Waves, Polarization, and Coherence

Size: px
Start display at page:

Download "Waves, Polarization, and Coherence"

Transcription

1 Waves, Polarization, and Coherence Lecture 6 Biophotonics Jae Gwan Kim jaekim@gist.ac.kr, X 0 School of nformation and Communication ngineering Gwangju nstitute of Sciences and Technolog Outline Models of Light Light as an lectromagnetic Wave Polarization of Light Reflection and Refraction Wave Propagation through Anisotropic Media nterference and Coherence of Light

2 Light as an lectromagnetic Wave lectromagnetic wave varies in space and time lectric field can be written as a : scalar z ( z, t Acos ( t cos( A kz t δ is the phase constant or a vector ( z, t Acos( kz t The direction of the electric field vector (which is not the same as the direction of light propagation! is called the polarization direction. Please remember: cos( Re[ e i ] Polarization of Monochromatic Plane Waves Consider a plane M wave propagating in the z direction will lie in the (, plane where the comple envelope : ( z, t Re Ae j( tkz A ˆ ˆ A e j A e j For some z=constant the components of the field will var as: A cos t A cos t where

3 Linear Polarized Light. 0, n phase A cost A cos( t A A cost A A cost A Linear equation A A A 0., 90 degree out of phase A cost A cos( t For particular A case of Circular Polarized Light A cost A sint A A A Standard elliptical equation A A A Left hand polarization Right hand polarization 3

4 General cases lliptical Polarized Light A cost cos sin A cos( t A A A A General elliptical equation A A A A A A A A Linear Polarization in 3D Movies Two snchronized projectors project two images on the screen, each with a different polarization (the images are projected through linear polarizers The glasses allow onl one of the images into each ee. The two images are separated for each ee creating depth 4

5 mportance of Polarization Polarization plas an important role in the interaction of light with matter: The amount of light reflected at the boundar between two materials depends on the polarization of the incident wave. The amount of light absorbed b certain materials is polarization dependent Light scattering from matter is generall polarization dependent The refractive inde of anisotropic materials depends on the polarization Opticall active materials have the natural abilit to rotate the polarization plane of linearl polarized light. These polarization phenomena are used for building important polarization devices. Polarizing Filter A polarizing filter cuts down the reflections (top and made it possible to see the photographer through the glass at roughl Brewster's angle although reflections off the back window of the car are not cut because the are less strongl polarized, according to the Fresnel equations 5

6 Fresnel quations deduced b Augustin Jean Fresnel, describe the behavior of light when moving between media of differing refractive indices. The reflection of light that the equations predict is known as Fresnel reflection. s vs p polarization Plane of ncidence n n Reflected wave k 3 k θ r θ θ t i k mirror perpendicular polarization (or T or s polarization, s easier to remember if we think of the arrow slapping the mirror mirror parallel polarization (or TM or p polarization, p easier to remember if we think of the arrow poking the mirror B solving a boundar value problem for the electromagnetic wave at the interface one can derive the Fresnel equations. This set of 4 equations gives the amounts of perpendicular and parallel polarized that reflected and transmitted at the interface. 6

7 s vs p polarization perpendicular ( component of polarization (transverse electric (T or s polarization from German senkrecht parallel ( // component of polarization (transverse magnetic (TM or p polarization Fresnel quations Reflection coefficient f incident light is s polarized, f incident light is p polarized Transmission coefficient T s = R s, T p = R p f the incident light is unpolarized, R = (R s + R p / 7

8 Fresnel quations The amplitudes of reflection coefficient R and transmission coefficient T are R = and where r and t are the ratio of the reflected/transmitted wave s comple electric field amplitude to that of the incident wave Brewster s Angle An angle of incidence at which light with a particular polarization is perfectl transmitted through a transparent dielectric surface, with no reflection. When unpolarized light is incident at this angle, the light that is reflected from the surface is therefore perfectl polarized polarizer 8

