Characteristics of Surface Plasmon Polaritons with Effective Permittivity

Size: px
Start display at page:

Download "Characteristics of Surface Plasmon Polaritons with Effective Permittivity"

Transcription

1 Journal of Optics Applications December 5, Volume 4, Issue, PP.7-4 Characteristics of Surface Plasmon Polaritons with ffective Permittivit Weiping Mao, eqing uang. School of Mechanical ngineering, Jiangsu Universit, Zhenjiang Jiangsu, China. Universit of Waterloo, Waterloo, NLG, China mail: Abstract ffective permittivit is a propagation constant of surface plasmon polaritons, which help visualise how surface plasmon ecitation travels in space. Compared with the traditional method with frequenc parameters, this method is more intuitive and practical. Kewords: Surface Plasmon Polaritons; Mawell's quations; Simulation INTRODUCTION A surface plasmon polaritons (SPPs) is an electromagnetic ecitation eisting between the surface of metal and dielectric. It is an intrinsicall two-dimensional ecitation whose electromagnetic field decas eponentiall with distance from the surface. In this paper, the principle of surface plasmon ecitation has been introduced. Under single flat interface and metal / dielectric multilaer structure sstem, transverse electric and magnetic wave modes have been derived from the Mawell equations. From the analses, with software Mathematica, propagation of surface plasmons has been simulated, analse effective permittivit varies with of a variet of metal /dielectric and wavelength in a single plane of the interface, and the changes of effective permittivit in the case with the thickness of the multilaer heterostructure and the wavelength changes. Simulation results have been compared with the theoretical value. A method as using the effective dielectric constant of the surface plasmons propagation has been proposed. BASIC CARACTRISTICS OF SPPS To analse the phsical properties of SPPs, a classical model of SPPs is illustrated in FIG.. FIG. CLASSICAL MOD OF SURFAC PLASMON POLARITONS Appl Mawell s equations to the flat interface between dielectric and metal. The electromagnetic equation is derived in the general form firstl. Use the curl equation for the electric field. B = () t - 7 -

2 According to the eternal charge ( ρ et D = µ t ) and the current densities ( J et ) are absent. D D = Jet + () t D = ε + P (4) P describes the electric dipole moment per unit volume inside the material, caused b the alignment of microscopic dipoles with the electric field. P is ero in this situation. Consider that there are no eternal stimuli and epand the formula. As the variation of the dielectric profile can be neglect, ε = ε() r. ε c t = D = (5) () ( µε = ) (6) c Consider the harmonic time dependence ( related to time and position) of the electric field. So elmholt equation, + ε = t k ω ( k = ) (7) c Define the propagation geometr in FIG.. Let ε depends onl on one spatial coordinate, so ε = ε( ), the waves propagate along the -direction and show no spatial variation in the perpendicular of a Cartesian coordinate sstem. FIG. DFIN T PROPAGATION GOMTRY IN CARTSIAN COORDINAT SYSTM Applied to electromagnetic surface, on the plane =, the traveling waves equation is i (,, ) = e ( ) β ( β = k) (8) β is the propagation constant of the propagating waves and relates to the constituent of the wave vector in the direction of propagation. The propagation direction is illustrated in FIG.. Rewrite the elmholt equation FIG. T PROPAGATION COMPONNTS OF SPPS ( ) + ( k ε β ) = t The equation for the magnetic field is similarl. The propagation direction is illustrated in FIG.4. (9) - 8 -

3 FIG. 4 T DYRCTION OF LCTRONMAGNTISM FOR SPPS From the equation (9), we can make the general analsis of guided electromagnetic modes in waveguides, even etend to its properties and applications. For determining the characteristics of spatial field profile and dispersion of propagating waves. The eplicit epressions for the different field components of and can be achieved b the curl equation (). As the propagation along the -direction, and is homogenies in the -direction. Simplifies the sstem of equation = iωµ (a) = = iωµ iωµ (b) (c) = iωε ε (d) = = iωε ε iωε ε (e) (f) There eist two sets of self-consistent presentation in this sstem with different polariation properties of the propagating waves. In transverse electric modes, the components of field,, and i ωε ε are nonero. (a) The wave equation for transverse electric mode become In the set of the transverse magnetic modes,, β (b) ωε ε + ( k ε β ) = and being nonero. i ωµ () (a) β = (b) ωµ - 9 -

