SUMMARY OF FUNCTION TRANSFORMATIONS

Size: px
Start display at page:

Download "SUMMARY OF FUNCTION TRANSFORMATIONS"

Transcription

1 SUMMARY OF FUNCTION TRANSFORMATIONS The graph of = Af(B(t +h))+k is a transformation of the graph of = f(t). The transformations are done in the following order: B: The function stretches or compresses horizontall b a factor of 1 B. If B is negative, the function also reflects across the vertical ais. h: The function shifts horizontall b h units. If h > 0, the function shifts left. If h < 0, the function shifts right. A: The function stretches or compresses verticall b a factor of A. If A is negative, the function also reflects across the horizontal ais. k: The function shifts verticall b k units. If k > 0, the function shifts up. If k < 0, the function shifts down. **It can be helpful to remember BhAk as a wa of remembering the ordering. Other orderings are possible; this ordering, however, will work in all cases. Graph the transformations below b doing the following on graphing paper: Graph the basic function used in this transformation. (Eample: f() = ). Use our Librar of Functions Handout if necessar. State the series of transformations and the order in which the occur. Graph the transformation. Check our graph using the interactive GeoGebra applet located on the course webpage. You will also want to check our graph using a few of the input/ output pairs. Hand-sketched eamples are located under Contents. Full solutions to the eercises below are given in the net few pages. Section I: Horizontal and Vertical Shifts (a) g 1 () = ( 5) +1 (b) g () = ++ (c) g 3 () = (+1) 3 (d) g () = 1 + (e) g 5 () = + Section II: Horizontal and Vertical Stretches and Reflections (a) g 1 () = (b) g () = (c) g 3 () = 3 (d) g () = (e) g 5 () = 5 (f) g () = Section III: General Function s (a) g 1 () = 3( ) +5 (b) g () = (+1) 3 3 (c) g 3 () = 3 (d) g () = + (e) g 5 () = +5 (f) g () = (+1)+3 1

2 1. Horizontal and Vertical Shifts 1. Transforming f() = into g 1 () = ( 5) +1: The graph of = g 1 () is in Figure 1. It is obtained b the following transformations: (a) Shift 5 units right (b) Shift 1 unit up Figure Transforming f() = into g () = ++: The graph of = g () is in Figure. It is obtained b the following transformations: (a) Shift units left (b) Shift units up Figure Instructor: A.E.Car Page of 10

3 3. Transforming f() = 3 into g 3 () = (+1) 3 : The graph of = g 3 () is in Figure 3. It is obtained b the following transformations: (a) Shift 1 units left (b) Shift units down Figure Transforming f() = 1 into g () = 1 +: The graph of = g () is in Figure. It is obtained b the following transformations: (a) Shift units right (b) Shift units up Figure Instructor: A.E.Car Page 3 of 10

4 5. Transforming f() = into g 5 () = +: The graph of = g 5 () is in Figure 5. It is obtained b the following transformations: (a) Shift units right (b) Shift units up Figure Instructor: A.E.Car Page of 10

5 . Horizontal and Vertical Stretches, Compressions and Reflections. Transforming f() = into g 1 () = : The graph of = g 1 () is in Figure. It is obtained b the following transformations: (a) Reflect across the horizontal ais Figure Transforming f() = into g () = : The graph of = g () is in Figure 7. It is obtained b the following transformations: (a) Reflect across the vertical ais Figure Instructor: A.E.Car Page 5 of 10

6 . Transforming f() = 3 into g 3 () = 3 : The graph of = g 3 () is in Figure. It is obtained b the following transformations: (a) Stretch verticall b a factor of Figure Transforming f() = into g () = : The graph of = g () is in Figure 9. It is obtained b the following transformations: (a) Stretch verticall b a factor of (b) Reflect across the horizontal ais Figure Instructor: A.E.Car Page of 10