9 Brewster s Angle, Critical Angle n < n eternal reflection (e: reflection from air to glass Brewster s angle the incidence angle at which the parallel polarized wave is not reflected n B tan n n > n internal reflection (e: reflection from glass to air Critical angle the incidence angle for which the refraction angle is 90 0 (for θ>θ c all the incident light is totall reflected n c sin n Brewster, Critical Angle Applic. For θ>θc total internal reflection used for light propagation in optical fibers s polarized θ B Partiall p polarized A Brewster window transmits TM (parallel polarized light with no reflection loss (used in lasers cavities Polarizer-a device which converts an unpolarized beam into a beam with single polarization state f unpolarized light is incident on a surface at Brewster angle, the reflected light is linearl polarized with the electric vector perpendicular to the plane of incidence (the parallel component is not reflected polarization b selective reflection 9

10 Polarizer Liner polarizer Absorptive polarizer: the unwanted polarization states are absorbed b the device Crstals: tourmaline, herapathite PVA plastic with an iodine doping is stretched during the manufacturing process Wire grid polarizer: Parallel to the wire is reflected while the perpendicular to the wire is transmitted The separation distance between the wires must be less than the wavelength of the radiation, and the wire width should be a small fraction of this distance. This means that wire grid polarizers are generall onl used for microwaves and for far and mid infrared light. Polarizer Liner polarizer Beam splitting polarizer: the unpolarized beam is split into two beams with opposite polarization states Polarization b reflection Birefringent polarizer Thin film polarizer: glass substrates on which a special optical coating is applied causing an interference effects 0

11 Birefringence An anisotropic crstal ehibits different refractive indices for different polarization components of the light when light refracts at the surface of an anisotropic crstal (quartz or calcite, the two polarizations refracts at different angles, being spatiall separated (birefringence or double refraction. Usuall, two cemented prisms made of anisotropic (uniaial crstals in different orientations are used to obtain polarized from unpolarized light. Optical Ais An optical ais is a line along which there is some degree of rotational smmetr in an optical sstem such as a camera lens or microscope. For an optical fiber, the optical ais is along the center of the fiber core, and is also known as the fiber ais.

12 Optic Ais of a Crstal t is the direction in which a ra of transmitted light suffers no birefringence Uniaial crstals: the heagonal, tetragonal, and trigonal crstal sstems have one optic ais Biaial crstals: orthorhombic, monoclinic, and triclinic have two optic aes f the light beam is not parallel to the optic ais, then the beam is split into two ras (the ordinar and etraordinar when passing through the crstal. These ras will be mutuall orthogonall polarized. Crstal Structures

13 Ordinar vs traordinar f unpolarized light enters the birefringent material at some angle of incidence, the component of the incident radiation whose polarization is perpendicular to the crstal ais (ordinar ra will be refracted according to the standard law of refraction for a material of refractive inde n o, the other polarization component, the so called etraordinar ra will refract at a different angle determined b the angle of incidence, the orientation of the optic ais, and the birefringence Birefringent Polarizer Nicole prism Glan Thomson prism Glan Foucault prism Glan Talor prism 3

14 Birefringent Polarizer Wollaston Prism Senarmont Prism Crstal ais traordinar ra or e ra 5~45 o Ordinar ra or o ra Rochon Prism Malus law When a perfect polarizer is placed in a polarized beam of light, the intensit,, of the light that passes through is given b Where o is the initial intensit θ i is the angle between θ 0 andθ 4

15 Polarizer Circular polarizer (polarizing filter to create circularl polarized light or alternativel to selectivel absorb or pass clockwise and counter clockwise circularl polarized light Polarizing filters in photograph 3D Glasses Wave Ratarder (Wave plate A tpical wave plate is made of anisotropic materials (birefringent crstal. There is a phase dela between the two polarization components which see different refractive indices of the anisotropic material The phase difference is given b: (n n L where L is the length of the wave plate; n, n -the refractive indices corresponding to the two polarization components a half wavelength, Half wave plate a quarter wavelength, Quarter wave plate Wave plate (retarder 5

