4. Spherical traveling wave 5. Traveling EM wave 6. 3- D electromagnetic plane wave

More information

Electromagnetic (EM) Waves

Electromagnetic (EM) Waves Electromagnetic (EM) Waves Short review on calculus vector Outline A. Various formulations of the Maxwell equation: 1. In a vacuum 2. In a vacuum without source charge 3. In a medium 4. In a dielectric

More information

1 Maxwell s Equations

1 Maxwell s Equations PHYS 280 Lecture problems outline Spring 2015 Electricity and Magnetism We previously hinted a links between electricity and magnetism, finding that one can induce electric fields by changing the flux

More information

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves EM waves: energy, resonators Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves Simple scalar wave equation 2 nd order PDE 2 z 2 ψ (z,t)

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1 Electricity & Magnetism Lecture 23 Electricity & Magne/sm Lecture 23, Slide 1 Your Comments the whole E-M wave graph, I s/ll don't understand what it is trying to tell us and where the sin(kz-ωt) even

More information

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements

ε induced Review: Self-inductance 20.7 RL Circuits Review: Self-inductance B induced Announcements Announcements WebAssign HW Set 7 due this Friday Problems cover material from Chapters 20 and 21 We re skipping Sections 21.1-21.7 (alternating current circuits) Review: Self-inductance induced ε induced

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

Class 15 : Electromagnetic Waves

Class 15 : Electromagnetic Waves Class 15 : Electromagnetic Waves Wave equations Why do electromagnetic waves arise? What are their properties? How do they transport energy from place to place? Recap (1) In a region of space containing

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

(Pre- and) Post Tests and Surveys

(Pre- and) Post Tests and Surveys (Pre- and) Post Tests and Surveys All engineering students are being tested in their core courses this academic year at the beginning of the semester and again at the end of the semester. These data will

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Electromagnetic Waves Properties. The electric and the magnetic field, associated with an electromagnetic wave, propagating along the z=axis. Can be represented by E = E kˆ, = iˆ E = E ˆj, = ˆj b) E =

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1 Electricity & Magnetism Lecture 23 Electricity & Magne/sm Lecture 23, Slide 1 Today you will play around with the polariza2on filters. Con2nue on Friday. Friday s lecture will be on circular polariza2on

More information

Electromagnetic Waves

Electromagnetic Waves Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 23 Electromagnetic Waves Marilyn Akins, PhD Broome Community College Electromagnetic Theory Theoretical understanding of electricity and magnetism

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

( ) ( ) QM A1. The operator ˆR is defined by R ˆ ψ( x) = Re[ ψ( x)] ). Is ˆR a linear operator? Explain. (it returns the real part of ψ ( x) SOLUTION

( ) ( ) QM A1. The operator ˆR is defined by R ˆ ψ( x) = Re[ ψ( x)] ). Is ˆR a linear operator? Explain. (it returns the real part of ψ ( x) SOLUTION QM A The operator ˆR is defined by R ˆ ψ( x) = Re[ ψ( x)] (it returns the real part of ψ ( x) ). Is ˆR a linear operator? Explain. SOLUTION ˆR is not linear. It s easy to find a counterexample against

More information

Transformers. slide 1

Transformers. slide 1 Transformers an alternating emf V1 through the primary coil causes an oscillating magnetic flux through the secondary coil and, hence, an induced emf V2. The induced emf of the secondary coil is delivered

More information

Today in Physics 218: back to electromagnetic waves

Today in Physics 218: back to electromagnetic waves Today in Physics 18: back to electromagnetic waves Impedance Plane electromagnetic waves Energy and momentum in plane electromagnetic waves Radiation pressure Artist s conception of a solar sail: a spacecraft

More information

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves Electromagnetic Theory: PHA3201, Winter 2008 5. Maxwell s Equations and EM Waves 1 Displacement Current We already have most of the pieces that we require for a full statement of Maxwell s Equations; however,

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves As the chart shows, the electromagnetic spectrum covers an extremely wide range of wavelengths and frequencies. Though the names indicate that these waves have a number of sources,

More information

PHYS 1444 Section 004 Lecture #22

PHYS 1444 Section 004 Lecture #22 PHYS 1444 Section 004 Lecture #22 Monday, April 23, 2012 Dr. Extension of Ampere s Law Gauss Law of Magnetism Maxwell s Equations Production of Electromagnetic Waves Today s homework is #13, due 10pm,

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Diffraction I Basic Physics M.P. Vaughan Diffraction Electromagnetic waves Geometric wavefront The Principle of Linear Superposition Diffraction regimes Single

