Chapter 14 Matrix Treatment of Polarization

Size: px
Start display at page:

Download "Chapter 14 Matrix Treatment of Polarization"

Transcription

1 Chapter 4 Matri Treatment of Polarization Lecture Notes for Modern Optics based on Pedrotti & Pedrotti & Pedrotti Instructor: Naer Eradat Spring 29 5//29 Matri Treatment of Polarization

2 Polarization Polarization of an electromagnetic wave is direction of the electric field vector E. Mathematical presentation of polarized light: Jones Vectors Mathematical presentation of polarizers (optical components) : Jones Matrices Linear polarizer Phase retarder Rotators 5//29 Matri Treatment of Polarization 2

3 Mathematical presentation of polarized light Electric field of an electromagnetic wave propagating p galong z-direction: ikz ( ωt+ φ ) E Re E e = E = E E= E+ E with and comple field components ikz ( ωt+ φ ) E = E e E = Re E ikz ( ωt+ φ E ) ( E= e + E ikz ω t + φ ) iφ i φ ikz ( ω t ) ( ) ikz ω t e = E e + E e e = E e Comple amplitude vector E also contains phase State of polarization of a wave is determined b relative amplitudes and phases of of the components of E E that constitute a vector dubbed Jones vector: iφ E E e = = i φ E E e 2 ( E) ( E) Jones vector are normalized if + =. 2 Plane wave ( ) ( ) 5//29 Matri Treatment of Polarization 3

4 Special cases of Jones vector Particular forms of Jones vector: φ = φ = linearl polarized light along a line making an angle α with the ais: iφ E e Acosα cosα E = = A iφ = E Asin sin e α α cos Vertical polarization: E ( π /2) = = sin ( π / 2) cos ( ) Horizontal polarization: E = = sin ( ) cos( 6 ) Polarized at α = 6 : E = = sin ( 6 ) 2 3 Conclusion: The light presented b a Jones vactor that both o f its elements, a and b, are real (not bothzero) ( b a) - is a linearl polarized light along the angle α = tan / 5//29 Matri Treatment of Polarization 4

5 Lissajous Figures For general case of φ and φ the head of the E vector traces an ellipse rather than a straight line. The relative phase difference of the E and E, Δ φ = φ φ determines the shape of the Lissajous figure and the state of polarization of the wave. o o 5//29 Matri Treatment of Polarization 5

6 LCP and RCP Eample: consider electric field of an EM wave that has E = E = A and E leads E b ε = π / 2. Determine the state of polarization and deduce the normalized Jones vectors for this light. We write the comple amplitudes as iωt E = Acosωt E = E e E = A cos ω t E = A cos ω t i( ωt ε) π E = E E cos( ) cos E sin e = A ωt ε E = A ωt = A ωt 2 ( ω ω ) E = E + E = A cos t+ sin t = A the E vector traces out a circle of radius A iφ E = Eo = A E e A Finding the Jones vector: then E = = A iφ iπ /2 = φ, φ π / 2 = = E Ae oe i ( ( )) * 2 2 * 2 Normalization: i E E= A + ii = 2 A = A = / 2 The normalized Jones vector is: E = 2 We call this a left-circularl polarized i light or LCP since when we view this light head-on we see the E vector tip is rotating counterclockwise on a circle of radius / 2. Figure shows the E at diffrent times. If E leads E b π /2 the E would rotate clockwise. E = 2 i We have right-circularl polarized light or RCP in this case. 5//29 Matri Treatment of Polarization 6 o

7 Ellipticall polarized light Eample: consider electric field of an EM wave that has E = A and E = B where A and B are positive numbers and E leads/lags E b ε = π / 2. Determine the state of polarization and deduce the normalized Jones vectors for this light. i t E = Acosωt E E e ω = E = Acosωt i ( ωt ε ) ( ) π E E E cos cos e = B ωt ε E = B ωt = 2 E = Acosωt E = B sin ω t ( ) ( ) ( ) * 2 * 2 2 Normalization: E E = A + ib ib = A + B = A A Jones vector counterclockwise E = 2 2 iπ /2 = 2 2 ib A + B Be A + B A A Jones vector clockwise E = iπ /2 = A + B Be A + B ib Conclusion 2: the Jones vector with elements un-equal in magnitude, one of which is pure imaginar, represents an ellipticall polarized light. Figure shows the for two cases of E > E (major ais along ) and E < E E (major ais along ). 5//29 Matri Treatment of Polarization 7 o