16 Half Wave Plate A cos( t The light remains linear polarized, but the polarization plane will be rotated at θ. The polarization plane can be rotated b different angles if the half wave plate is rotated A cost origin For linear polarized light (δ origin =0 or π, after passing a half wave plate: total origin 0(or (or 0 linear polarization Half Wave Plate When do we need to use a half wave plate? -in an eperimental set-up when the plane of polarization of a laser beam needs to be rotated - when the laser power needs to be attenuated, a wave plate and a polarizer can be used for this purpose details, principle of operation & videos: 6

17 Possible am Question A quarter waveplate shifts the relative phase b. What is the effect of a quarter waveplate on linear and circular polarized light? Possible am Question A quarter waveplate shifts the relative phase b. What is the effect of a quarter waveplate on linear and circular polarized light? A quarter wave plate converts a linear polarization into a circular polarization and vice-versa. 7

18 Outline Models of Light Light as an lectromagnetic Wave Polarization of Light Reflection and Refraction Wave Propagation through Anisotropic Media nterference and Coherence of Light nterference 8

19 nterference The phenomenon b which (electromagnetic waves interact with one another nterference is the result of the superposition principle: ( r, t ( r, t Consider two fields (most general case: different directions, different frequencies : i i ( r, t 0 cos( k r t ( r, t 0 cos( k r t nterference occurs when the two fields are overlapped spatiall and temporall ntensit (rradiance: energ/area/time We do not actuall measure the electric field ( r, t. We measure the intensit of the light. ( r, t ~ ( r, t Add intensities is not alwas the same as adding the electric fields. ( r, t ( r, t ( r, t ( r, t for coherent light. We onl add intensities when the light is incoherent. 9

20 nterference The measurable quantit is the intensit! where < > stands for time average / / / / / / / /, ( t r nterference term /, (, ( /, ( t r t r t r α cos dot product 0 for No interference for perpendicular polarizations! Maimum interference for parallel polarizations nterference Assume parallel polarizations: where For simplicit, we ll get rid of the time average < > and assume real fields So, ( 0 t z k j e ( 0 t z k j e ( 0 ( 0 ( 0 ( 0 / / / / t z k j t z k j t z k j t z k j e e e e cos cos ( e e t z k k j t z k k j t z k k cos

21 nterference cos k k z t n for n 0,,... in phase ( n for n out of phase 0,,... ( n for n 0,, No interference Constructive interference Destructive interference nterferometer Light source Wave splitting ntroduction of phase difference Wave combination ntroduction of phase difference Ke elements in an interferometer Light source lement for splitting the light into two partial waves Different propagation paths where the partial waves undergo different phase contributions lement for superposing the partial waves Detector for observation of the interference

22 Young s nterferometer Wavefront division Pin hole Screen Pin hole L z D D z D ( 0( cos( z Young s interferometer Michelson nterferometer Amplitude division Mirror Slit Mirror / Detector 4 t

23 Coherence no interference the beams are incoherent cos the beams are coherent f θ=0, π and =, = 4 ( cos the beams are partiall coherent incoherent 0 ( coherent Degree of coherence ncoherence no interference the beams are incoherent This can occur if, for e: k k frequencies drasticall different or man waves of different frequencies ( temporal incoherence k vectors drasticall different or man waves originating from different locations ( spatial incoherence e e j k z ( t k k j( kzt No interference! ncoherent source! 3

24 Coherence spatial vs temporal Spatial coherence means a strong correlation (fied phase relationship between the electric fields arriving at the same time but different locations. For e, within a cross section of a beam from a laser with diffraction limited beam qualit, the electric fields at different positions oscillate in a correlated wa. Spatial coherence tells us how collimated (non-divergent a source is! Temporal coherence means a strong correlation (fied phase relationship between the electric fields at one location but different times. two fields oscillating at the same frequenc but delaed with each other perfectl correlated Temporal coherence tells us how monochromatic a source is! Coherence spatial vs temporal ZeXc 4