4 The wave equation for transverse magneti mode become + ( k ε β ) = Consider with the most simple geometr sustaining SPPs as a single, flat interface between a dielectric, nonabsorbing half space ( > ) with positive real dielectric constant and an adjacent conducting half space ( < ) described via a dielectric function ε ( ω ). For transverse magnetic mode, in both half spaces ields separatel For > (5a) ( ) ia e e (4) k = (5b) ωεε ( ) A e e k (5c) ωεε k For < ( ) = Ae e (5d) i ( ) ia e e k (5e) ωεε β ( ) A e e k (5f) ωεε k is the component of the wave vector perpendicular to the interface in the two media k k ( i =, ).With evanescent deca in the perpendicular -direction, the reciprocal value, ˆ = / k. ẑ is the evanescent deca length of the fields perpendicular to the interface which quantifies the confinement of the wave. i i FIG. 5 T PROPGRATION OF ON-FLAT SPPS According to the continuit of and i ε at the interface. A k k = A (6a) ε (6b) ε The epression for further has to fulfil the wave equation. k k = β k ε (7a) = β k ε (7b) The central result represent the characteristics of SPPs at the interface between the two half spaces. ffective permittivit εε β = k = kn eff ε + ε represent characteristics of SPPs. (8) - -

5 n eff = εε ε + ε As in transverse magnetic mode, the change of dielectric function ε ( ω) at metal interface, so we can use the Drude dielectric function. Set the dielectric material as air ( ε = ). ω p εω ( ) ω + iγω According to the metal dielectric constant and the wavelength data, we can use Mathematics to calculate the effective permittivit. The relationship of effective permittivit and wavelength is been plot in Fig 6. (9) () SPPS IN MULTILAYR SYSTMS FIG. 6 T FFCTIV PRMITTIVITY OF ON-FLAT SPPS Consider the SPPs in multilaer sstems, each single interface of conducting and dielectric thin films can sustain boundar situation. As the separation between the same interfaces is equal or smaller than the deca length ẑ of the interface mode, interactions between SPPs induce coupled modes. First one, a thin metallic laer sandwiched between two infinite thick dielectric claddings, which is an insulator/metal/insulator (IMI) heterostructure. And secondl a thin dielectric core laer (I) sandwiched between two metallic claddings (II, III), which is a metal/insulator/metal (MIM) heterostructure. FIG. 7 T MULTILAYRS SYSTM OF SPPS For the lowest-order bound modes, a general description of transverse magnetic modes has no oscillation in the Z- direction, the propagation direction perpendicular to the interfaces. Using the sstem of governing equations for transverse magnetic modes, we obtain the wave components of the field. k For > = Ae e (a) k = ia k e e (b) ωε ε - -

6 β A ke e k (c) ωεε k For < = Be e (d) k ib k e e (e) ωε ε β B ke e k (f) ωεε In order to simplif the discussion, the component of the wave vector perpendicular to the interfaces is sampled as ki ki. In the sandwiched region ( a< < a), the modes localied at the bottom and top interface couple. Since the requirement of continuit of and, we get the fellow relationship, a linear sstem of four coupled equations. The equation of further fulfill relationship between the three distinct regions. Using the sstem of linear equations to solve the dispersion relation between β and ω, the results in an implicit epression. e 4k k / ε + k / ε k / ε + k / ε k / ε k / ε k / ε k / ε Consider about a special condition that the dielectric response of the substructure (cladding II) and the superstructure (cladding III) are equall. In this special case, the dispersion relation is split into two different equations for odd and even modes. The modes of odd vector parit, as ( ) is odd, ( ) and ( ) are even functions tanh ka The modes of odd vector parit, as ( ) is even, ( ) and ( ) are odd functions tanh ka k ε k ε () (a) k ε k ε (b) The pair of equations can be applied to IMI and MIM heterostructure. We investigate the properties of the coupled SPP modes in IMI geometr - a thin metallic film of thickness a sandwiched between two insulating laers. As shown in Fig8, is the dielectric function of the metal, ε = ε ( ω), ε is the real dielectric constant of the dielectric cladding in substructure and the superstructure. FIG. 8 T SYMMTRICAL PROPATION MOD IN IMI MULTILAYR SYSTM OF SPPS FIG. 9 T ASYMMTRICAL PROPATION MOD IN IMI MULTILAYR SYSTM OF SPPS Newton s method is been used to solve equations. f ( ) n+ = n f '( ) (4) - -