7 10. Transforming f() = into g 5 () = 5 : The graph of = g 5 () is in Figure 10. It is obtained b the following transformations: (a) Compress horizontall b a factor of 1 5. Figure Transforming f() = into g () = : The graph of = g () is in Figure 11. It is obtained b the following transformations: (a) Reflect across the vertical ais (b) Reflect across the horizontal ais (c) Stretch verticall b a factor of Figure Instructor: A.E.Car Page 7 of 10

8 3. General Function s 1. Transforming f() = into g 1 () = 3( ) +5: The graph of = g 1 () is in Figure 1. It is obtained b the following transformations: (a) Shift units right (b) Stretch verticall b a factor of 3 (c) Shift 5 units up Figure Transforming f() = 3 into g () = (+1) 3 3: The graph of = g () is in Figure 13. It is obtained b the following transformations: (a) Shift 1 unit left (b) Reflect across the horizontal ais (c) Shift 3 units down Figure Instructor: A.E.Car Page of 10

9 1. Transforming f() = into g 3 () = 3: The graph of = g 3 () is in Figure 1. It is obtained b the following transformations: (a) Compress horizontall b a factor of 1 (b) Shift 3 units down Figure Transforming f() = into g () = +: The graph of = g () is in Figure 15. It is obtained b the following transformations: (a) Reflect across the vertical ais (b) Shift units up Figure Instructor: A.E.Car Page 9 of 10

10 1. Transforming f() = 1 into g 5() = +5: The graph of = g 5 () is in Figure 1. It is obtained b the following transformations: (a) Stretch verticall b a factor of (b) Shift 5 units up Figure Transforming f() = into g () = (+1)+3: The graph of = g () is in Figure 17. It is obtained b the following transformations: (a) Compress horizontall b a factor of 1 (b) Shift 1 unit left (c) Stretch verticall b a factor of (d) Shift 3 units up and reflect across the vertical ais Figure Instructor: A.E.Car Page 10 of 10

Section 4.5 Graphs of Logarithmic Functions

Section 4.5 Graphs of Logarithmic Functions 6 Chapter 4 Section 4. Graphs of Logarithmic Functions Recall that the eponential function f ( ) would produce this table of values -3 - -1 0 1 3 f() 1/8 ¼ ½ 1 4 8 Since the arithmic function is an inverse

More information

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs In the previous set of notes we covered how to transform a graph by stretching or compressing it vertically. In this lesson we will focus on stretching or compressing a graph horizontally, which like the

More information

Math 111 Final Exam Review KEY

Math 111 Final Exam Review KEY Math 111 Final Eam Review KEY 1. Use the graph of = f in Figure 1 to answer the following. Approimate where necessar. a b Evaluate f 1. f 1 = 0 Evaluate f0. f0 = 6 c Solve f = 0. =, = 1, =, or = 3 Solution

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions 6.3 Logarithmic Functions. 9 = 3 is equivalent to = log 3 9. 6 = 4 is equivalent to = log 4 6 3. a =.6 is equivalent to = log a.6 4. a 3 =. is equivalent

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A rational function is of the form R() = p() q() where p and q are polnomial functions. The zeros of a rational function are the values of for which p() = 0, as the function s value is zero where the value

More information

Chapter 1 Graph of Functions

Chapter 1 Graph of Functions Graph of Functions Chapter Graph of Functions. Rectangular Coordinate Sstem and Plotting points The Coordinate Plane Quadrant II Quadrant I (0,0) Quadrant III Quadrant IV Figure. The aes divide the plane

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

1.2. Click here for answers. Click here for solutions. A CATALOG OF ESSENTIAL FUNCTIONS. t x x 1. t x 1 sx. 2x 1. x 2. 1 sx. t x x 2 4x.