More information

Exam 3: Tuesday, April 18, 5:00-6:00 PM

Exam 3: Tuesday, April 18, 5:00-6:00 PM Exam 3: Tuesday, April 18, 5:-6: PM Test rooms: Instructor Sections Room Dr. Hale F, H 14 Physics Dr. Kurter, N 15 CH Dr. Madison K, M 199 Toomey Dr. Parris J, L -1 ertelsmeyer Mr. Upshaw A, C, E, G G-3

More information

AC Circuits and Electromagnetic Waves

AC Circuits and Electromagnetic Waves AC Circuits and Electromagnetic Waves Physics 102 Lecture 5 7 March 2002 MIDTERM Wednesday, March 13, 7:30-9:00 pm, this room Material: through next week AC circuits Next week: no lecture, no labs, no

More information

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions

UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Name St.No. - Date(YY/MM/DD) / / Section UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Hey diddle diddle, what kind of riddle Is this nature of light? Sometimes

More information

3. Maxwell's Equations and Light Waves

3. Maxwell's Equations and Light Waves 3. Maxwell's Equations and Light Waves Vector fields, vector derivatives and the 3D Wave equation Derivation of the wave equation from Maxwell's Equations Why light waves are transverse waves Why is the

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Quantum Theory of Light and Matter

Quantum Theory of Light and Matter Quantum Theory of Light and Matter Field quantization Paul Eastham February 23, 2012 Quantization in an electromagnetic cavity Quantum theory of an electromagnetic cavity e.g. planar conducting cavity,

More information

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015.

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. PHYS 408, Optics Problem Set 1 - Spring 2016 Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. 1. An electric field in vacuum has the wave equation, Let us consider the solution, 2 E 1 c 2 2 E =

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 2 Radiation

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 2 Radiation Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 2 Radiation Reading/Homework Assignment Read chapter 1, sections 1.1, 1.2, 1.5 Homework will be assigned on Thursday. Radiation Radiation A

More information

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes!

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes! Physics 2102 Gabriela González Marathon review of the course: 15 weeks in ~60 minutes! Fields: electric & magnetic electric and magnetic forces on electric charges potential energy, electric potential,

More information

Physics 202, Lecture 21

Physics 202, Lecture 21 Physics 202, Lecture 21 Today s Topics Electromagnetic waves (overview) Maxwell s equations Examples of EM waves Wave Motion (Review ch. 16) Wave: General Waves (Review of Ch. 16) Propagation of a physical

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

EMF Notes 11; Maxwell s Equations. MAXWELL S EQUATIONS Maxwell s four equations

EMF Notes 11; Maxwell s Equations. MAXWELL S EQUATIONS Maxwell s four equations MAXWELL S EQUATONS Maxwell s four equations n the 870 s, James Clerk Maxwell showed that four equations constitute a complete description of the electric and magnetic fields, or THE ELECTROMAGNETC FELD

More information

Waves, the Wave Equation, and Phase Velocity. We ll start with optics. The one-dimensional wave equation. What is a wave? Optional optics texts: f(x)

Waves, the Wave Equation, and Phase Velocity. We ll start with optics. The one-dimensional wave equation. What is a wave? Optional optics texts: f(x) We ll start with optics Optional optics texts: Waves, the Wave Equation, and Phase Velocity What is a wave? f(x) f(x-) f(x-) f(x-3) Eugene Hecht, Optics, 4th ed. J.F. James, A Student's Guide to Fourier

More information

Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave.

Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave. Today s agenda: Electromagnetic Waves. Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave. Maxwell s Equations Recall: EdA Eds q enclosed o d dt B Bds=μ

More information

Lecture 14 (Poynting Vector and Standing Waves) Physics Spring 2018 Douglas Fields

Lecture 14 (Poynting Vector and Standing Waves) Physics Spring 2018 Douglas Fields Lecture 14 (Poynting Vector and Standing Waves) Physics 6-01 Spring 018 Douglas Fields Reading Quiz For the wave described by E E ˆsin Max j kz t, what is the direction of the Poynting vector? A) +x direction

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015 Reading : Chapters 16 and 17 Note: Reminder: Physics 121H Fall 2015 Homework #15 23-November-2015 Due Date : 2-December-2015 This is a two-week homework assignment that will be worth 2 homework grades

More information

Today in Physics 218: electromagnetic waves in linear media

Today in Physics 218: electromagnetic waves in linear media Today in Physics 218: electromagnetic waves in linear media Their energy and momentum Their reflectance and transmission, for normal incidence Their polarization Sunrise over Victoria Falls, Zambezi River

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 21 Chapter 30 sec. 1-4 Fall 2012 Semester Matthew Jones Question An LC circuit has =100 and =100. If it oscillates with an amplitude of 100 mv, what is the amplitude

