toroidal iron core compass switch battery secondary coil primary coil

Size: px
Start display at page:

Download "toroidal iron core compass switch battery secondary coil primary coil"

Transcription

1 Fundamental Laws of Electrostatics Integral form Differential form d l C S E 0 E 0 D d s V q ev dv D ε E D qev 1

2 Fundamental Laws of Magnetostatics Integral form Differential form C S dl S J d s B d s 0 B 0 J B µ

3 Electrostatic, Magnetostatic, and Electromagnetostatic Fields In the static case (no time variation), the electric field (specified by Eand D) ) and the magnetic field (specified by Band ) ) are described by separate and independent sets of equations. In a conducting medium, both electrostatic and magnetostatic fields can exist, and are coupled through the Ohm s law (J σe). Such a situation is called electromagnetostatic. 3

4 The Three Experimental Pillars of Electromagnetics Electric charges attract/repel each other as described by Coulomb s law. Current-carrying wires attract/repel each other as described by Ampere s law of force. Magnetic fields that change with time induce electromotive force as described by Faraday s law. 4

5 Faraday s Experiment switch toroidal iron core compass battery primary coil secondary coil 5

6 Faraday s Experiment (Cont d) Upon closing the switch, current begins to flow in the primary coil. A A momentary deflection of the compass needle indicates a brief surge of current flowing in the secondary coil. The compass needlequickly settles back to zero. Upon opening the switch, another brief deflection of the compass needleis observed. 6

7 Faraday s Law of Electromagnetic Induction The electromotive force induced around a closed loop Cis equal to the time rate of decrease of the magnetic flux linking the loop. V ind dφ dt S C 7

8 Faraday s Law of Electromagnetic Induction (Cont d) Φ B d s V ind S E C d l S is any surface bounded by C C E dl d dt S B d s integral form of Faraday s law 8

9 Faraday s Law (Cont d) Stokes s theorem E dl E d s C S d dt S B d s assuming a stationary surface S S B t d s 9

10 Faraday s Law (Cont d) Since the above must hold for any S,, we have E B t differential form of Faraday s law (assuming a stationary frame of reference) 10

11 Faraday s Law (Cont d) Faraday s law states that a changing magnetic field induces an electric field. The induced electric field is non- conservative. 11

12 Lenz s Law The sense of the emf induced by the time- varying magnetic flux is such that any current it produces tends to set up a magnetic field that opposes the changein the original magnetic field. Lenz s law is a consequence of conservation of energy. Lenz s law explains the minus sign in Faraday s law. 1

13 Faraday s Law The electromotive force induced around a closed loop Cis equal to the time rate of decrease of the magnetic flux linking the loop. V ind dφ Φ dt For a coil of N tightly wound turns V ind dφ N dt 13

14 Faraday s Law (Cont d) Φ B d s S S C V ind E C d l S is any surface bounded by C 14

15 Faraday s Law (Cont d) Faraday s law applies to situations where (1) the B-field is a function of time () dsis a function of time (3) Band ds are functions of time 15

16 Ampere s Law and the Continuity The differential form of Ampere s law in the static case is Equation J The continuity equation is J + q t ev 0 16

17 Ampere s Law and the Continuity Equation (Cont d) In the time-varying case, Ampere s law in the above form is inconsistent with the continuity equation J ( ) 0 17

18 Ampere s Law and the Continuity Equation (Cont d) To resolve this inconsistency, Maxwell modified Ampere s law to read J c + D D t conduction current density displacement current density 18

19 Ampere s Law and the Continuity Equation (Cont d) The new form of Ampere s law is consistent with the continuity equation as well as with the differential form of Gauss s law J c + t ( D) ( ) 0 qev 19

20 Displacement Current Ampere s law can be written as J + J c d where J d D t displaceme nt current density (A/m ) 0

21 Displacement Current (Cont d) Displacement currentis the type of current that flows between the plates of a capacitor. Displacement currentis the mechanism which allows electromagnetic waves to propagate in a non-conducting medium. Displacement currentis a consequence of the three experimental pillars of electromagnetics. 1

22 Displacement Current in a Capacitor Consider a parallel-plate plate capacitor with plates of area Aseparated by a dielectric of permittivity ε and thickness dand connected to an ac generator: z d z 0 z A ε i d i c + v( t) V0 - cosωt

23 Displacement Current in a Capacitor (Cont d) The electric field and displacement flux density in the capacitor is given by v( t) V0 E aˆ z aˆ z cosωt assume d d fringing is ε V0 D ε E aˆ z cosωt negligible d The displacement current density is given by J d D t a ωε V d 0 ˆz sin ωt 3