1.2. Click here for answers. Click here for solutions. A CATALOG OF ESSENTIAL FUNCTIONS. t x x 1. t x 1 sx. 2x 1. x 2. 1 sx. t x x 2 4x. SECTION. A CATALOG OF ESSENTIAL FUNCTIONS. A CATALOG OF ESSENTIAL FUNCTIONS A Click here for answers. S Click here for solutions. Match each equation with its graph. Eplain our choices. (Don t use a computer

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

MHF4U1 ASSIGNMENT CHAPTER 1

MHF4U1 ASSIGNMENT CHAPTER 1 K: /39 I: /35 A: /6 Multiple Choice [K: 1 mark each = 33 total marks] Identif the choice that best completes the statement or answers the question. 1. An equation representing a function that etends from

More information

Ready To Go On? Skills Intervention 6-1 Polynomials

Ready To Go On? Skills Intervention 6-1 Polynomials 6A Read To Go On? Skills Intervention 6- Polnomials Find these vocabular words in Lesson 6- and the Multilingual Glossar. Vocabular monomial polnomial degree of a monomial degree of a polnomial leading

More information

Section 2.5: Graphs of Functions

Section 2.5: Graphs of Functions Section.5: Graphs of Functions Objectives Upon completion of this lesson, ou will be able to: Sketch the graph of a piecewise function containing an of the librar functions. o Polnomial functions of degree

More information

Math 115: Review for Chapter 2

Math 115: Review for Chapter 2 Math 5: Review for Chapter Can ou determine algebraicall whether an equation is smmetric with respect to the - ais, the -ais, or the origin?. Algebraicall determine whether each equation below is smmetric

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

Functions 3: Compositions of Functions

Functions 3: Compositions of Functions Functions : Compositions of Functions 7 Functions : Compositions of Functions Model : Word Machines SIGN SIGNS ONK KNO COW COWS RT TR HI HIS KYK KYK Construct Your Understanding Questions (to do in class).

More information

Mt. Douglas Secondary

Mt. Douglas Secondary Foundations of Math 11 Section 7.1 Quadratic Functions 31 7.1 Quadratic Functions Mt. Douglas Secondar Quadratic functions are found in everda situations, not just in our math classroom. Tossing a ball

More information

Domain - the set of all possible ( ) values of a relation. Range - the set of all possible ( ) values of a relation.

Domain - the set of all possible ( ) values of a relation. Range - the set of all possible ( ) values of a relation. Definitions: Domain - the set of all possible ( ) values of a relation. Range - the set of all possible ( ) values of a relation. Relation - a set of ordered pair(s) Pre- Calculus Mathematics 1-1.1 - Functions

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up .7 Start Thinking Use a graphing calculator to graph the function f ( ) =. Sketch the graph on a coordinate plane. Describe the graph of the function. Now graph the functions g ( ) 5, and h ( ) 5 the same

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

NAME DATE PERIOD. Study Guide and Intervention. Transformations of Quadratic Graphs

NAME DATE PERIOD. Study Guide and Intervention. Transformations of Quadratic Graphs NAME DATE PERID Stud Guide and Intervention Write Quadratic Equations in Verte Form A quadratic function is easier to graph when it is in verte form. You can write a quadratic function of the form = a

More information

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line.

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line. MAC 1105 PRACTICE FINAL EXAM College Algebra *Note: this eam is provided as practice onl. It was based on a book previousl used for this course. You should not onl stud these problems in preparing for

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet.

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet. Ch Alg L Note Sheet Ke Do Activit 1 on our Ch Activit Sheet. Chapter : Quadratic Equations and Functions.1 Modeling Data With Quadratic Functions You had three forms for linear equations, ou will have

More information

9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically

9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically 9.5 HONORS Determine Odd and Even Functions Graphically and Algebraically Use this blank page to compile the most important things you want to remember for cycle 9.5: 181 Even and Odd Functions Even Functions:

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Transformation of functions

Transformation of functions Transformation of functions Translations Dilations (from the x axis) Dilations (from the y axis) Reflections (in the x axis) Reflections (in the y axis) Summary Applying transformations Finding equations

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 3 Maintaining Mathematical Proficienc Plot the point in a coordinate plane. Describe the location of the point. 1. A( 3, 1). B (, ) 3. C ( 1, 0). D ( 5, ) 5. Plot the point that is on

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

Name Date. Work with a partner. Each graph shown is a transformation of the parent function

Name Date. Work with a partner. Each graph shown is a transformation of the parent function 3. Transformations of Eponential and Logarithmic Functions For use with Eploration 3. Essential Question How can ou transform the graphs of eponential and logarithmic functions? 1 EXPLORATION: Identifing

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 8 Maintaining Mathematical Proficienc Graph the linear equation. 1. = 5. = + 3 3. 1 = + 3. = + Evaluate the epression when =. 5. + 8. + 3 7. 3 8. 5 + 8 9. 8 10. 5 + 3 11. + + 1. 3 + +

More information

Path of the Horse s Jump y 3. transformation of the graph of the parent quadratic function, y 5 x 2.