8 Ellipticall polarized light oriented at an angle relative to ais Eample: consider electric field of an EM wave that has E = A and E = b where A and B ( ) are positive numbers and E and E have phase difference of Δ φ ± m + /2 π and Δφ ± mπ where m=, ±, ± 2,... Determine the state of polarization and deduce the normalized Jones vectors for this light. We can assume Δ Δφ = ε and φ =, φ = ε iφ E e A A A = = iφ iε = = E be bcos ibsin B ic e ε + ε + E ( )( ) ( ) ( ) * 2 * Normalization: E E = A + B+ ic B+ ic = A + B + C = o Counterclockwise rotation, general case Jones vector of an ellipticall polarized light with major ais inclined at an angle α is: A = where tan 2α = A B C B+ ic + + E E E cosε o 2 2 E C and E = A, E = B + C, ε = tan B C > counteclockwise If A > and C < clockwise Note: polarization state represented b the Jones vector does not change if it is multiplied b a constant. So we can alwas make A >. 5//29 Matri Treatment of Polarization 8 E

9 Usefulness and some properties of the Jones vectors Two properties p of the polarization vector or Jones vector : ) polarization state of a wave does not change if its Jones vector is multiplied b a constant. It onl affects the amplitude. i 2) )polarization state of a wave does not change if its Jones vector is multiplied b a constant phase factor e φ. It promotes phase of each element b φ but not the phase difference Δφ. Eample : illustrating usefulness of the Jones vectors. a) Polarization state of a superposition of two waves can be found b adding the Jones vectors: 2 i + = i Conclusion: We can generate a linearl polarized light with miing equal portions of LCP and RCP light. Eample 2: superposition of horizontall and verticall linearl polarized light: + = Conclusion : b miing equal protions of verticall and horizontall linearl polarized light we can get linearl polarized light at an angle 45. 5//29 Matri Treatment of Polarization 9

10 Summar of the polarization states and their Jones vectors 5//29 Matri Treatment of Polarization

11 Mathematical presentation of polarizers a b We can represent an optical instrument or device b its transfer matri or abcd matri: M = c d There are optical devices that affect (change) state of polarization of the light. Our goal is to represent each of these devices with a transfer matri such that multipling it with the Jones vector of the original light produces the resulting light. iφ iφ a b E e Ee i i c d = or ME = E φ φ E e E e o 5//29 Matri Treatment of Polarization

12 Linnear polarizers Linear polarizer: it selectivel removes virations in a given direction and transmits in perpendicular direction. Partial polarization: : sometimes the process of removing other polarizations is partial and not % efficient. See the figure how the output light is polarized along the transmission ais (TA). Along the TA: a b a( ) + b( ) = c d = c ( ) + d ( ) = a b a() b( ) c d = c() d( ) + = Perpendicular to TA: + = The result for linear polarizer along the ais (verticall) is: Linear polarizer, TA vertical M =. Linear polarizer, TA horizontal M = Eercise: Derive the polarization matices for the linear polarizer at 45 : a b a b and c d = c d Polarization same as the polarizer's TA Polarization perpendicular to the polarizer' sta = Linear polarizer, TA at 45 : M = 2 The most general case of the linear polarizer: 2 cos θ sinθcosθ Linear polarizer, TA at θ: M = 2 sinθcosθ sin θ 5//29 Matri Treatment of Polarization 2