24 Displacement Current in a Capacitor (Cont d) The displacement current is given by i d ωεa J d d s J d A V0 sin ω t d S ωcv 0 sin ωt C dv dt i c conduction current in wire 4

25 Maxwell s Equations in Differential Form for Time-armonic Fields in Simple Medium E ( jωµ + σ ) m K i ( jωε + σ ) e E + J i E q ev ε q mv µ 5

26 Maxwell s Curl Equations for Time-armonic Fields in Simple Medium Using Complex Permittivity and Permeability complex permeability E j ωµ K i j ωε E + J i complex permittivity 6

27 Overview of Waves A waveis a pattern of values in space that appear to move as time evolves. A waveis a solution to a wave equation. Examples of waves include water waves, sound waves, seismic waves, and voltage and current waves on transmission lines. 7

28 Overview of Waves (Cont d) Wave phenomena result from an exchange between two different forms of energy such that the time rate of change in one form leads to a spatial change in the other. Waves possess no mass energy momentum velocity 8

29 Time-Domain Maxwell s Equations in Differential Form K + K c i B E K D t D J + B t q mv q ev J c + J i 9

30 Time-Domain Maxwell s Equations in Differential Form for a Simple Medium D ε E B µ J σ E K σ c c m E σ m + σ E + J i K i µ t E + ε t E qev ε qmv ε 30

31 Time-Domain Maxwell s Equations in Differential Form for a Simple, Source-Free, and Lossless Medium J i K i 0 qev qmv 0 σ σ m 0 E µ t E 0 E ε t 0 31

32 Time-Domain Maxwell s Equations in Differential Form for a Simple, Source-Free, and Lossless Medium Obviously, there must be a source for the field somewhere. owever, we are looking at the properties of waves in a region far from the source. 3

33 Derivation of Wave Equations for Electromagnetic Waves in a Simple, Source-Free, Lossless Medium E ( E) µ 0 ( ) t ( ) ε ( E) t 0 E E µε t µε t 33

34 Wave Equations for Electromagnetic Waves in a Simple, Source-Free, Lossless Medium E E µε t 0 µε 0 t The wave equations are not independent. Usually we solve the electric field wave equation and determine from Eusing Faraday s law. 34

35 Uniform Plane Wave Solutions in the Time Domain A uniform plane waveis an electromagnetic wave in which the electric and magnetic fields and the direction of propagation are mutually orthogonal, and their amplitudes and phases are constant over planes perpendicular to the direction of propagation. Let us examine a possible plane wave solution given by E ( z t) aˆx E, x 35

36 Uniform Plane Wave Solutions in the Time Domain (Cont d) The wave equation for this field simplifies to Ex E µε z t x 0 The general solution to this wave equation is E ( ) ( ) ( ) z, t p z v t p z v t + + x 1 p p 36

37 Uniform Plane Wave Solutions in the Time Domain (Cont d) The functions p 1 (z-v p t)and p (z+v p t) represent uniform waves propagating in the +zand -zdirections respectively. Once the electric field has been determined from the wave equation, the magnetic field must follow from Maxwell s equations. 37

38 Uniform Plane Wave Solutions in the Time Domain (Cont d) The velocity of propagationis is determined solely by the medium: v p 1 µε The functions p 1 and p are determined by the source and the other boundary conditions. 38

39 Uniform Plane Wave Solutions in the Time Domain (Cont d) ere we must have where ( z t) a ˆ y, y y 1 ( ) { ( ) ( )} z, t p z v t p z v t + y 1 p η p 39

40 Uniform Plane Wave Solutions in the Time Domain (Cont d) ηis the intrinsic impedance of the medium given by η Like the velocity of propagation, the intrinsic impedance is independent of the source and is determined only by the properties of the medium. µ ε 40

41 Uniform Plane Wave Solutions in the Time Domain (Cont d) In free space (vacuum): v p c 3 10 m/s 8 η 10 π 377Ω 41

42 Uniform Plane Wave Solutions in the Time Domain (Cont d) Strictly speaking, uniform plane waves can be produced only by sources of infinite extent. owever, point sources create spherical waves. Locally, a spherical wave looks like a plane wave. Thus, an understanding of plane waves is very important in the study of electromagnetics. 4