7 We use Mathematica to simulation the relationship between n eff and thickness d. FIG. T FFCTIV CONSTANT OF COPP We can find that when the separation a increase, n eff will decrease in the same time. When the separation is relative small with the deca length, it almost have no effect on the effective permittivit. As the separation being ver large, the effective permittivit is jump seriousl. Then, we fied the separation a as 5 nm and change the dielectric constant of the metal and dielectric ε ( ) ω for different wavelength. and FIG. T FFCTIV CONSTANT OF GLASS AND MTAL The graphics are concave curve. When the wavelength increases, the permittivit of SPPs decreases. The maimum value is close to the dielectric constant. All of the plots describe the situation of odd mode. When the propagation mode is even, the curve upward bending. 4 CONCLUSIONS The parameter of effective permittivit is visualise how surface plasmon ecitation travels in space. With the rapid development of optical techniques, control and manipulation of light using SPPs on the nanometre scale ehibit significant advantages in nanophotonics devices with ver small elements, and SPPs open a promising wa in fields involving environment, energ, biolog, even medicine. Compared with the traditional method with frequenc parameters, effective permittivit provide a more intuitive observation of SPPs. In practice, controlled the sstem with adjust the effective permittivit can reduce the conversion process reach the anticipated result. ACKNOWLDGMNT Appreciate for the support b the International Conference on Photonics and Optoelectronics. RFRNCS [] omola, J. Present and future of surface plasmon resonance biosensors. Analtical and bioanaltical chemistr, [] Pitarke, J. M, Silkin,V. M, Chulkov,. V,& chenique, P. M. Theor of surface plasmons and surface-plasmon polaritons. Reports on progress in phsics, 7 [] STFAN A. MAIR. Plasmonics: Fundamentals and Applications. Centre for Photonics and Photonic Materials Department of Phsics, Universit of Bath, UK, 7 - -

8 [4] Zaats,A. V, Smolaninov, I. I, & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phsics reports, 5 AUTORS Weiping Mao (964), male, an, Postgraduate degree Associate Professor in School of Mechanical ngineering Jiangsu Universit, Research Interests: hdraulic transmission and control, laser processing technolog, Undergraduate degree (986), postgraduate degree (995) at School of Mechanical ngineering Jiangsu Universit, Zhenjiang, China. eqing uang (99), female, an, Undergraduate degree, Graduate student in Universit of Waterloo, Research Interests: optical detection, biophsics. Undergraduate degree (4) at Facult of Science in Jiangsu Universit, Zhenjiang, China. Undergraduate degree (4) in Wilfrid Laurier Universit, Waterloo, On, Canada

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates 5.3.3 The general solution for plane waves incident on a laered halfspace The general solution to the elmhol equation in rectangular coordinates The vector propagation constant Vector relationships between

More information

Plane Wave: Introduction

Plane Wave: Introduction Plane Wave: Introduction According to Mawell s equations a timevarying electric field produces a time-varying magnetic field and conversely a time-varying magnetic field produces an electric field ( i.e.