13 Phase retarder The pase retarder introduces a phase difference between the orthogonal polarization components. If the speed of light in each orthogonal direction is different, there would be a cumulative phase difference Δφ between the components as light emerges from the media. Fast ais (FA): the ais along which the speed of light is faster or inde of refraction is lower. Slow ais (SA): the ais along which the speed of light is slower or inde of refraction is higher. Finding the matri for retarder : we want a matri that t will illtransform iφ i( φ+ ε) iφ i( φ+ ε) E e to E e and E e to E e ( ) iφ i φ+ ε iε a b E e E e e = = c d M Phase retarder iφ ( ) i iε φ + ε E e E e e M Quarter wave plate (QWP), a retarder with the net phase difference π /2 i /4 π π π e π ε ε = SA horizontal, let ε =, and ε = M = iπ / e iπ /4 π π π e ε ε = SA vertical, let ε =, and ε =+ M = iπ / e iπ /4 iπ /4 M = e QWP, SA vertical, e QWP, SA horizontal i M = i Half wave plate (HWP): a retarder with the net phase difference ε ε = π iπ /2 iπ /2 M = e QWP, SA vertical, = e QWP, SA horizontal M 5//29 Matri Treatment of Polarization 3

14 Phase rotator The phase rotator rotates the drection of polarization of the linearl polarized light b some angle β. a b cosθ cos( θ + β ) c d sinθ = sin ( θ + β) M cos β sin β M = sin β cos β Phase rotator 5//29 Matri Treatment of Polarization 4

15 5//29 Matri Treatment of Polarization 5

16 Eample: Production of circularl polarized light b combining a linear polarizer with a QWP iπ /4 iπ /4 e = e i 2 2 i e QWP slow ais horizontal Linearl polarized light at 45 The incident light is divided l i equall between the slow and iπ /4 iπ /4 fast ais and becomes right-circularl polarized = e i 2 2 i QWP slow ais vertical Linearl polarized light at 45 The incident light is divided equall between the slow and fast ais and becomes left-circularl polarized 5//29 Matri Treatment of Polarization 6

17 Eample: Left circularl polarized light is passing through an eighth wave plate Eighth wave plate is a phase retarder that introduces a relative phase difference of 2 π/8 or π/4 between the SA and FA. Assume ε = M iε e ε = = iε ε = π /4 iπ /4 e e Phase retarderl Eighth wave plate iπ /4 iπ /4 i3 π /4 = = e i ie e Eighth wave plate Left-circularl polarized light Ellipticall polarized light 3 π /4 e = + i 2 2 E A 2 2 = wher E B+ ic e E = A=, B= and C =, E = B + C = and 2 2 2E Eocosε tan 2α = α = E E A > and C> so the have the same sign so the ellipticall polarized light has counterclockwise rotation. 5//29 Matri Treatment of Polarization 7

18 5//29 Matri Treatment of Polarization 8

Jones vector & matrices

Jones vector & matrices Jones vector & matrices Department of Physics 1 Matrix treatment of polarization Consider a light ray with an instantaneous E-vector as shown y E k, t = xe x (k, t) + ye y k, t E y E x x E x = E 0x e i

More information

14. Matrix treatment of polarization

14. Matrix treatment of polarization 14. Matri treatment of polarization This lecture Polarized Light : linear, circular, elliptical Jones Vectors for Polarized Light Jones Matrices for Polarizers, Phase Retarders, Rotators (Linear) Polarization

More information

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence.

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence. 15. Polarization Linear, circular, and elliptical polarization Mathematics of polarization Uniaial crstals Birefringence Polarizers Notation: polarization near an interface Parallel ("p") polarization

More information

Chapter 9 - Polarization

Chapter 9 - Polarization Chapter 9 - Polarization Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical

More information

Matrices in Polarization Optics. Polarized Light - Its Production and Analysis

Matrices in Polarization Optics. Polarized Light - Its Production and Analysis Matrices in Polarization Optics Polarized Light - Its Production and Analysis For all electromagnetic radiation, the oscillating components of the electric and magnetic fields are directed at right angles