43 Uniform Plane Wave Solutions Uniform Plane Wave Solutions in the Time Domain (Cont d) in the Time Domain (Cont d) Assuming that the source is sinusoidal. We Assuming that the source is sinusoidal. We have have ( ) ( ) ( ) p p p z t C t v z v C t v z p β ω ω cos cos ( ) ( ) ( ) p p p p v z t C t v z v C t v z p ω β β ω ω + + cos cos

44 Uniform Plane Wave Solutions in the Time Domain (Cont d) The electric and magnetic fields are given by E x ( z, t ) C cos ( ω t β z ) + C cos ( ω t + β z ) y, 1 1 η ( z, t) { C cos( ωt βz) C cos( ωt + βz) } 1 44

45 Uniform Plane Wave Solutions in the Time Domain (Cont d) The argument of the cosine function is the called the instantaneous phaseof the field: φ( z, t) ωt βz 45

46 Uniform Plane Wave Solutions in the Time Domain (Cont d) The speed with which a constant value of instantaneous phase travels is called the phase velocity.. For a losslessmedium, it is equal to and denoted by the same symbol as the velocity of propagation. ωt v p βz dz dt φ 0 ω β 46 z 1 µε ωt φ β 0

47 Uniform Plane Wave Solutions in the Time Domain (Cont d) The distance along the direction of propagation over which the instantaneous phase changes by πradians for a fixed value of time is the wavelength. βλ π λ π β 47

48 Uniform Plane Wave Solutions in the Time Domain (Cont d) The wavelengthis also the distance between every other zero crossing of the sinusoid Function vs. position at a fixed time λ

49 Uniform Plane Wave Solutions in the Time Domain (Cont d) Relationship between wavelengthand and frequency in free space: λ Relationship between wavelengthand and frequency in a material medium: c f λ v p f 49

50 Uniform Plane Wave Solutions in the Time Domain (Cont d) βis the phase constantand and is given by β ω µε ω v p rad/m 50

51 Uniform Plane Wave Solutions in the Time Domain (Cont d) In free space (vacuum): ω β ω µ ε k k c π λ 0 free space wavenumber (rad/m) 51

52 Flow of Electromagnetic Power Electromagnetic waves transport throughout space the energy and momentum arising from a set of charges and currents (the sources). If the electromagnetic waves interact with another set of charges and currents in a receiver, information (energy) can be delivered from the sources to another location in space. The energy and momentum exchange between waves and charges and currents is described by the Lorentz force equation. 5

53 Derivation of Poynting s Theorem Poynting s theorem concerns the conservation of energy for a given volume in space. Poynting s theorem is a consequence of Maxwell s equations. 53

54 Derivation of Poynting s Theorem in the Time Domain (Cont d) Time-Domain Maxwell s curl equations in differential form E K i K c B B t J i + J c + D t 54

55 Derivation of Poynting s Theorem in the Time Domain (Cont d) Recall a vector identity ( E ) E E Furthermore, E E J i E J c E D t E K i K c B t 55

56 Derivation of Poynting s Theorem in Derivation of Poynting s Theorem in the Time Domain (Cont d) the Time Domain (Cont d) ( ) B K K E E E 56 t D E J E J E t K K c i c i

57 Derivation of Poynting s Theorem in the Time Domain (Cont d) V Integrating over a volume Vbounded by a closed surface S,, we have D t ( E J + ) + i K i dv E dv B t ( E ) M c dv V V V V dv E J c dv 57

58 Derivation of Poynting s Theorem in the Time Domain (Cont d) Using the divergence theorem, we obtain the general form of Poynting s theorem V ( E J + K ) i i dv V E D t + B dv t V E J c dv V M c dv ( E ) S d s 58

59 Derivation of Poynting s Theorem in the Time Domain (Cont d) For simple, lossless media, we have V E E i i dv ε E + µ t ( J + K ) S V ( E ) d s t dv Note that A A t A A t 1 t ( A ) 59

60 Derivation of Poynting s Theorem in the Time Domain (Cont d) ence, we have the form of Poynting s theorem valid in simple, lossless media: V ( E J + K ) i i dv t V 1 εe + 1 µ dv ( E ) S d s 60

61 Physical Interpretation of the Terms in Poynting s Theorem The terms σe dv + V V σ m dv represent the instantaneous power dissipatedin in the electric and magnetic conductivity losses, respectively, in volume V. 61

62 Physical Interpretation of the Terms in Poynting s Theorem (Cont d) The terms ωε E dv + ωµ V V dv represent the instantaneous power dissipatedin in the polarization and magnetization losses, respectively, in volume V. 6