More information

Diode laser emission

Diode laser emission Lecture 9/1 Diode laser emission x Diode laser emission has oblong cross-section. Y-axis with large divergence angle is called fast axis X-axis with smaller divergence angle is called slow axis Lecture

More information

Radiation from a current sheet at the interface between a conventional medium and anisotropic negative refractive medium

Radiation from a current sheet at the interface between a conventional medium and anisotropic negative refractive medium Bull Mater Sci, Vol 3, No 4, August 9, pp 437 44 Indian Academ of Sciences Radiation from a current sheet at the interface between a conventional medium and anisotropic negative refractive medium YUAN

More information

*

* Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials Gu Lipworth 1, Joshua Ensworth 2, Kushal Seetharam 1, Jae Seung Lee 3, Paul Schmalenberg 3, Tsuoshi Nomura 4, Matthew

More information

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer Journal of the Optical Societ of Korea Vol. 17 No. 6 December 013 pp. 538-54 DOI: http://dx.doi.org/10.3807/josk.013.17.6.538 Similarit Analsis for the Dispersion of Spiraling Modes on Metallic Nanowire

More information

ELECTROMAGNETICS OF METALS

ELECTROMAGNETICS OF METALS Chapter 1 ELECTROMAGNETICS OF METALS While the optical properties of metals are discussed in most textbooks on condensed matter physics, for convenience this chapter summarizes the most important facts

More information

Complex Wave Parameters Visualization of EM Waves Complex Wave Parameters for Special Cases

Complex Wave Parameters Visualization of EM Waves Complex Wave Parameters for Special Cases Course Instructor Dr. Ramond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3d Waves in Loss Dielectrics Loss Dielectrics These notes ma contain

More information

Theory of Optical Waveguide

Theory of Optical Waveguide Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ

More information

Dr. Tao Li

Dr. Tao Li Tao Li taoli@nju.edu.cn Nat. Lab. of Solid State Microstructures Department of Materials Science and Engineering Nanjing University Concepts Basic principles Surface Plasmon Metamaterial Summary Light

More information

II Theory Of Surface Plasmon Resonance (SPR)

II Theory Of Surface Plasmon Resonance (SPR) II Theory Of Surface Plasmon Resonance (SPR) II.1 Maxwell equations and dielectric constant of metals Surface Plasmons Polaritons (SPP) exist at the interface of a dielectric and a metal whose electrons

More information

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape ISSN -9, Journal of Communications Technolog and Electronics,, Vol. 58, No., pp. 8. Pleiades Publishing, Inc.,. Original Russian Tet R.B. Vaganov, I.P. Korshunov, E.N. Korshunova, A.D. Oleinikov,, published

More information

ECE 222b Applied Electromagnetics Notes Set 4b

ECE 222b Applied Electromagnetics Notes Set 4b ECE b Applied Electromagnetics Notes Set 4b Instructor: Prof. Vitali Lomain Department of Electrical and Computer Engineering Universit of California, San Diego 1 Uniform Waveguide (1) Wave propagation

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Waveguide Introduction & Analysis Setup

Waveguide Introduction & Analysis Setup 4347 Applied letromagnetis Topi 5a Waveguide Introdution & Analsis Setup Leture 5a These notes ma ontain oprighted material obtained under fair use rules. Distribution of these materials is stritl prohibited

More information

Mathematical Pattern of Plasmon Surface Selection Rules According to DrudeModel

Mathematical Pattern of Plasmon Surface Selection Rules According to DrudeModel International Journal of Recent Research and Review, Vol. X, Issue 1, March 2017 ISSN 2277 8322 Mathematical Pattern of Plasmon Surface Selection Rules According to DrudeModel Raad A. Khamis 1,Hussam N.