Path of the Horse s Jump y 3. transformation of the graph of the parent quadratic function, y 5 x 2. - Quadratic Functions and Transformations Content Standards F.BF. Identif the effect on the graph of replacing f() b f() k, k f(), f(k), and f( k) for specific values of k (both positive and negative)

More information

3. TRANSLATED PARABOLAS

3. TRANSLATED PARABOLAS 3. TRANSLATED PARABOLAS The Parabola with Verte V(h, k) and Aes Parallel to the ais Consider the concave up parabola with verte V(h, k) shown below. This parabola is obtained b translating the parabola

More information

Vertex Form of a Parabola

Vertex Form of a Parabola Verte Form of a Parabola In this investigation ou will graph different parabolas and compare them to what is known as the Basic Parabola. THE BASIC PARABOLA Equation = 2-3 -2-1 0 1 2 3 verte? What s the

More information

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes Cartesian Components of Vectors 9.2 Introduction It is useful to be able to describe vectors with reference to specific coordinate sstems, such as the Cartesian coordinate sstem. So, in this Section, we

More information

c) domain {x R, x 3}, range {y R}

c) domain {x R, x 3}, range {y R} Answers Chapter 1 Functions 1.1 Functions, Domain, and Range 1. a) Yes, no vertical line will pass through more than one point. b) No, an vertical line between = 6 and = 6 will pass through two points..

More information

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10 CNTENTS Algebra Chapter Chapter Chapter Eponents and logarithms. Laws of eponents. Conversion between eponents and logarithms 6. Logarithm laws 8. Eponential and logarithmic equations 0 Sequences and series.

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 970 97 980 98 990 99 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of

More information

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS LEARNING OBJECTIVES In this section, you will: Identify the domain of a logarithmic function. Graph logarithmic functions. FINDING THE DOMAIN OF A LOGARITHMIC

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis ADDITIONAL MATHEMATICS MODULE 5 QUADRATIC FUNCTIONS CHAPTER 3 : QUADRARIC FUNCTIONS MODULE 5 3.1 CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions 3 3.3 Graphs of quadratic functions 4 Eercise

More information

15.2 Graphing Logarithmic

15.2 Graphing Logarithmic _ - - - - - - Locker LESSON 5. Graphing Logarithmic Functions Teas Math Standards The student is epected to: A.5.A Determine the effects on the ke attributes on the graphs of f () = b and f () = log b

More information

Section 5.1: Functions

Section 5.1: Functions Objective: Identif functions and use correct notation to evaluate functions at numerical and variable values. A relationship is a matching of elements between two sets with the first set called the domain

More information

1.3. Absolute Value and Piecewise-Defined Functions Absolutely Piece-ful. My Notes ACTIVITY

1.3. Absolute Value and Piecewise-Defined Functions Absolutely Piece-ful. My Notes ACTIVITY Absolute Value and Piecewise-Defined Functions Absolutel Piece-ful SUGGESTED LEARNING STRATEGIES: Activating Prior Knowledge, Create Representations, Quickwrite. Graph both = - for < 3 and = - + 7 for

More information

Chapter 2 Analysis of Graphs of Functions

Chapter 2 Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Chapter Analysis of Graphs of Functions Covered in this Chapter:.1 Graphs of Basic Functions and their Domain and Range. Odd, Even Functions, and their Symmetry..

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

A11.1 Areas under curves

A11.1 Areas under curves Applications 11.1 Areas under curves A11.1 Areas under curves Before ou start You should be able to: calculate the value of given the value of in algebraic equations of curves calculate the area of a trapezium.

