Lesson 5.6 Exercises, pages

Size: px
Start display at page:

Download "Lesson 5.6 Exercises, pages"

Transcription

1 Lesson 5.6 Eercises, pages 05 0 A. Approimate the value of each logarithm, to the nearest thousanth. a) log 9 b) log 00 Use the change of base formula to change the base of the logarithms to base 0. log 9 log 00 log 9 log log 00 log Orer these logarithms from greatest to least: log 80, log 900, log 5000, log Write each logarithm to base 0, then calculate its value. log 80 log 900 log 5000 log log 80 log 900 log 5000 log log log log log From greatest to least: log 80, log 900, log 5000, log P DO NOT COPY. 5.6 Analyzing Logarithmic Functions Solutions

2 B 5. Approimate the value of each logarithm, to the nearest thousanth. Write the relate eponential epression. a) log 7 00 b) log a b log 00 log 7 00 log So, log 0.5 log a b log So, a) Use technology to graph y log 5. Sketch the graph. Graph: y log log 5 b) Ientify the intercepts an the equation of the asymptote of the graph, an the omain an range of the function. From the graph, the -intercept is. There is no y-intercept. The equation of the asymptote is 0. The omain of the function is > 0. The range of the function is y ç. c) Choose the coorinates of two points on the graph. Multiply their -coorinates an a their y-coorinates. What o you notice about the new coorinates? Eplain the result. From the TABLE, two points on the graph have coorinates: (5, ) an (5, ) The prouct of the -coorinates is 5. The sum of the y-coorinates is. The new coorinates are (5, ), which is also a point on the graph. The logarithm of the prouct of two numbers is the sum of the logarithms of the numbers. 7. a) Use a graphing calculator to graph y log, y log, an y log 8. Sketch the graphs. log log Graph: y, y, an y log log log log Analyzing Logarithmic Functions Solutions DO NOT COPY. P

3 b) In part a, what happene to the graph of y log b, b > 0, b Z, as the base change? As b increases, from b, the graph of y log b is compresse log log b log vertically by a factor of:. log log b log 8. a) The graphs of a logarithmic function an its transformation image are shown. The functions are relate by translations, an corresponing points are inicate. Ientify the translations. A' From A to A, the translations are units left an unit up. The same translations relate B an B. y B' y g() B y f() A b) Given that f() log, what is g()? Justify your answer. After translations, the image of the graph of y log has equation: y k log ( h) Substitute: k an h The image graph has equation y log ( ); or y log ( ) So, g() log ( ) 9. a) How is the graph of y log ( 8) relate to the graph of y log? Sketch both graphs on the same gri. Compare y log ( ) with y k c log ( h): k 0, c,, an h Write y log ( 8) as y log ( ). The graph of this function is the image of the graph of y log after a vertical stretch by a factor of, a horizontal compression by a factor of, then a translation of units right. Use the general transformation: (, y) correspons to a h, cy kb 0 y y log ( 8) y log 6 8 The point (, y) on y log correspons to the point a, yb on y log ( ). (, y) a, yb (0.5, ) (.5, ) (, 0) (.5, 0) (, ) (5, ) (, ) (6, ) (8, ) (8, 6) P DO NOT COPY. 5.6 Analyzing Logarithmic Functions Solutions

4 b) Ientify the intercepts an the equation of the asymptote of the graph of y log ( 8), an the omain an range of the function. Use graphing technology to verify. From the table, the -intercept is.5. The equation of the asymptote is. The omain of the function is >. 0. a) Graph y = - log a b +. Compare y log a b with y k c log (h): k, c,, an h 0 Use the general transformation: ( ) y log y (, y) correspons to a h, cy kb The point (, y) on y log correspons to the point on y log a. b a, y b (, y) a, y b (0.5, ) (0.5,.5) (0.5, ) (,.5) (, 0) (, ) (, ) (, 0.75) (, ) (8, 0.5) b) Ientify the intercepts an the equation of the asymptote of the graph of y =- log a b +, an the omain an range of the function. Use the TABLE feature on a graphing calculator; the -intercept is. The equation of the asymptote is 0. The omain of the function is > Analyzing Logarithmic Functions Solutions DO NOT COPY. P