More information

17. Jones Matrices & Mueller Matrices

17. Jones Matrices & Mueller Matrices 7. Jones Matrices & Mueller Matrices Jones Matrices Rotation of coordinates - the rotation matrix Stokes Parameters and unpolarized light Mueller Matrices R. Clark Jones (96-24) Sir George G. Stokes (89-93)

More information

Polarized sunglasses. Polarization

Polarized sunglasses. Polarization Polarized sunglasses 3 4 : is a propert of the wave of light that can oscillate with certain orientation; the wave ehibits polarization which has onl one possible polarization, namel the direction in which

More information

Phys 322 Lecture 21. Chapter 8 Polarization

Phys 322 Lecture 21. Chapter 8 Polarization Phs 3 Lecture 1 Chapter 8 Polarization Plane of polarization Transverse M wave B Plane of polarization - plane defined b vector and k: Plane of polarization z: z t ˆi z, t ˆi coskz t, z Linearl (plane)

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT I. Objective: To study the Pockels electro-optic (EO) effect, and the property of light propagation in anisotropic medium, especially polarization-rotation effects.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Polarization of Light Spring 2015 Semester Matthew Jones Types of Polarization Light propagating through different materials: One polarization component can

More information

Experiment 5 Polarization and Modulation of Light

Experiment 5 Polarization and Modulation of Light 1. Objective Experiment 5 Polarization and Modulation of Light Understanding the definition of polarized and un-polarized light. Understanding polarizer and analzer definition, Maluse s law. Retarding

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems - The overall optical transmission through many optical components such as polarizers, EO modulators, filters, retardation plates.

More information

Electromagnetic Waves

Electromagnetic Waves May 7, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 7 Maxwell Equations In a region of space where there are no free sources (ρ = 0, J = 0), Maxwell s equations reduce to a simple

More information

Polarization and Related Antenna Parameters

Polarization and Related Antenna Parameters ANTENTOP- 01-007, # 009 Polarization and Related Antenna Parameters Feel Yourself a Student! Dear friends, I would like to give to ou an interesting and reliable antenna theor. Hours searching in the web

More information

Lab 9: Polarization Phy208 Spring 2008

Lab 9: Polarization Phy208 Spring 2008 Lab 9: Polarization Ph208 Spring 2008 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space Chapter 4 Waves in Unbounded Medium 4. lectromagnetic Sources 4. Uniform plane waves in free space Mawell s equation in free space is given b: H rot = (4..) roth = (4..) div = (4..3) divh = (4..4) which

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Lab 10: Polarization Phy248 Spring 2009

Lab 10: Polarization Phy248 Spring 2009 Lab 10: Polarization Ph248 Spring 2009 Name Section This sheet is the lab document our TA will use to score our lab. It is to be turned in at the end of lab. To receive full credit ou must use complete

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Physics I Keystone Institute Technology & Management Unit-II

Physics I Keystone Institute Technology & Management Unit-II Un-polarized light Ordinary light is a collection of wave trains emitted by atoms or group of atoms with coherent time no longer than 10-8 second. Each wave train has different orientation and phase of

More information

Midterm Exam 2. Nov. 17, Optics I: Theory CPHY72250

Midterm Exam 2. Nov. 17, Optics I: Theory CPHY72250 Midterm Exam. Nov. 17, 015 Optics I: Theory CPHY750 - time: 1hr 15 mins. - show all work clearly - indicate reasoning where appropriate name 1. (a) Show that two cascaded quarter-wave retarder plates with

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Polarizers and Retarders

Polarizers and Retarders Phys 531 Lecture 20 11 November 2004 Polarizers and Retarders Last time, discussed basics of polarization Linear, circular, elliptical states Describe by polarization vector ĵ Today: Describe elements

More information

APPLIED OPTICS POLARIZATION

APPLIED OPTICS POLARIZATION A. La Rosa Lecture Notes APPLIED OPTICS POLARIZATION Linearly-polarized light Description of linearly polarized light (using Real variables) Alternative description of linearly polarized light using phasors

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Diffraction I Basic Physics M.P. Vaughan Diffraction Electromagnetic waves Geometric wavefront The Principle of Linear Superposition Diffraction regimes Single