More information

nm nm

nm nm The Quantum Mechanical Model of the Atom You have seen how Bohr s model of the atom eplains the emission spectrum of hdrogen. The emission spectra of other atoms, however, posed a problem. A mercur atom,

More information

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Reading: Saleh and Teich Chapter 7 Novotny and Hecht Chapter 11 and 12 1. Photonic Crystals Periodic photonic structures 1D 2D 3D Period a ~

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space Chapter 4 Waves in Unbounded Medium 4. lectromagnetic Sources 4. Uniform plane waves in free space Mawell s equation in free space is given b: H rot = (4..) roth = (4..) div = (4..3) divh = (4..4) which

More information

Periodic Structures in FDTD

Periodic Structures in FDTD EE 5303 Electromagnetic Analsis Using Finite Difference Time Domain Lecture #19 Periodic Structures in FDTD Lecture 19 These notes ma contain coprighted material obtained under fair use rules. Distribution

More information

University of Cape Town

University of Cape Town The copright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information

Chapter 3. Theory of measurement

Chapter 3. Theory of measurement Chapter. Introduction An energetic He + -ion beam is incident on thermal sodium atoms. Figure. shows the configuration in which the interaction one is determined b the crossing of the laser-, sodium- and

More information

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver PHOTONIC SENSORS / Vol., No., : 58 6 Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver Rakibul Hasan SAGOR, Md. Ghulam SABER *, and Md. Ruhul AMIN

More information

Nano-optics of surface plasmon polaritons

Nano-optics of surface plasmon polaritons Physics Reports 408 (2005) 131 314 www.elsevier.com/locate/physrep Nano-optics of surface plasmon polaritons Anatoly V. Zayats a,, Igor I. Smolyaninov b, Alexei A. Maradudin c a School of Mathematics and

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

6.976 High Speed Communication Circuits and Systems Lecture 2 Transmission Lines

6.976 High Speed Communication Circuits and Systems Lecture 2 Transmission Lines 6.976 High Speed Communication Circuits and Sstems Lecture 2 Transmission Lines Michael Perrott Massachusetts Institute of Technolog Copright 2003 b Michael H. Perrott Mawell s Equations General form:

More information

Introduction. Chapter Optics at the Nanoscale

Introduction. Chapter Optics at the Nanoscale Chapter 1 Introduction 1.1 Optics at the Nanoscale The interaction of light with matter is one of the most significant processes on the planet, forming the basis of some of the most famous scientific discoveries

More information

Surface plasmon polariton propagation around bends at a metal-dielectric interface

Surface plasmon polariton propagation around bends at a metal-dielectric interface Surface plasmon polariton propagation around bends at a metal-dielectric interface Keisuke Hasegawa, Jens U. Nöckel and Miriam Deutsch Oregon Center for Optics, 1274 University of Oregon, Eugene, OR 97403-1274

More information

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics Presented at the COMSOL Conference 2010 China Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics Zheng Zheng Beihang University 37 Xueyuan Road, Beijing 100191, China Acknowledgement

More information

EVALUATION OF COMPLEX PERMITTIVITIES OF MULTILAYER DIELECTRIC SUBSTRATES AT MICROWAVE FREQUENCIES USING WAVEGUIDE MEASUREMENTS

EVALUATION OF COMPLEX PERMITTIVITIES OF MULTILAYER DIELECTRIC SUBSTRATES AT MICROWAVE FREQUENCIES USING WAVEGUIDE MEASUREMENTS EVALUATION OF COMPLEX PERMITTIVITIES OF MULTILAYER DIELECTRIC SUBSTRATES AT MICROWAVE FREQUENCIES USING WAVEGUIDE MEASUREMENTS R. L. Crave, M. D. Deshpande, C. J. Redd 3, and P. I. Tiemsin () NASA Langle

More information

( ) ( ) ( ), ( 0 ), ( 0)

( ) ( ) ( ), ( 0 ), ( 0) . (a Find the eigenvalues and eigenfunctions of problem: (b The differential equation ( ( ( =, - =, =. (8% - - = has one basis solution =. Show that the other basis solution on the interval - < < is =

More information

GUIDED WAVES IN A RECTANGULAR WAVE GUIDE

GUIDED WAVES IN A RECTANGULAR WAVE GUIDE GUIDED WAVES IN A RECTANGULAR WAVE GUIDE Consider waves propagating along Oz but with restrictions in the and/or directions. The wave is now no longer necessaril transverse. The wave equation can be written

More information

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides.