5 . Graph each function below, then ientify the intercepts an the equation of the asymptote of the graph, an the omain an range of the function. a) y log ( ) Compare y log ( ) with y k c log ( h): k, c,, an h Use the general transformation: (, y) correspons to a h, cy kb The point (, y) on y log correspons to the point (, y ) on y log ( ). y 0 (, y) (, y ) (0.5, ) (.75, ) (0.5, ) (.5, ) (, 0) (, ) (, ) (, ) (, ) (0, 5) (8, ) (, 6) y log ( ) 6 From the graph, the -intercept is approimately.9. From the table, the y-intercept is 5. The equation of the asymptote is. The omain of the function is >. b) y log ( ) Write y log ( ) as y log [( )]. Compare y log [( )] with y k c log ( h): k 0, c,, an h Use the general transformation: (, y) correspons to a h, cy kb The point (, y) on y log correspons to the point (, y) on y log ( ) y log ( ) y (, y) (, y) 8 (0.5, ) (.5, 8) (0.5, ) (.5, ) (, 0) (, 0) (, ) (5, ) (, ) (7, 8) From the table, the -intercept is. The equation of the asymptote is. The omain of the function is <. P DO NOT COPY. 5.6 Analyzing Logarithmic Functions Solutions 5

6 C. Graph the function y log ( ) 5, then ientify the intercepts, the equation of the asymptote, an the omain an range of the function. Write y log ( ) 5 as y 5 log [( )]. Compare y 5 log [( )] with y k c log ( h): y log ( ) 5 8 y 6 k 5, c,, an h Use the general transformation: (, y) correspons to a h, cy kb The point (, y) on y log correspons to the point a on y log ( ) 5., y 5b 6 0 (, y) a 9, b a, b (, 0) a, y 5b a 7 8, 7 b a 6, 6 b a 5, 5b To etermine the -intercept, solve the equation: 0 log ( ) 5 5 log ( ) 5 log ( ) Write in eponential form (, ) a 7, b (9, ) a, b The equation of the asymptote is. The omain of the function is < Analyzing Logarithmic Functions Solutions DO NOT COPY. P

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS LEARNING OBJECTIVES In this section, you will: Identify the domain of a logarithmic function. Graph logarithmic functions. FINDING THE DOMAIN OF A LOGARITHMIC

More information

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1 Section 5 B: Graphs of Decreasing Eponential Functions We want to determine what the graph of an eponential function y = a looks like for all values of a such that 0 > a > We will select a value of a such

More information

Lesson 5.1 Exercises, pages

Lesson 5.1 Exercises, pages Lesson 5.1 Eercises, pages 346 352 A 4. Use the given graphs to write the solutions of the corresponding quadratic inequalities. a) 2 2-8 - 10 < 0 The solution is the values of for which y

More information

Section 4.5 Graphs of Logarithmic Functions

Section 4.5 Graphs of Logarithmic Functions 6 Chapter 4 Section 4. Graphs of Logarithmic Functions Recall that the eponential function f ( ) would produce this table of values -3 - -1 0 1 3 f() 1/8 ¼ ½ 1 4 8 Since the arithmic function is an inverse

More information

Lesson 4.1 Exercises, pages

Lesson 4.1 Exercises, pages Lesson 4.1 Eercises, pages 57 61 When approimating answers, round to the nearest tenth. A 4. Identify the y-intercept of the graph of each quadratic function. a) y = - 1 + 5-1 b) y = 3-14 + 5 Use mental

More information

Name Date. Logarithms and Logarithmic Functions For use with Exploration 3.3

Name Date. Logarithms and Logarithmic Functions For use with Exploration 3.3 3.3 Logarithms and Logarithmic Functions For use with Eploration 3.3 Essential Question What are some of the characteristics of the graph of a logarithmic function? Every eponential function of the form