More information

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward.

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Mathematics 10 Page 1 of 8 Quadratic Relations in Vertex Form The expression y ax p q defines a quadratic relation in form. The coordinates of the of the corresponding parabola are p, q. If a > 0, the

More information

Vertex form of a quadratic equation

Vertex form of a quadratic equation Verte form of a quadratic equation Nikos Apostolakis Spring 017 Recall 1. Last time we looked at the graphs of quadratic equations in two variables. The upshot was that the graph of the equation: k = a(

More information

HORIZONTAL AND VERTICAL TRANSLATIONS

HORIZONTAL AND VERTICAL TRANSLATIONS MCR3U Sections 1.6 1.8 Transformations HORIZONTAL AND VERTICAL TRANSLATIONS A change made to a figure or a relation such that the figure or graph of the relation is shifted or changed in shape. Translations,

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to eactly one element in the range. The domain is the set of all possible inputs

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

Answers to Even-Numbered Exercises

Answers to Even-Numbered Exercises Answers to Even-Numbered Eercises Chapter Eercises. page ) 9 0.45 0 8) z yz 0) y 6 y 8 y y 4 y Eercises. page 6 ) p 9 8 8 5 8) 0) y y y ) w 5, 8 y y y, 857 000 Eercises. page 9 5 6 5 ) 8) 0) 8 6 9 66 y

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Ch 5 Alg Note Sheet Ke Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Definition: Standard Form of a Quadratic Function The

More information

+ = + + = x = + = + = 36x

+ = + + = x = + = + = 36x Ch 5 Alg L Homework Worksheets Computation Worksheet #1: You should be able to do these without a calculator! A) Addition (Subtraction = add the opposite of) B) Multiplication (Division = multipl b the

More information

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs 0_005.qd /7/05 8: AM Page 5 5 Chapter Functions and Their Graphs.5 Analzing Graphs of Functions What ou should learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals

More information

Math 111 Final Exam Review KEY

Math 111 Final Exam Review KEY Math Final Eam Review KEY. Use the graph of = f in Figure to answer the following. Approimate where necessar. a Evaluate f. f = 0 b Evaluate f0. f0 = 6 c Solve f = 0. =, =, =,or = 3 d Solve f = 7..5, 0.5,

More information

Sketching Rational Functions

Sketching Rational Functions 00 D.W.MacLean: Graphs of Rational Functions-1 Sketching Rational Functions Recall that a rational function f) is the quotient of two polynomials: f) = p). Things would be simpler q) if we could assume

More information

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions

Ready To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Read To Go On? Skills Intervention 5-1 Using Transformations to Graph Quadratic Functions Find these vocabular words in Lesson 5-1 and the Multilingual Glossar. Vocabular quadratic function parabola verte

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Eponential functions are those with variable powers, e.g. = a. Their graphs take two forms: (0, 1) (0, 1) When a > 1, the graph: is alwas increasing is alwas positive

More information

This article describes a task leading to work on curve sketching, simultaneous equations and

This article describes a task leading to work on curve sketching, simultaneous equations and Closed but provocative questions: Curves enclosing unit area Colin Foster, School of Education, Universit of Nottingham colin.foster@nottingham.ac.uk Abstract This article describes a task leading to work

More information

14.6 Spring Force Energy Diagram

14.6 Spring Force Energy Diagram 14.6 Spring Force Energy Diagram The spring force on an object is a restoring force F s = F s î = k î where we choose a coordinate system with the equilibrium position at i = 0 and is the amount the spring

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0

PRINCIPLES OF MATHEMATICS 11 Chapter 2 Quadratic Functions Lesson 1 Graphs of Quadratic Functions (2.1) where a, b, and c are constants and a 0 PRINCIPLES OF MATHEMATICS 11 Chapter Quadratic Functions Lesson 1 Graphs of Quadratic Functions (.1) Date A. QUADRATIC FUNCTIONS A quadratic function is an equation that can be written in the following