63 Physical Interpretation of the Terms in Poynting s Theorem (Cont d) Recall that the electric energy density is given by 1 we ε E Recall that the magnetic energy density is given by 1 w µ m 63

64 Physical Interpretation of the Terms in Poynting s Theorem (Cont d) ence, the terms V 1 ε E + 1 µ dv represent the total electromagnetic energy storedin the volume V. 64

65 Physical Interpretation of the Terms in Poynting s Theorem (Cont d) The term S ( ) E d s represents the flow of instantaneous powerout out of the volume Vthrough the surface S. 65

66 Physical Interpretation of the Terms in Poynting s Theorem (Cont d) The term V ( E J + K ) i i dv represents the total electromagnetic energy generated by the sourcesin the volume V. 66

67 Physical Interpretation of the Terms in Poynting s Theorem (Cont d) In words the Poynting vector can be stated as The sum of the power generated by the sources, the imaginary power (representing the time-rate of increase) of the stored electric and magnetic energies, the power leaving, and the power dissipated in the enclosed volume is equal to zero. V + ( ) ( E J + K dv + jω ε E + µ dv + ω ε E + µ ) V σe i dv + V σ i m dv + V 1 ( E ) S 1 d s 0 V dv 67

68 Poynting Vector in the Time Domain We define a new vector called the (instantaneous) Poynting vectoras S E W/m. The Poynting vector has units of The Poynting vector has the same direction as the direction of propagation. The Poynting vector at a point is equivalent to the power density of the wave at that point. 68

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 7: Dynamic fields Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Maxwell s equations Maxwell

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are.

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are. Maxwell s Equations Introduction In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are D = ρ () E = 0 (2) B = 0 (3) H = J (4) In the integral

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY SIRUVACHUR-621113 ELECTRICAL AND ELECTRONICS DEPARTMENT 2 MARK QUESTIONS AND ANSWERS SUBJECT CODE: EE 6302 SUBJECT NAME: ELECTROMAGNETIC THEORY

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

remain essentially unchanged for the case of time-varying fields, the remaining two

remain essentially unchanged for the case of time-varying fields, the remaining two Unit 2 Maxwell s Equations Time-Varying Form While the Gauss law forms for the static electric and steady magnetic field equations remain essentially unchanged for the case of time-varying fields, the

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008 Uniform Plane Waves Ranga Rodrigo University of Moratuwa November 7, 2008 Ranga Rodrigo (University of Moratuwa) Uniform Plane Waves November 7, 2008 1 / 51 Summary of Last Week s Lecture Basic Relations

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

UNIT-III Maxwell's equations (Time varying fields)

UNIT-III Maxwell's equations (Time varying fields) UNIT-III Maxwell's equations (Time varying fields) Faraday s law, transformer emf &inconsistency of ampere s law Displacement current density Maxwell s equations in final form Maxwell s equations in word

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Magnetostatic fields! steady magnetic fields produced by steady (DC) currents or stationary magnetic materials.

Magnetostatic fields! steady magnetic fields produced by steady (DC) currents or stationary magnetic materials. ECE 3313 Electromagnetics I! Static (time-invariant) fields Electrostatic or magnetostatic fields are not coupled together. (one can exist without the other.) Electrostatic fields! steady electric fields

More information

Chapter 2 Basics of Electricity and Magnetism

Chapter 2 Basics of Electricity and Magnetism Chapter 2 Basics of Electricity and Magnetism My direct path to the special theory of relativity was mainly determined by the conviction that the electromotive force induced in a conductor moving in a

More information

ELECTROMAGNETIC FIELD

ELECTROMAGNETIC FIELD UNIT-III INTRODUCTION: In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static magnetic fields are produced by charges in motion or by

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Field and Wave Electromagnetic

Field and Wave Electromagnetic Field and Wave Electromagnetic Chapter7 The time varying fields and Maxwell s equation Introduction () Time static fields ) Electrostatic E =, id= ρ, D= εe ) Magnetostatic ib=, H = J, H = B μ note) E and

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE EC6403 -ELECTROMAGNETIC FIELDS CLASS/SEM: II ECE/IV SEM UNIT I - STATIC ELECTRIC FIELD Part A - Two Marks 1. Define scalar field? A field is a system in which a particular physical function has a value

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Ranga Rodrigo University of Moratuwa October 20, 2008 Compiled based on Lectures of Prof. (Mrs.) Indra Dayawansa. Ranga Rodrigo (University of Moratuwa) Antennas and Propagation