More information

Name Date. Analyzing Graphs of Polynomial Functions For use with Exploration 2.7

Name Date. Analyzing Graphs of Polynomial Functions For use with Exploration 2.7 Name Date.7 Analyzing Graphs of Polynomial Functions For use with Eploration.7 Essential Question How many turning points can the graph of a polynomial function have? 1 EXPLORATION: Approimating Turning

More information

Name Date. Work with a partner. Each graph shown is a transformation of the parent function

Name Date. Work with a partner. Each graph shown is a transformation of the parent function 3. Transformations of Eponential and Logarithmic Functions For use with Eploration 3. Essential Question How can ou transform the graphs of eponential and logarithmic functions? 1 EXPLORATION: Identifing

More information

Suggested Problems for Math 122

Suggested Problems for Math 122 Suggested Problems for Math 22 Note: This file will grow as the semester evolves and more sections are added. CCA = Contemporary College Algebra, SIA = Shaum s Intermediate Algebra SIA(.) Rational Epressions

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

NONLINEAR FUNCTIONS A. Absolute Value Exercises: 2. We need to scale the graph of Qx ( )

NONLINEAR FUNCTIONS A. Absolute Value Exercises: 2. We need to scale the graph of Qx ( ) NONLINEAR FUNCTIONS A. Absolute Value Eercises:. We need to scale the graph of Q ( ) f ( ) =. The graph is given below. = by the factor of to get the graph of 9 - - - - -. We need to scale the graph of

More information

Lesson 8.2 Exercises, pages

Lesson 8.2 Exercises, pages Lesson 8. Eercises, pages 38 A Students should verif the solutions to all equations.. Which values of are not roots of each equation? a) ƒ - 3 ƒ = 7 = 5 or =- Use mental math. 5: L.S. 7 R.S. 7 : L.S. 7

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

RADICAL AND RATIONAL FUNCTIONS REVIEW

RADICAL AND RATIONAL FUNCTIONS REVIEW RADICAL AND RATIONAL FUNCTIONS REVIEW Name: Block: Date: Total = % 2 202 Page of 4 Unit 2 . Sketch the graph of the following functions. State the domain and range. y = 2 x + 3 Domain: Range: 2. Identify

More information

every hour 8760 A every minute 525,000 A continuously n A

every hour 8760 A every minute 525,000 A continuously n A In the previous lesson we introduced Eponential Functions and their graphs, and covered an application of Eponential Functions (Compound Interest). We saw that when interest is compounded n times per year

More information

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs

8 f(8) = 0 (8,0) 4 f(4) = 4 (4, 4) 2 f(2) = 3 (2, 3) 6 f(6) = 3 (6, 3) Outputs. Inputs In the previous set of notes we covered how to transform a graph by stretching or compressing it vertically. In this lesson we will focus on stretching or compressing a graph horizontally, which like the

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Exponential Growth. b.) What will the population be in 3 years?

Exponential Growth. b.) What will the population be in 3 years? 0 Eponential Growth y = a b a b Suppose your school has 4512 students this year. The student population is growing 2.5% each year. a.) Write an equation to model the student population. b.) What will the

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Vertex Form of a Parabola

Vertex Form of a Parabola Verte Form of a Parabola In this investigation ou will graph different parabolas and compare them to what is known as the Basic Parabola. THE BASIC PARABOLA Equation = 2-3 -2-1 0 1 2 3 verte? What s the

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward.

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Mathematics 10 Page 1 of 8 Quadratic Relations in Vertex Form The expression y ax p q defines a quadratic relation in form. The coordinates of the of the corresponding parabola are p, q. If a > 0, the

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks)

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks) 1. Let f(x) = p(x q)(x r). Part of the graph of f is shown below. The graph passes through the points ( 2, 0), (0, 4) and (4, 0). (a) Write down the value of q and of r. (b) Write down the equation of

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 8 Maintaining Mathematical Proficienc Graph the linear equation. 1. = 5. = + 3 3. 1 = + 3. = + Evaluate the epression when =. 5. + 8. + 3 7. 3 8. 5 + 8 9. 8 10. 5 + 3 11. + + 1. 3 + +