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s) PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

More information

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell Chapter 14 MAXWELL S EQUATONS ntroduction Electrodynamics before Maxwell Maxwell s displacement current Maxwell s equations: General Maxwell s equations in vacuum The mathematics of waves Summary NTRODUCTON

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

Physics 212. Lecture 23. Physics 212 Lecture 23, Slide 1

Physics 212. Lecture 23. Physics 212 Lecture 23, Slide 1 Physics 212 Lecture 23 Physics 212 Lecture 23, Slide 1 Music Who is the Artist? A) Soul Rebels Brass Band B) John Boutte C) New Orleans Nightcrawlers D) Paul Sanchez & Shammar Allen E) Alex McMurray and

More information

Introduction to Electromagnetism

Introduction to Electromagnetism Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.

More information

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves Chapter 21.8-13(not.9-.10) Electromagnetic Announcements Clicker quizzes NO LONGER GRADED! WebAssign HW Set 8 due this Friday Problems cover material from Chapters 21-22 Office hours: My office hours today

More information

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Lana Sheridan De Anza College May 17, 2018 Last time pulse propagation the wave equation Overview solutions to the wave

More information

PES 1120 Spring 2014, Spendier Lecture 38/Page 1

PES 1120 Spring 2014, Spendier Lecture 38/Page 1 PES 1120 Spring 2014, Spendier Lecture 38/Page 1 Today: Start last chapter 32 - Maxwell s Equations James Clerk Maxwell (1831-1879) Scottish mathematical physicist. He united all observations, experiments

More information

Physics 1502: Lecture 25 Today s Agenda

Physics 1502: Lecture 25 Today s Agenda Physics 1502: Lecture 25 Today s Agenda Announcements: Midterm 2: NOT Nov. 6 Following week Homework 07: due Friday net week AC current esonances Electromagnetic Waves Mawell s Equations - evised Energy

More information

Today in Physics 122: forces and signals from electromagnetic waves

Today in Physics 122: forces and signals from electromagnetic waves Today in Physics 122: forces and signals from electromagnetic waves Momentum in electromagnetic plane waves Radiation pressure Wave modulation and group velocity Artist s conception of a solar sail: a

More information

Chapter 9: Waves, incl. e & m waves, light

Chapter 9: Waves, incl. e & m waves, light Chapter 9: Waves, incl. e & m waves, light Review of interference Light Electromagnetic waves/radiation in general Solar radiation Global warming as an important application INTERFERENCE: absolutely crucial,

More information

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

Traveling Harmonic Waves

Traveling Harmonic Waves Traveling Harmonic Waves 6 January 2016 PHYC 1290 Department of Physics and Atmospheric Science Functional Form for Traveling Waves We can show that traveling waves whose shape does not change with time

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Waves Part 3: Superposition

Waves Part 3: Superposition Waves Part 3: Superposition Last modified: 06/06/2017 Superposition Standing Waves Definition Standing Waves Summary Standing Waves on a String Standing Waves in a Pipe Standing Waves in a Pipe with One

More information

Poynting Vector and Energy Flow W14D1

Poynting Vector and Energy Flow W14D1 Poynting Vector and Energy Flow W14D1 1 Announcements Week 14 Prepset due online Friday 8:30 am PS 11 due Week 14 Friday at 9 pm in boxes outside 26-152 Sunday Tutoring 1-5 pm in 26-152 2 Outline Poynting

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Physics 322 Midterm 2

Physics 322 Midterm 2 Physics 3 Midterm Nov 30, 015 name: Box your final answer. 1 (15 pt) (50 pt) 3 (0 pt) 4 (15 pt) total (100 pt) 1 1. (15 pt) An infinitely long cylinder of radius R whose axis is parallel to the ẑ axis

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

toroidal iron core compass switch battery secondary coil primary coil

toroidal iron core compass switch battery secondary coil primary coil Fundamental Laws of Electrostatics Integral form Differential form d l C S E 0 E 0 D d s V q ev dv D ε E D qev 1 Fundamental Laws of Magnetostatics Integral form Differential form C S dl S J d s B d s

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Monday and Wednesday, 5:30-6:45 pm P&A Room 184. Textbook: Many good ones (see webpage) Lectures follow order

More information

Electromagnetic Waves

Electromagnetic Waves Lecture 20 Chapter 34 Physics II Electromagnetic Waves Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish climbing our EM mountain. Maxwell s equations Let s revisit

More information

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle Newton s Laws of Motion and Gravity ASTR 2110 Sarazin Space Shuttle Discussion Session This Week Friday, September 8, 3-4 pm Shorter Discussion Session (end 3:40), followed by: Intro to Astronomy Department

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information