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Electromagnetic Field Theory (EMT) Lecture # 25

Electromagnetic Field Theory (EMT) Lecture # 25 Electromagnetic Field Theory (EMT) Lecture # 25 1) Transformer and Motional EMFs 2) Displacement Current 3) Electromagnetic Wave Propagation Waves & Applications Time Varying Fields Until now, we have

More information

Chapter 21 Magnetic Induction Lecture 12

Chapter 21 Magnetic Induction Lecture 12 Chapter 21 Magnetic Induction Lecture 12 21.1 Why is it called Electromagnetism? 21.2 Magnetic Flux and Faraday s Law 21.3 Lenz s Law and Work-Energy Principles 21.4 Inductance 21.5 RL Circuits 21.6 Energy

More information

UNIT-I Static Electric fields

UNIT-I Static Electric fields UNIT-I Static Electric fields In this chapter we will discuss on the followings: Coulomb's Law Electric Field & Electric Flux Density Gauss's Law with Application Electrostatic Potential, Equipotential

More information

Sliding Conducting Bar

Sliding Conducting Bar Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field B s II I d d μ o d μo με o o E ds E B Induction A loop of wire is connected to a sensitive ammeter

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law 1 Ampere s law Magnetic field is produced by time variation of electric field dφ B ( I I ) E d s = µ o + d = µ o I+ µ oεo ds E B 2 Induction A loop of wire is connected to a sensitive

More information

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism 1 ENGN6521 / ENGN4521: Embedded Wireless Radio Spectrum use for Communications 2 ENGN6521 / ENGN4521: Embedded Wireless 3 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism I Gauss

More information

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid Magnetic inductance & Solenoids Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux.

More information

Plane Wave: Introduction

Plane Wave: Introduction Plane Wave: Introduction According to Mawell s equations a timevarying electric field produces a time-varying magnetic field and conversely a time-varying magnetic field produces an electric field ( i.e.

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK III SEMESTER EE 8391 ELECTROMAGNETIC THEORY Regulation 2017 Academic Year

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

While the Gauss law forms for the static electric and steady magnetic field equations

While the Gauss law forms for the static electric and steady magnetic field equations Unit 2 Time-Varying Fields and Maxwell s Equations While the Gauss law forms for the static electric and steady magnetic field equations remain essentially unchanged for the case of time-varying fields,

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used B( t) E = dt D t H = J+ t D =ρ B = 0 D=εE B=µ H () F

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r. SUMMARY Phys 53 (University Physics II) Compiled by Prof. Erickson q 1 q Coulomb s Law: F 1 = k e r ˆr where k e = 1 4π =8.9875 10 9 N m /C, and =8.85 10 1 C /(N m )isthepermittivity of free space. Generally,

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics Magnetostatics III Magnetization All magnetic phenomena are due to motion of the electric charges present in that material. A piece of magnetic material on an atomic scale have tiny currents due to electrons

More information

A Review of Basic Electromagnetic Theories

A Review of Basic Electromagnetic Theories A Review of Basic Electromagnetic Theories Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820)

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

AQA Physics A-level Section 7: Fields and Their Consequences

AQA Physics A-level Section 7: Fields and Their Consequences AQA Physics A-level Section 7: Fields and Their Consequences Key Points Gravitational fields A force field is a region in which a body experiences a non-contact force. Gravity is a universal force acting

More information

Basics of Wave Propagation

Basics of Wave Propagation Basics of Wave Propagation S. R. Zinka zinka@hyderabad.bits-pilani.ac.in Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus May 7, 2015 Outline 1 Time Harmonic Fields 2 Helmholtz

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

Chapter 1 Mathematical Foundations

Chapter 1 Mathematical Foundations Computational Electromagnetics; Chapter 1 1 Chapter 1 Mathematical Foundations 1.1 Maxwell s Equations Electromagnetic phenomena can be described by the electric field E, the electric induction D, the

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15)

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE EE6302-ELECTROMAGNETIC THEORY UNIT 4 PART A 1. Define mutual inductance and self inductance. (A/M-15) Self inductance is the ration between the induced

More information

Electrical polarization. Figure 19-5 [1]

Electrical polarization. Figure 19-5 [1] Electrical polarization Figure 19-5 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Theory of Electromagnetic Fields

Theory of Electromagnetic Fields Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK Abstract We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Introduction to Electromagnetism

Introduction to Electromagnetism Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.