More information

Exponential Growth and Decay Functions (Exponent of t) Read 6.1 Examples 1-3

Exponential Growth and Decay Functions (Exponent of t) Read 6.1 Examples 1-3 CC Algebra II HW #42 Name Period Row Date Section 6.1 1. Vocabulary In the eponential growth model Eponential Growth and Decay Functions (Eponent of t) Read 6.1 Eamples 1-3 y = 2.4(1.5), identify the initial

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

MA Lesson 14 Notes Summer 2016 Exponential Functions

MA Lesson 14 Notes Summer 2016 Exponential Functions Solving Eponential Equations: There are two strategies used for solving an eponential equation. The first strategy, if possible, is to write each side of the equation using the same base. 3 E : Solve:

More information

decreases as x increases.

decreases as x increases. Chapter Review FREQUENTLY ASKED Questions Q: How can ou identif an eponential function from its equation? its graph? a table of values? A: The eponential function has the form f () 5 b, where the variable

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Math 111 Final Exam Review KEY

Math 111 Final Exam Review KEY Math 111 Final Eam Review KEY 1. Use the graph of y = f in Figure 1 to answer the following. Approimate where necessary. a Evaluate f 1. f 1 = 0 b Evaluate f0. f0 = 6 c Solve f = 0. =, = 1, =,or = 3 Solution

More information

CHAPTER 2. Polynomial Functions

CHAPTER 2. Polynomial Functions CHAPTER Polynomial Functions.1 Graphing Polynomial Functions...9. Dividing Polynomials...5. Factoring Polynomials...1. Solving Polynomial Equations...7.5 The Fundamental Theorem of Algebra...5. Transformations

More information

1.2. Click here for answers. Click here for solutions. A CATALOG OF ESSENTIAL FUNCTIONS. t x x 1. t x 1 sx. 2x 1. x 2. 1 sx. t x x 2 4x.

1.2. Click here for answers. Click here for solutions. A CATALOG OF ESSENTIAL FUNCTIONS. t x x 1. t x 1 sx. 2x 1. x 2. 1 sx. t x x 2 4x. SECTION. A CATALOG OF ESSENTIAL FUNCTIONS. A CATALOG OF ESSENTIAL FUNCTIONS A Click here for answers. S Click here for solutions. Match each equation with its graph. Eplain our choices. (Don t use a computer

More information

HORIZONTAL AND VERTICAL TRANSLATIONS

HORIZONTAL AND VERTICAL TRANSLATIONS MCR3U Sections 1.6 1.8 Transformations HORIZONTAL AND VERTICAL TRANSLATIONS A change made to a figure or a relation such that the figure or graph of the relation is shifted or changed in shape. Translations,

More information

The slope, m, compares the change in y-values to the change in x-values. Use the points (2, 4) and (6, 6) to determine the slope.

The slope, m, compares the change in y-values to the change in x-values. Use the points (2, 4) and (6, 6) to determine the slope. LESSON Relating Slope and -intercept to Linear Equations UNDERSTAND The slope of a line is the ratio of the line s vertical change, called the rise, to its horizontal change, called the run. You can find

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Composition of and the Transformation of Functions

Composition of and the Transformation of Functions 1 3 Specific Outcome Demonstrate an understanding of operations on, and compositions of, functions. Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions 6.3 Logarithmic Functions. 9 = 3 is equivalent to = log 3 9. 6 = 4 is equivalent to = log 4 6 3. a =.6 is equivalent to = log a.6 4. a 3 =. is equivalent

More information

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation

Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Section -1 Functions Goal: To graph points in the Cartesian plane, identify functions by graphs and equations, use function notation Definition: A rule that produces eactly one output for one input is

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

MHF 4UI - Final Examination Review

MHF 4UI - Final Examination Review MHF 4UI - Final Eamination Review Jan 08. If 0, find the possible measure of. tan = cos = (c) sin = 0 (d) cos =. For each function, state the amplitude, period, phase shift, vertical translation, and sketch

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

Pure Math 30: Explained!