More information

Waves and Polarization

Waves and Polarization Waves and Polariation.nb Optics 55- James C. Want ( Modified) Waves and Polariation WP - Show that E@r, td = ÅÅÅÅÅ A Cos@kr-wtD is a solution to the wave equation. r 3-D Wave Equation: In polar coordinates:

More information

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today:

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today: 4/3/26 Physics 422 Waves & Oscillations Lecture 34 Polarization of Light Spring 26 Semester Matthew Jones Polarization (,)= cos (,)= cos + Unpolarizedlight: Random,, Linear polarization: =,± Circular polarization:

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2013 Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 23 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,

More information

Waves, Polarization, and Coherence

Waves, Polarization, and Coherence 05-0-4 Waves, Polarization, and Coherence Lecture 6 Biophotonics Jae Gwan Kim jaekim@gist.ac.kr, X 0 School of nformation and Communication ngineering Gwangju nstitute of Sciences and Technolog Outline

More information

APPLIED OPTICS POLARIZATION

APPLIED OPTICS POLARIZATION A. La Rosa Lecture Notes APPLIED OPTICS POLARIZATION Linearly-polarized light Description of linearly polarized light (using Real variables) Alternative description of linearly polarized light using phasors

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Electricity&Magnetism Lecture 24. Electricity & Magne/sm Lecture 24, Slide 1

Electricity&Magnetism Lecture 24. Electricity & Magne/sm Lecture 24, Slide 1 Electricity&Magnetism Lecture 24 Electricity & Magne/sm Lecture 24, Slide 1 Optics Kit.............................................. Optics Bench Incandenscent Light Source Ray Table Ray Table Component

More information

Propagation of EM Waves in material media

Propagation of EM Waves in material media Propagation of EM Waves in material media S.M.Lea 09 Wave propagation As usual, we start with Maxwell s equations with no free charges: D =0 B =0 E = B t H = D t + j If we now assume that each field has

More information

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #5 Fall 005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased [.] Imagine a prism made of lucite (n.5) whose cross-section is a

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

Physical Optics 2018 Dr. Muwafaq Fadhil Al-Mishlab Third lecture [ Huygens Principle, Interference of light]

Physical Optics 2018 Dr. Muwafaq Fadhil Al-Mishlab Third lecture [ Huygens Principle, Interference of light] Physical Optics 2018 Dr. Muwafaq Fadhil Al-Mishlab Third lecture [ Huygens Principle, Interference of light] 1. Huygens principle Long before people understood the electromagnetic character of light, Christian

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Effects of birefringence on Fizeau interferometry that uses polarization phase shifting technique

Effects of birefringence on Fizeau interferometry that uses polarization phase shifting technique Effects of birefringence on Fizeau interferometr that uses polarization phase shifting technique Chunu Zhao, Dongel Kang and James H. Burge College of Optical Sciences, the Universit of Arizona 1630 E.

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

Computer Graphics: 2D Transformations. Course Website:

Computer Graphics: 2D Transformations. Course Website: Computer Graphics: D Transformations Course Website: http://www.comp.dit.ie/bmacnamee 5 Contents Wh transformations Transformations Translation Scaling Rotation Homogeneous coordinates Matri multiplications

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 16

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 16 C 6340 Intermediate M Waves Fall 2016 Prof. David R. Jackson Dept. of C Notes 16 1 Polarization of Waves Consider a plane wave with both and components (,, z) = ( ˆ + ˆ ) e jkz Assume j0 = ae = a = j be

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Scattering Introduction - Consider a localized object that contains charges

More information

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks Lecture 2: Thin Films Outline Thin Films 2 Calculating Thin Film Stack Properties 3 Jones Matrices for Thin Film Stacks 4 Mueller Matrices for Thin Film Stacks 5 Mueller Matrix for Dielectrica 6 Mueller