25 Spatial and Temporal Coherence Spatial coherence D ( 0( cos( z D z Temporal coherence Slit Mirror 4 ( t 0( cos Mirror Detector mission Spectrum, Temporal Coherence Wavelength (nm Wavelength (nm Fourier Transform. L c Lc L c : coherence length, Temporal coherence is determined b the emission spectrum of the light source 5

26 Quantifing Coherence Coherence time c - the source bandwidth Coherence length 0 Lc c c ~ c the speed of light, Δλ: source spectral width A narrow linewidth means high temporal coherence and long coherence length! Coherence Time 6

27 References B..A. Saleh, M.C. Teich, Fundamentals of Photonics M. Born,. Wolf, Principles of Optics: lectromagnetic Theor of Propagation, nterference and Diffraction of Light 7

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence.

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence. 15. Polarization Linear, circular, and elliptical polarization Mathematics of polarization Uniaial crstals Birefringence Polarizers Notation: polarization near an interface Parallel ("p") polarization

More information

Polarized sunglasses. Polarization

Polarized sunglasses. Polarization Polarized sunglasses 3 4 : is a propert of the wave of light that can oscillate with certain orientation; the wave ehibits polarization which has onl one possible polarization, namel the direction in which

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

Phys 322 Lecture 21. Chapter 8 Polarization

Phys 322 Lecture 21. Chapter 8 Polarization Phs 3 Lecture 1 Chapter 8 Polarization Plane of polarization Transverse M wave B Plane of polarization - plane defined b vector and k: Plane of polarization z: z t ˆi z, t ˆi coskz t, z Linearl (plane)

More information

6 Properties of polarized light - polarimetry

6 Properties of polarized light - polarimetry 6 Properties of polarized light - polarimetr Supervisors : J.Geandrot, O.Frantz This practical work aims to stud some phenomena caused b the transversalit of light : dichroism, birefingence, rotating power.

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Experiment 5 Polarization and Modulation of Light

Experiment 5 Polarization and Modulation of Light 1. Objective Experiment 5 Polarization and Modulation of Light Understanding the definition of polarized and un-polarized light. Understanding polarizer and analzer definition, Maluse s law. Retarding

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Phys 2310 Mon. Oct. 30, 2017 Today s Topics. Begin Modern Optics Ch. 2: The Nature of Polarized Light Reading for Next Time

Phys 2310 Mon. Oct. 30, 2017 Today s Topics. Begin Modern Optics Ch. 2: The Nature of Polarized Light Reading for Next Time Phys 3 Mon. Oct. 3, 7 Today s Topics Begin Modern Optics Ch. : The Nature of Polarized Light Reading for Next Time By Wed.: Reading this Week Begin Ch. of Modern Optics (. 8.) Nature of Polarized Light,

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 2: Polarized light Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99 28 Electromagnetic

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

14. Matrix treatment of polarization

14. Matrix treatment of polarization 14. Matri treatment of polarization This lecture Polarized Light : linear, circular, elliptical Jones Vectors for Polarized Light Jones Matrices for Polarizers, Phase Retarders, Rotators (Linear) Polarization

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Optics. n n. sin c. sin

Optics. n n. sin c. sin Optics Geometrical optics (model) Light-ray: extremely thin parallel light beam Using this model, the explanation of several optical phenomena can be given as the solution of simple geometric problems.

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

Lab 10: Polarization Phy248 Spring 2009

Lab 10: Polarization Phy248 Spring 2009 Lab 10: Polarization Ph248 Spring 2009 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete

More information

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time. L e c t u r e 8 1 Polarization Polarized light Light for which the orientation of the electric field is constant although its magnitude and sign vary in time. Imagine two harmonic, linearly polarized light

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

Physics I Keystone Institute Technology & Management Unit-II

Physics I Keystone Institute Technology & Management Unit-II Un-polarized light Ordinary light is a collection of wave trains emitted by atoms or group of atoms with coherent time no longer than 10-8 second. Each wave train has different orientation and phase of