Pure Math 30: Explained! Pure Math 30: Eplained! www.puremath30.com 9 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first type of eponential graph

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

Transformation of functions

Transformation of functions Transformation of functions Translations Dilations (from the x axis) Dilations (from the y axis) Reflections (in the x axis) Reflections (in the y axis) Summary Applying transformations Finding equations

More information

Math 103 Final Exam Review Problems Rockville Campus Fall 2006

Math 103 Final Exam Review Problems Rockville Campus Fall 2006 Math Final Eam Review Problems Rockville Campus Fall. Define a. relation b. function. For each graph below, eplain why it is or is not a function. a. b. c. d.. Given + y = a. Find the -intercept. b. Find

More information

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0.

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0. Chapter Review IB Questions 1. Given the function f () = 3b + (c + ), determine the values of b and c such that f = 0 and f = 0. (Total 4 marks). Consider the function ƒ : 3 5 + k. (a) Write down ƒ ().

More information

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Eam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s Final Practice Eam Answer Key Name: Student Number:

More information

6-1 LESSON MASTER. Name. Skills Objective A In 1 4, evaluate without a calculator In 5 and 6, rewrite each using a radical sign.

6-1 LESSON MASTER. Name. Skills Objective A In 1 4, evaluate without a calculator In 5 and 6, rewrite each using a radical sign. 6-1 Skills Objective A In 1 4, evaluate without a calculator. 1. 2. 64 1 3 3 3. -343 4. 36 1 2 4 16 In 5 and 6, rewrite each using a radical sign. 5. ( 2 ) 1 4 m 1 6 In 7 10, rewrite without a radical

More information

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions Math- Lesson -4 Review: Cube, Cube Root, and Eponential Functions Quiz - Graph (no calculator):. y. y ( ) 4. y What is a power? vocabulary Power: An epression ormed by repeated Multiplication o the same

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a.

Mathematics 10 Page 1 of 7 The Quadratic Function (Vertex Form): Translations. and axis of symmetry is at x a. Mathematics 10 Page 1 of 7 Verte form of Quadratic Relations The epression a p q defines a quadratic relation called the verte form with a horizontal translation of p units and vertical translation of

More information

( ) ( ) x. The exponential function f(x) with base b is denoted by x

( ) ( ) x. The exponential function f(x) with base b is denoted by x Page of 7 Eponential and Logarithmic Functions Eponential Functions and Their Graphs: Section Objectives: Students will know how to recognize, graph, and evaluate eponential functions. The eponential function

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

CALCULUS AB SECTION II, Part A

CALCULUS AB SECTION II, Part A CALCULUS AB SECTION II, Part A Time 45 minutes Number of problems 3 A graphing calculator is required for some problems or parts of problems. pt 1. The rate at which raw sewage enters a treatment tank

More information

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1 Summer MA 500 Lesson 0 Section.7 (part ), Section 4. Definition of the Inverse of a Function: Let f and g be two functions such that f ( g ( )) for every in the domain of g and g( f( )) for every in the

More information

WBHS Algebra 2 - Final Exam

WBHS Algebra 2 - Final Exam Class: _ Date: _ WBHS Algebra 2 - Final Eam Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the pattern in the sequence. Find the net three terms.

More information

Two-Year Algebra 2 A Semester Exam Review

Two-Year Algebra 2 A Semester Exam Review Semester Eam Review Two-Year Algebra A Semester Eam Review 05 06 MCPS Page Semester Eam Review Eam Formulas General Eponential Equation: y ab Eponential Growth: A t A r 0 t Eponential Decay: A t A r Continuous

More information

Honors Algebra 2: Semester 1 Review

Honors Algebra 2: Semester 1 Review Name Block Date Honors Algebra : Semester 1 Review NON-CALCULATOR 6-5 1. Given the functions f ( ) 5 11 1, g( ) 6 ( f h)( ) b) ( g f )( ), and h ( ) 4, find each function. g c) (g h)( ) d) ( ) f -1, 4-7,

More information

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up

3.7 Start Thinking. 3.7 Warm Up. 3.7 Cumulative Review Warm Up .7 Start Thinking Use a graphing calculator to graph the function f ( ) =. Sketch the graph on a coordinate plane. Describe the graph of the function. Now graph the functions g ( ) 5, and h ( ) 5 the same