More information

Time-harmonic form Phasor form. =0 (1.11d)

Time-harmonic form Phasor form. =0 (1.11d) Chapter 2 Wave in an Unbounded Medium Maxwell s Equations Time-harmonic form Phasor form (Real quantity) (complex quantity) B E = Eˆ = jωbˆ (1.11 a) t D= ρ Dˆ = ρ (1.11 b) D H = J + Hˆ = Jˆ+ jωdˆ ( 1.11

More information

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture 18 Basic Laws of Electromagnetics We saw in the earlier lecture

More information

CHAPTER 32: ELECTROMAGNETIC WAVES

CHAPTER 32: ELECTROMAGNETIC WAVES CHAPTER 32: ELECTROMAGNETIC WAVES For those of you who are interested, below are the differential, or point, form of the four Maxwell s equations we studied this semester. The version of Maxwell s equations

More information

Yell if you have any questions

Yell if you have any questions Class 31: Outline Hour 1: Concept Review / Overview PRS Questions possible exam questions Hour : Sample Exam Yell if you have any questions P31 1 Exam 3 Topics Faraday s Law Self Inductance Energy Stored

More information

UNIT-I Static Electric fields

UNIT-I Static Electric fields UNIT-I Static Electric fields In this chapter we will discuss on the followings: Coulomb's Law Electric Field & Electric Flux Density Gauss's Law with Application Electrostatic Potential, Equipotential

More information

Electromagnetic field theory

Electromagnetic field theory 1 Electromagnetic field theory 1.1 Introduction What is a field? Is it a scalar field or a vector field? What is the nature of a field? Is it a continuous or a rotational field? How is the magnetic field

More information

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s) PHYS 2015 -- Week 12 Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves Reading Journals for Tuesday from table(s) WebAssign due Friday night For exclusive use in PHYS

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information

CHAPTER 29: ELECTROMAGNETIC INDUCTION

CHAPTER 29: ELECTROMAGNETIC INDUCTION CHAPTER 29: ELECTROMAGNETIC INDUCTION So far we have seen that electric charges are the source for both electric and magnetic fields. We have also seen that these fields can exert forces on other electric

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law 1 Magnetic Flux and Faraday s Law of Electromagnetic Induction We

More information

MIDSUMMER EXAMINATIONS 2001

MIDSUMMER EXAMINATIONS 2001 No. of Pages: 7 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS, PHYSICS WITH SPACE SCIENCE & TECHNOLOGY, PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE

More information

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Induced emf: Faraday s Law and Lenz s Law We observe that, when a magnet is moved near a conducting loop,

More information

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak. Applications of Ampere s Law continued. 2. Field of a solenoid. A solenoid can have many (thousands) of turns, and perhaps many layers of windings. The figure shows a simple solenoid with just a few windings

More information

Electromagnetic Field Theory 1 (fundamental relations and definitions)

Electromagnetic Field Theory 1 (fundamental relations and definitions) (fundamental relations and definitions) Lukas Jelinek lukas.jelinek@fel.cvut.cz Department of Electromagnetic Field Czech Technical University in Prague Czech Republic Ver. 216/12/14 Fundamental Question

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist 1791 1867 Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

University of Saskatchewan Department of Electrical Engineering

University of Saskatchewan Department of Electrical Engineering University of Saskatchewan Department of Electrical Engineering December 9,2004 EE30 1 Electricity, Magnetism and Fields Final Examination Professor Robert E. Johanson Welcome to the EE301 Final. This

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Recall: right hand rule 2 10/28/2013 Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

1 RF components. Cambridge University Press Radio Frequency Integrated Circuits and Systems Hooman Darabi Excerpt More information

1 RF components. Cambridge University Press Radio Frequency Integrated Circuits and Systems Hooman Darabi Excerpt More information 9780521190794 Radio Frequency ntegrated Circuits and ystems 1 RF components n this chapter basic components used in RF design are discussed. A detailed modeling and analysis of MO transistors at high frequency

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

Chapter 31: Electromagnetic Induction and Faraday s Law All sections covered.

Chapter 31: Electromagnetic Induction and Faraday s Law All sections covered. About Exam 3 When and where (same as before) Monday Nov. 22 rd 5:30-7:00 pm Bascom 272: Sections 301, 302, 303, 304, 305, 311,322, 327, 329 Ingraham B10: Sections 306, 307, 312, 321, 323, 324, 325, 328,

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time Displacement Current Ampere s law in the original form is valid only if any electric fields present are constant in time Maxwell modified the law to include timesaving electric fields Maxwell added an

More information

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow Section Table and Group Names Hand in one copy per group at the end

More information