More information

Week 7: Interference

Week 7: Interference Week 7: Interference Superposition: Till now we have mostly discusssed single waves. While discussing group velocity we did talk briefly about superposing more than one wave. We will now focus on superposition

More information

Polarized optical wave in optical fiber communication system

Polarized optical wave in optical fiber communication system IOSR Journal of Applied Phsics (IOSR-JAP) e-issn: 2278-4861.Volume 9, Issue 5 Ver. IV (Sep. - Oct. 2017), PP 09-14 www.iosrjournals.org Polarized optical wave in optical fiber communication sstem Dinesh

More information

Lab 9: Polarization Phy208 Spring 2008

Lab 9: Polarization Phy208 Spring 2008 Lab 9: Polarization Ph208 Spring 2008 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Polarizers and Retarders

Polarizers and Retarders Phys 531 Lecture 20 11 November 2004 Polarizers and Retarders Last time, discussed basics of polarization Linear, circular, elliptical states Describe by polarization vector ĵ Today: Describe elements

More information

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop.

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop. POLARIZATION POLARIZATION STATS Four numbers are required to describe a single plane wave Fourier component traveling in the + z direction. These can be thought of as the amplitude and phase shift of the

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity ASSIGNMENT # 1 Special Theory of Relativity 1. What was the objective of conducting the Michelson-Morley experiment? Describe the experiment. How is the negative result of the experiment interpreted? 2.

More information

Polarization of Light and Birefringence of Materials

Polarization of Light and Birefringence of Materials Polarization of Light and Birefringence of Materials Ajit Balagopal (Team Members Karunanand Ogirala, Hui Shen) ECE 614- PHOTONIC INFORMATION PROCESSING LABORATORY Abstract-- In this project, we study

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Waves, Polarization, and Coherence

Waves, Polarization, and Coherence Waves, Polarization, and Coherence Lectures 5 Biophotonics Jae Gwan Kim jaekim@gist.ac.kr, X 2220 School of Information and Communication Engineering Gwangju Institute of Sciences and Technology Outline

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline Lecture 8: Polarimetry 2 Outline 1 Polarizers and Retarders 2 Polarimeters 3 Scattering Polarization 4 Zeeman Effect Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics

More information

NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING & TECHNOLOGY UNIT II-a POLARISATION

NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING & TECHNOLOGY UNIT II-a POLARISATION NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING & TECHNOLOGY UNIT II-a 1 POLARISATION SYLLABUS :Polarization: Introduction, Malus s law, double refraction, Nicol prism, Quarter wave and half wave plates. 1.

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today:

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today: 4/3/26 Physics 422 Waves & Oscillations Lecture 34 Polarization of Light Spring 26 Semester Matthew Jones Polarization (,)= cos (,)= cos + Unpolarizedlight: Random,, Linear polarization: =,± Circular polarization:

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

polarisation of Light

polarisation of Light Basic concepts to understand polarisation of Light Polarization of Light Nature of light: light waves are transverse in nature i. e. the waves propagates in a direction perpendicular to the direction of

More information

Chapter 7. Interference of Light

Chapter 7. Interference of Light Chapter 7. Interference of Light Last Lecture Superposition of waves Laser This Lecture Two-Beam Interference Young s Double Slit Experiment Virtual Sources Newton s Rings Film Thickness Measurement by

More information

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Physics 313: Laboratory 8 - Polarization of Light Electric Fields Physics 313: Laboratory 8 - Polarization of Light Electric Fields Introduction: The electric fields that compose light have a magnitude, phase, and direction. The oscillating phase of the field and the

More information

FIRST YEAR PHYSICS. Unit 4: Light II

FIRST YEAR PHYSICS. Unit 4: Light II FIRST YEAR PHYSICS Unit 4: Light II Contents PHASORS...3 RESOLUTION OF OPTICAL INSTRUMENTS...5 Rayleigh s criterion... 7 MORE ON DIFFRACTION...11 Multiple slits:... 11 Diffraction gratings... 14 X-RAY