More information

Chapter 2 Basic Optics

Chapter 2 Basic Optics Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

Polarized optical wave in optical fiber communication system

Polarized optical wave in optical fiber communication system IOSR Journal of Applied Phsics (IOSR-JAP) e-issn: 2278-4861.Volume 9, Issue 5 Ver. IV (Sep. - Oct. 2017), PP 09-14 www.iosrjournals.org Polarized optical wave in optical fiber communication sstem Dinesh

More information

12A Reflection & Transmission (Normal Incidence)

12A Reflection & Transmission (Normal Incidence) 12A Reflection & Transmission (Normal Incidence) Topics: Reflection and transmission, boundary conditions, complex exponentials. Summary: Students begin by expressing in exponential notation the boundary

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

6 Properties of polarized light - polarimetry

6 Properties of polarized light - polarimetry 6 Properties of polarized light - polarimetr Supervisors : J.Geandrot, O.Frantz This practical work aims to stud some phenomena caused b the transversalit of light : dichroism, birefingence, rotating power.

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

Polarization Optics. N. Fressengeas

Polarization Optics. N. Fressengeas Polarization Optics N. Fressengeas Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l Université de Lorraine et à Supélec Download this document from http://arche.univ-lorraine.fr/

More information

SUMMARY OF FUNCTION TRANSFORMATIONS

SUMMARY OF FUNCTION TRANSFORMATIONS SUMMARY OF FUNCTION TRANSFORMATIONS The graph of = Af(B(t +h))+k is a transformation of the graph of = f(t). The transformations are done in the following order: B: The function stretches or compresses

More information

[D] indicates a Design Question

[D] indicates a Design Question EP421 Assignment 4: Polarization II: Applications of Optical Anisotropy use of the Jones Calculus (Handed Out: Friday 1 November 2013 Due Back: Friday 8 November 2013) 1. Optic Axis of Birefringent Crystals

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Physics 3323, Fall 2014 Problem Set 12 due Nov 21, 2014

Physics 3323, Fall 2014 Problem Set 12 due Nov 21, 2014 Physics 333, Fall 014 Problem Set 1 due Nov 1, 014 Reading: Griffiths Ch. 9.1 9.3.3 1. Square loops Griffiths 7.3 (formerly 7.1). A square loop of wire, of side a lies midway between two long wires, 3a

More information

Transformations. Chapter D Transformations Translation

Transformations. Chapter D Transformations Translation Chapter 4 Transformations Transformations between arbitrary vector spaces, especially linear transformations, are usually studied in a linear algebra class. Here, we focus our attention to transformation

More information

All parabolas through three non-collinear points

All parabolas through three non-collinear points ALL PARABOLAS THROUGH THREE NON-COLLINEAR POINTS 03 All parabolas through three non-collinear points STANLEY R. HUDDY and MICHAEL A. JONES If no two of three non-collinear points share the same -coordinate,

More information

Lecture 4: Polarisation of light, introduction

Lecture 4: Polarisation of light, introduction Lecture 4: Polarisation of light, introduction Lecture aims to explain: 1. Light as a transverse electro-magnetic wave 2. Importance of polarisation of light 3. Linearly polarised light 4. Natural light

More information

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates 5.3.3 The general solution for plane waves incident on a laered halfspace The general solution to the elmhol equation in rectangular coordinates The vector propagation constant Vector relationships between

More information

Quarter wave plates and Jones calculus for optical system

Quarter wave plates and Jones calculus for optical system 2/11/16 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Quarter wave plates and Jones calculus for optical system T. Johnson 2/11/16 Electromagnetic Processes In Dispersive Media, Lecture 6

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Chapter 4: Polarization of light

Chapter 4: Polarization of light Chapter 4: Polarization of light 1 Preliminaries and definitions B E Plane-wave approximation: E(r,t) ) and B(r,t) are uniform in the plane ^ k We will say that light polarization vector is along E(r,t)

More information

Today in Physics 218: Fresnel s equations

Today in Physics 218: Fresnel s equations Today in Physics 8: Fresnel s equations Transmission and reflection with E parallel to the incidence plane The Fresnel equations Total internal reflection Polarization on reflection nterference R 08 06