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Reteach 2-3. Graphing Linear Functions. 22 Holt Algebra 2. Name Date Class

Reteach 2-3. Graphing Linear Functions. 22 Holt Algebra 2. Name Date Class -3 Graphing Linear Functions Use intercepts to sketch the graph of the function 3x 6y 1. The x-intercept is where the graph crosses the x-axis. To find the x-intercept, set y 0 and solve for x. 3x 6y 1

More information

Name These exercises cover topics from Algebra I and Algebra II. Complete each question the best you can.

Name These exercises cover topics from Algebra I and Algebra II. Complete each question the best you can. Name These eercises cover topics from Algebra I and Algebra II. Complete each question the best you can. Multiple Choice: Place through the letter of the correct answer. You may only use your calculator

More information

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises Section 4.3 Properties of Logarithms 437 34. Graph each of the following functions in the same viewing rectangle and then place the functions in order from the one that increases most slowly to the one

More information

Unit 7 Study Guide (2,25/16)

Unit 7 Study Guide (2,25/16) Unit 7 Study Guide 1) The point (-3, n) eists on the eponential graph shown. What is the value of n? (2,25/16) (-3,n) (3,125/64) a)y = 1 2 b)y = 4 5 c)y = 64 125 d)y = 64 125 2) The point (-2, n) eists

More information

3.2 Logarithmic Functions and Their Graphs

3.2 Logarithmic Functions and Their Graphs 96 Chapter 3 Eponential and Logarithmic Functions 3.2 Logarithmic Functions and Their Graphs Logarithmic Functions In Section.6, you studied the concept of an inverse function. There, you learned that

More information

f x 3x 5x g x 2x 4x Name Date Class 2 nd Six Weeks Review 2016 PreAP PreCalculus Graphing calculators allowed on this portion. 1.

f x 3x 5x g x 2x 4x Name Date Class 2 nd Six Weeks Review 2016 PreAP PreCalculus Graphing calculators allowed on this portion. 1. Name Date Class nd Si Weeks Review 016 PreAP PreCalculus Graphing calculators allowed on this portion. 1. Find all roots of f 5 7 by using the quadratic formula.. Find all roots of g 4 1 by completing

More information

Chapter 9 Prerequisite Skills

Chapter 9 Prerequisite Skills Name: Date: Chapter 9 Prerequisite Skills BLM 9. Consider the function f() 3. a) Show that 3 is a factor of f(). If f() ( 3)g(), what is g()?. Factor each epression fully. a) 30g 4g 6fg 8g c) 6 5 d) 5

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information

7-1. Exploring Exponential Models. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary. 1. Cross out the expressions that are NOT powers.

7-1. Exploring Exponential Models. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary. 1. Cross out the expressions that are NOT powers. 7-1 Eploring Eponential Models Vocabular Review 1. Cross out the epressions that are NOT powers. 16 6a 1 7. Circle the eponents in the epressions below. 5 6 5a z Vocabular Builder eponential deca (noun)

More information

AP CALCULUS AB Summer Work. The following are guidelines for completing the summer work packet

AP CALCULUS AB Summer Work. The following are guidelines for completing the summer work packet Name: Perio: AP CALCULUS AB Summer Work For stuents to successfully complete the objectives of the AP Calculus curriculum, the stuent must emonstrate a high level of inepenence, capability, eication, an

More information

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient Chapter 1 PRE-TEST REVIEW Polynomial Functions MHF4U Jensen Section 1: 1.1 Power Functions 1) State the degree and the leading coefficient of each polynomial Polynomial Degree Leading Coefficient y = 2x

More information

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1 Section 9 A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

9.1 Practice A. Name Date sin θ = and cot θ = to sketch and label the triangle. Then evaluate. the other four trigonometric functions of θ.