More information

14.3. Volumes of Revolution. Introduction. Prerequisites. Learning Outcomes

14.3. Volumes of Revolution. Introduction. Prerequisites. Learning Outcomes Volumes of Revolution 14.3 Introduction In this Section we show how the concept of integration as the limit of a sum, introduced in Section 14.1, can be used to find volumes of solids formed when curves

More information

Unit 1: Non-Trig Functions PSHS Precalculus Parent Functions, Transformations & Piecewise Functions Subject to change

Unit 1: Non-Trig Functions PSHS Precalculus Parent Functions, Transformations & Piecewise Functions Subject to change Unit : Non-Trig Functions PSHS Precalculus 07-08 Parent Functions, Transformations & Piecewise Functions Subject to change Monda Tuesda Wednesda Thursda Frida September 8 9 0 Graphs and Attributes of Graphs

More information

TABLE OF CONTENTS - UNIT 1 CHARACTERISTICS OF FUNCTIONS

TABLE OF CONTENTS - UNIT 1 CHARACTERISTICS OF FUNCTIONS TABLE OF CONTENTS - UNIT CHARACTERISTICS OF FUNCTIONS TABLE OF CONTENTS - UNIT CHARACTERISTICS OF FUNCTIONS INTRODUCTION TO FUNCTIONS RELATIONS AND FUNCTIONS EXAMPLES OF FUNCTIONS 4 VIEWING RELATIONS AND

More information

Straight Lines. Distance Formula. Gradients. positive direction. Equation of a Straight Line. Medians. hsn.uk.net

Straight Lines. Distance Formula. Gradients. positive direction. Equation of a Straight Line. Medians. hsn.uk.net Distance Formula Straight Lines Distance ( ) + ( ) between points (, ) and (, ) Gradients m between the points (, ) and (, ) where Positive gradients, negative gradients, zero gradients, undefined gradients

More information

Performing well in calculus is impossible without a solid algebra foundation. Many calculus

Performing well in calculus is impossible without a solid algebra foundation. Many calculus Chapter Algebra Review Performing well in calculus is impossible without a solid algebra foundation. Many calculus problems that you encounter involve a calculus concept but then require many, many steps

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Cartesian coordinates in space (Sect. 12.1).

Cartesian coordinates in space (Sect. 12.1). Cartesian coordinates in space (Sect..). Overview of Multivariable Calculus. Cartesian coordinates in space. Right-handed, left-handed Cartesian coordinates. Distance formula between two points in space.

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Section. Logarithmic Functions and Their Graphs 7. LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Ariel Skelle/Corbis What ou should learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic

More information

QUADRATIC FUNCTION REVIEW

QUADRATIC FUNCTION REVIEW Name: Date: QUADRATIC FUNCTION REVIEW Linear and eponential functions are used throughout mathematics and science due to their simplicit and applicabilit. Quadratic functions comprise another ver important

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings 978--08-8-8 Cambridge IGCSE and O Level Additional Mathematics Practice Book Ecerpt Chapter XX: : Functions XXXXXXXXXXXXXXX Chapter : Data representation This section will show you how to: understand

More information

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient.

Vocabulary. Term Page Definition Clarifying Example degree of a monomial. degree of a polynomial. end behavior. leading coefficient. CHAPTER 6 Vocabular The table contains important vocabular terms from Chapter 6. As ou work through the chapter, fill in the page number, definition, and a clarifing eample. Term Page Definition Clarifing

More information

CHAPTER 7. Think & Discuss (p. 399) x is curved and not a. x 0. straight line r r 3. 6 cm r. Skill Review (p.

CHAPTER 7. Think & Discuss (p. 399) x is curved and not a. x 0. straight line r r 3. 6 cm r. Skill Review (p. CHAPTER Think & Discuss (p. 99). (, 8) because the graph is curved and not a straight line. about kg; locate mm on the graph and read the curve at the point directl above mm. Skill Review (p. ).......