More information

Lecture 36 Date:

Lecture 36 Date: Lecture 36 Date: 5.04.04 Reflection of Plane Wave at Oblique Incidence (Snells Law, Brewster s Angle, Parallel Polarization, Perpendicular Polarization etc.) Introduction to RF/Microwave Introduction One

More information

Physics 221A Fall 2005 Homework 8 Due Thursday, October 27, 2005

Physics 221A Fall 2005 Homework 8 Due Thursday, October 27, 2005 Physics 22A Fall 2005 Homework 8 Due Thursday, October 27, 2005 Reading Assignment: Sakurai pp. 56 74, 87 95, Notes 0, Notes.. The axis ˆn of a rotation R is a vector that is left invariant by the action

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 6: Polarization Original: Professor McLeod SUMMARY: In this lab you will become familiar with the basics of polarization and learn to use common optical elements

More information

Today in Physics 218: electromagnetic waves in linear media

Today in Physics 218: electromagnetic waves in linear media Today in Physics 218: electromagnetic waves in linear media Their energy and momentum Their reflectance and transmission, for normal incidence Their polarization Sunrise over Victoria Falls, Zambezi River

More information

The electric field produced by oscillating charges contained in a slab

The electric field produced by oscillating charges contained in a slab The electric field produced by oscillating charges contained in a slab Ref: Feynman Lectures Vol-1, Chapter 31 1. An accelerated charge produces electromagnetic fields 2. Calculation of the field produced

More information

Deviations from Malus Law

Deviations from Malus Law From: Steve Scott, Jinseok Ko, Howard Yuh To: MSE Enthusiasts Re: MSE Memo #18a: Linear Polarizers and Flat Glass Plates Date: January 16, 2004 This memo discusses three issues: 1. When we measure the

More information

E The oscillating E-field defines the polarization of the wave. B

E The oscillating E-field defines the polarization of the wave. B This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences and explain your reasoning. A. Describing

More information

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission DOI:.38/NNANO.25.86 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission Amir Arbabi, Yu Horie, Mahmood Bagheri, and Andrei

More information

Calculating Thin Film Stack Properties. Polarization Properties of Thin Films

Calculating Thin Film Stack Properties. Polarization Properties of Thin Films Lecture 6: Thin Films Outline 1 Thin Films 2 Calculating Thin Film Stack Properties 3 Polarization Properties of Thin Films 4 Anti-Reflection Coatings 5 Interference Filters Christoph U. Keller, Utrecht

More information

Theory of Optical Waveguide

Theory of Optical Waveguide Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM Budi Santoso Center For Partnership in Nuclear Technolog, National Nuclear Energ Agenc (BATAN) Puspiptek, Serpong ABSTRACT DIGITAL

More information

Higher. Functions and Graphs. Functions and Graphs 15

Higher. Functions and Graphs. Functions and Graphs 15 Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 5 Set Theor 5 Functions 6 Inverse Functions 9 4 Eponential Functions 0 5 Introduction to Logarithms 0 6 Radians 7 Eact Values

More information

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich Homework 1 Contact: mfrimmer@ethz.ch Due date: Friday 13.10.2017; 10:00 a.m. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch The goal of this homework is to establish

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time. L e c t u r e 8 1 Polarization Polarized light Light for which the orientation of the electric field is constant although its magnitude and sign vary in time. Imagine two harmonic, linearly polarized light

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

CHAPTER 1. Polarisation

CHAPTER 1. Polarisation CHAPTER 1 Polarisation This report was prepared by Abhishek Dasgupta and Arijit Haldar based on notes in Dr. Ananda Dasgupta s Electromagnetism III class Topics covered in this chapter are the Jones calculus,

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Chapter 7 Interference of Light

Chapter 7 Interference of Light Chapter 7 Interference of Light Lecture Notes for Modern Optics based on Pedrotti & Pedrotti & Pedrotti Instructor: Nayer Eradat Spring 009 4/1/009 Interference of Light 1 Interference of light Interference

More information