9.1 Practice A. Name Date sin θ = and cot θ = to sketch and label the triangle. Then evaluate. the other four trigonometric functions of θ. .1 Practice A In Eercises 1 and, evaluate the si trigonometric functions of the angle. 1.. 8 1. Let be an acute angle of a right triangle. Use the two trigonometric functions 10 sin = and cot = to sketch

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus I - Homework Chapter 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the graph is the graph of a function. 1) 1)

More information

Chapter 8 Prerequisite Skills

Chapter 8 Prerequisite Skills Chapter 8 Prerequisite Skills BLM 8. How are 9 and 7 the same? How are they different?. Between which two consecutive whole numbers does the value of each root fall? Which number is it closer to? a) 8

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

A: Super-Basic Algebra Skills. A1. True or false. If false, change what is underlined to make the statement true. a.

A: Super-Basic Algebra Skills. A1. True or false. If false, change what is underlined to make the statement true. a. A: Super-Basic Algebra Skills A1. True or false. If false, change what is underlined to make the statement true. 1 T F 1 b. T F c. ( + ) = + 9 T F 1 1 T F e. ( + 1) = 16( + ) T F f. 5 T F g. If ( + )(

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3)

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3) Name Date Period Sections and Scoring Pre-Calculus Midterm Review Packet (Chapters,, ) Your midterm eam will test your knowledge of the topics we have studied in the first half of the school year There

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

A. Evaluate log Evaluate Logarithms

A. Evaluate log Evaluate Logarithms A. Evaluate log 2 16. Evaluate Logarithms Evaluate Logarithms B. Evaluate. C. Evaluate. Evaluate Logarithms D. Evaluate log 17 17. Evaluate Logarithms Evaluate. A. 4 B. 4 C. 2 D. 2 A. Evaluate log 8 512.

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Pre-Calculus and Capacity Matri Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational epressions Solve polynomial equations and equations involving rational epressions

More information

y = log b Exponential and Logarithmic Functions LESSON THREE - Logarithmic Functions Lesson Notes Example 1 Graphing Logarithms

y = log b Exponential and Logarithmic Functions LESSON THREE - Logarithmic Functions Lesson Notes Example 1  Graphing Logarithms y = log b Eponential and Logarithmic Functions LESSON THREE - Logarithmic Functions Eample 1 Logarithmic Functions Graphing Logarithms a) Draw the graph of f() = 2 b) Draw the inverse of f(). c) Show algebraically

More information

Chapter 4 Page 1 of 16. Lecture Guide. Math College Algebra Chapter 4. to accompany. College Algebra by Julie Miller

Chapter 4 Page 1 of 16. Lecture Guide. Math College Algebra Chapter 4. to accompany. College Algebra by Julie Miller Chapter 4 Page 1 of 16 Lecture Guide Math 105 - College Algebra Chapter 4 to accompan College Algebra b Julie Miller Corresponding Lecture Videos can be found at Prepared b Stephen Toner & Nichole DuBal

More information

Exam 2 Review F15 O Brien. Exam 2 Review:

Exam 2 Review F15 O Brien. Exam 2 Review: Eam Review:.. Directions: Completely rework Eam and then work the following problems with your book notes and homework closed. You may have your graphing calculator and some blank paper. The idea is to

More information

Assessment Vocabulary Instructional Strategies. Last Edit Page 1

Assessment Vocabulary Instructional Strategies. Last Edit Page 1 P.() Functions. The student uses process standards in mathematics to eplore, describe, and analyze the attributes of The student makes connections between P.(G) graph functions, including eponential, logarithmic,

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Graphing Rational Functions KEY. (x 4) (x + 2) Factor denominator. y = 0 x = 4, x = -2

Graphing Rational Functions KEY. (x 4) (x + 2) Factor denominator. y = 0 x = 4, x = -2 6 ( 6) Factor numerator 1) f ( ) 8 ( 4) ( + ) Factor denominator n() is of degree: 1 -intercepts: d() is of degree: 6 y 0 4, - Plot the -intercepts. Draw the asymptotes with dotted lines. Then perform

More information

Name: Class: Date: Rationals Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Rationals Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: _ Class: _ Date: Rationals Multiple Choice Pre-Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1 Solve the equation for g: 3 2g + 1 6g = 3. - 5

More information