More information

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1 Solutions to the Math 0 Sample Final Eam (from Spring 00) Page Part : Multiple Choice Questions. Here ou work out the problems and then select the answer that matches our answer. No partial credit is given

More information

Unit 9: Symmetric Functions

Unit 9: Symmetric Functions Haberman MTH 111 Section I: Functions and Their Graphs Unit 9: Symmetric Functions Some functions have graphs with special types of symmetries, and we can use the reflections we just studied to analyze

More information

Graphing Review Part 1: Circles, Ellipses and Lines

Graphing Review Part 1: Circles, Ellipses and Lines Graphing Review Part : Circles, Ellipses and Lines Definition The graph of an equation is the set of ordered pairs, (, y), that satisfy the equation We can represent the graph of a function by sketching

More information

Lesson 5.6 Exercises, pages

Lesson 5.6 Exercises, pages Lesson 5.6 Eercises, pages 05 0 A. Approimate the value of each logarithm, to the nearest thousanth. a) log 9 b) log 00 Use the change of base formula to change the base of the logarithms to base 0. log

More information

2. Domain: The set of all abscissas (x s) of the ordered pairs (abscissa is the first element of an ordered pair)

2. Domain: The set of all abscissas (x s) of the ordered pairs (abscissa is the first element of an ordered pair) . Relations and Functions. Relation: A set of ordered pairs E:,4,,5,,, 8,4. The set of all abscissas s of the ordered pairs abscissa is the first element of an ordered pair. Range: The set of all ordinates

More information

Name Class Date. Understanding How to Graph g(x) = a(x - h ) 2 + k

Name Class Date. Understanding How to Graph g(x) = a(x - h ) 2 + k Name Class Date - Transforming Quadratic Functions Going Deeper Essential question: How can ou obtain the graph of g() = a( h ) + k from the graph of f () =? 1 F-BF..3 ENGAGE Understanding How to Graph

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

5. Find the slope intercept equation of the line parallel to y = 3x + 1 through the point (4, 5).

5. Find the slope intercept equation of the line parallel to y = 3x + 1 through the point (4, 5). Rewrite using rational eponents. 2 1. 2. 5 5. 8 4 4. 4 5. Find the slope intercept equation of the line parallel to y = + 1 through the point (4, 5). 6. Use the limit definition to find the derivative

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Algebra 2, Chapter 5 Review

Algebra 2, Chapter 5 Review Name: Class: Date: Algebra 2, Chapter 5 Review 4.4.1: I can factor a quadratic expression using various methods and support my decision. 1. (1 point) x 2 + 14x + 48 2. (1 point) x 2 x + 42 3. (1 point)

More information

Math 111 Final Exam Review KEY

Math 111 Final Exam Review KEY Math 111 Final Eam Review KEY 1. Use the graph of y = f in Figure 1 to answer the following. Approimate where necessary. a Evaluate f 1. f 1 = 0 b Evaluate f0. f0 = 6 c Solve f = 0. =, = 1, =,or = 3 Solution

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

Section 5.1 Model Inverse and Joint Variation

Section 5.1 Model Inverse and Joint Variation 108 Section 5.1 Model Inverse and Joint Variation Remember a Direct Variation Equation y k has a y-intercept of (0, 0). Different Types of Variation Relationship Equation a) y varies directly with. y k

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

Homework on Rational Functions - Solutions

Homework on Rational Functions - Solutions Homework on Rational Functions - Solutions Group Work 1 Consider f () = 1. Answer the questions below, eplain your answers. 1. What is the domain of f? f is a fraction, hence to be defined, its denominator

More information

D: all real; R: y g (x) = 3 _ 2 x 2 5. g (x) = 5 x g (x) = - 4 x 2 7. g (x) = -4 x 2. Houghton Mifflin Harcourt Publishing Company.

D: all real; R: y g (x) = 3 _ 2 x 2 5. g (x) = 5 x g (x) = - 4 x 2 7. g (x) = -4 x 2. Houghton Mifflin Harcourt Publishing Company. AVOID COMMON ERRORS Watch for students who do not graph points on both sides of the verte of the parabola. Remind these students that a parabola is U-shaped and smmetric, and the can use that smmetr to

More information