More information

Topic 4: Waves 4.3 Wave characteristics

Topic 4: Waves 4.3 Wave characteristics Guidance: Students will be expected to calculate the resultant of two waves or pulses both graphically and algebraically Methods of polarization will be restricted to the use of polarizing filters and

More information

B.Tech. First Semester Examination Physics-1 (PHY-101F)

B.Tech. First Semester Examination Physics-1 (PHY-101F) B.Tech. First Semester Examination Physics-1 (PHY-101F) Note : Attempt FIVE questions in all taking least two questions from each Part. All questions carry equal marks Part-A Q. 1. (a) What are Newton's

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light Polarimetry in the E-ELT era Fundamentals of Polarized Light 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Polarization of Light Spring 2015 Semester Matthew Jones Types of Polarization Light propagating through different materials: One polarization component can

More information

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References Experiment 8 Fresnel Coefficients References Optics by Eugene Hecht, Chapter 4 Introduction to Modern Optics by Grant Fowles, Chapter 2 Principles of Optics by Max Born and Emil Wolf, Chapter 1 Optical

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Diode laser emission

Diode laser emission Lecture 9/1 Diode laser emission x Diode laser emission has oblong cross-section. Y-axis with large divergence angle is called fast axis X-axis with smaller divergence angle is called slow axis Lecture

More information

Optical Systems Program of Studies Version 1.0 April 2012

Optical Systems Program of Studies Version 1.0 April 2012 Optical Systems Program of Studies Version 1.0 April 2012 Standard1 Essential Understand Optical experimental methodology, data analysis, interpretation, and presentation strategies Essential Understandings:

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Effects of birefringence on Fizeau interferometry that uses polarization phase shifting technique

Effects of birefringence on Fizeau interferometry that uses polarization phase shifting technique Effects of birefringence on Fizeau interferometr that uses polarization phase shifting technique Chunu Zhao, Dongel Kang and James H. Burge College of Optical Sciences, the Universit of Arizona 1630 E.

More information

Phys102 Lecture Diffraction of Light

Phys102 Lecture Diffraction of Light Phys102 Lecture 31-33 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution Diffraction Grating and Spectroscopy Polarization References

More information

Measurements in Optics for Civil Engineers

Measurements in Optics for Civil Engineers Measurements in Optics for Civil Engineers I. FOCAL LENGTH OF LENSES The behavior of simplest optical devices can be described by the method of geometrical optics. For convex or converging and concave

More information

The Quantum Theory of Atoms and Molecules: Waves and Optics. Hilary Term Dr Grant Ritchie

The Quantum Theory of Atoms and Molecules: Waves and Optics. Hilary Term Dr Grant Ritchie The Quantum Theory of Atoms and Molecules: Waves and Optics Hilary Term 008 Dr Grant Ritchie Wave motion - travelling waves Waves are collective bulk disturbances, whereby the motion at one position is

More information

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect. Lecture 11: Polarized Light Outline 1 Fundamentals of Polarized Light 2 Descriptions of Polarized Light 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Fundamentals of Polarized Light Electromagnetic

More information

Optics Polarization. Lana Sheridan. June 20, De Anza College

Optics Polarization. Lana Sheridan. June 20, De Anza College Optics Polarization Lana Sheridan De Anza College June 20, 2018 Last time interference from thin films Newton s rings Overview the interferometer and gravitational waves polarization birefringence 7 Michelson

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE318S Fundamentals of Optics Final Exam April 16, 2007 Exam Type: D (Close-book + two double-sided aid sheets + a non-programmable

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

Chapter 2 Basic Optics

Chapter 2 Basic Optics Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Oxford Physics: Second Year, Optics Parallel reflecting surfaces t images source Extended source path difference xcos 2t=x Fringes localized at infinity Circular fringe constant

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Physics 142 Wave Optics 1 Page 1. Wave Optics 1. For every complex problem there is one solution that is simple, neat, and wrong. H.L.

Physics 142 Wave Optics 1 Page 1. Wave Optics 1. For every complex problem there is one solution that is simple, neat, and wrong. H.L. Physics 142 Wave Optics 1 Page 1 Wave Optics 1 For every complex problem there is one solution that is simple, neat, and wrong. H.L. Mencken Interference and diffraction of waves The essential characteristic

More information

OPTICAL Optical properties of multilayer systems by computer modeling

OPTICAL Optical properties of multilayer systems by computer modeling Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-15 "Optical Properties of Multilayer Systems by Computer Modeling" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy OPTICAL

More information

and the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P?

and the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P? Physics 3 Interference and Interferometry Page 1 of 6 Interference Imagine that we have two or more waves that interact at a single point. At that point, we are concerned with the interaction of those

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , 1 O P T I C S 1. Define resolving power of a telescope & microscope and give the expression for its resolving power. 2. Explain briefly the formation of mirage in deserts. 3. The radii of curvature of

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM Budi Santoso Center For Partnership in Nuclear Technolog, National Nuclear Energ Agenc (BATAN) Puspiptek, Serpong ABSTRACT DIGITAL

More information

Polarized Light. Nikki Truss. Abstract:

Polarized Light. Nikki Truss. Abstract: Polarized Light Nikki Truss 9369481 Abstract: In this experiment, the properties of linearly polarised light were examined. Malus Law was verified using the apparatus shown in Fig. 1. Reflectance of s-polarised

More information

Numerical methods to compute optical errors due to stress birefringence

Numerical methods to compute optical errors due to stress birefringence Numerical methods to compute optical errors due to stress birefringence Keith B. Doyle Optical Research Associates, 8 West Park Drive, Westborough, MA Victor L. Genberg & Gregory J. Michels Sigmadyne,

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES AND POLARIZATION ELECTROMAGNETIC WAVES Waves occur in a variety of physical contexts such as water waves produced by a stone dropped in a pond, w which travel along a plucked string,

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

Lab 11 - Polarization

Lab 11 - Polarization 177 Name Date Partners OBJECTIVES Lab 11 - Polarization To study the general phenomena of electromagnetic polarization To see that microwaves are polarized To observe how light waves are linearly polarized

More information

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand? Topic 4 Waves PROBLEM SET Formative Assessment NAME: TEAM: THIS IS A PRACTICE ASSESSMENT. Show formulas, substitutions, answers, and units! Topic 4.1 Oscillations A mass is attached to a horizontal spring.

More information

Chapter 10. Interference of Light

Chapter 10. Interference of Light Chapter 10. Interference of Light Last Lecture Wave equations Maxwell equations and EM waves Superposition of waves This Lecture Two-Beam Interference Young s Double Slit Experiment Virtual Sources Newton

More information

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017 Conceptual Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI October 3, 2017 https://arxiv.org/abs/1711.07445 L. A. Anchordoqui (CUNY)

More information

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph Lecture 7: Optical Spectroscopy Outline 1 Astrophysical Spectroscopy 2 Broadband Filters 3 Fabry-Perot Filters 4 Interference Filters 5 Prism Spectrograph 6 Grating Spectrograph 7 Fourier Transform Spectrometer

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 6: Polarization Original: Professor McLeod SUMMARY: In this lab you will become familiar with the basics of polarization and learn to use common optical elements

More information

Using a Mach-Zehnder interferometer to measure the phase retardations of wave plates

Using a Mach-Zehnder interferometer to measure the phase retardations of wave plates Using a Mach-Zehnder interferometer to measure the phase retardations of wave plates Fang-Wen Sheu and Shu-Yen Liu Department of Applied Phsics, National Chiai Universit, Chiai 64, Taiwan Tel: +886-5-717993;

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

A refl = R A inc, A trans = T A inc.

A refl = R A inc, A trans = T A inc. Reading: Wave Optics 1, 2 Key concepts: Superposition; phase difference; amplitude and intensity; thin film interference; Fraunhofer diffraction; gratings; resolving power. 1.! Questions about interference

More information