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides. (a) 2.4 (b) (c) W Au y Electric field (a.u) x SiO 2 (d) y Au sgsp x Energy (ev) 2. 1.6 agsp W=5nm W=5nm 1.2 1 2 3 4.1.1 1 1 Re(n eff ) -1-5 5 1 x (nm) W = 2nm E = 2eV Im{E x } Re{E z } sgsp Electric field

More information

Back to basics : Maxwell equations & propagation equations

Back to basics : Maxwell equations & propagation equations The step index planar waveguide Back to basics : Maxwell equations & propagation equations Maxwell equations Propagation medium : Notations : linear Real fields : isotropic Real inductions : non conducting

More information

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2 EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester Introduction to light-matter

More information

Simplified Fast Multipole Methods for Micromagnetic Modeling

Simplified Fast Multipole Methods for Micromagnetic Modeling implified Fast Multipole Methods for Micromagnetic Modeling D. M. Apalkov and P. B.Visscher Department of Phsics and Astronom and MIT Center The Universit of Alabama This project was supported b F grants

More information

The physics of the perfect lens

The physics of the perfect lens The physics of the perfect lens J.B. Pendry and S.A. Ramakrishna, The Blackett Laboratory, Imperial College, London MURI-Teleconference #2 Pendry s proposal for a perfect lens Consider Veselago s slab

More information

The response of an electron in the image potential on the external steady fields

The response of an electron in the image potential on the external steady fields 1 The response of an electron in the image potential on the eternal steady fields 1,) P.A. Golovinski, M.A. Preobrahenskiy ) 1 ) Moscow Institute of Physics and Technology (State University), 141700, Moscow,

More information

Surface Plasmon-polaritons on thin metal films

Surface Plasmon-polaritons on thin metal films Surface Plasmon-polaritons on thin metal films Dielectric ε 3 Metal ε 2 Dielectric ε 1 References Surface plasmons in thin films, E.N. Economou, Phy. Rev. Vol.182, 539-554 (1969) Surface-polariton-like

More information

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

Lecture 7 Light-Matter Interaction Part 1 Basic excitation and coupling. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 7 Light-Matter Interaction Part 1 Basic excitation and coupling. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 7 Light-Matter Interaction Part 1 Basic excitation and coupling EECS 598-00 Winter 006 Nanophotonics and Nano-scale Fabrication P.C.Ku What we have learned? Nanophotonics studies the interaction

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Coherent perfect absorber and laser in purely imaginary conjugate metamaterials

Coherent perfect absorber and laser in purely imaginary conjugate metamaterials Coherent perfect absorber and laser in purel imaginar conjugate metamaterials Yangang Fu 1,, Yanan Cao 1, Steven A. Cummer 3, Yadong Xu 1, and Huanang Chen1, 1.College of Phsics, Optoelectronics and Energ,

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information

Metamaterials. Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China

Metamaterials. Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China University of Osnabrück, Germany Lecture presented at APS, Nankai University, China http://www.home.uni-osnabrueck.de/phertel Spring 2012 are produced artificially with strange optical properties for instance

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

If we assume that sustituting (4) into (3), we have d H y A()e ;j (4) d +! ; Letting! ;, (5) ecomes d d + where the independent solutions are Hence, H

If we assume that sustituting (4) into (3), we have d H y A()e ;j (4) d +! ; Letting! ;, (5) ecomes d d + where the independent solutions are Hence, H W.C.Chew ECE 350 Lecture Notes. Innite Parallel Plate Waveguide. y σ σ 0 We have studied TEM (transverse electromagnetic) waves etween two pieces of parallel conductors in the transmission line theory.

More information

Control of quantum two-level systems

Control of quantum two-level systems Control of quantum two-level sstems R. Gross, A. Mar & F. Deppe, Walther-Meißner-Institut (00-03) 0.3 Control of quantum two-level sstems.. General concept AS-Chap. 0 - How to control a qubit? Does the

More information

NANO/MICROSCALE HEAT TRANSFER

NANO/MICROSCALE HEAT TRANSFER NANO/MICROSCALE HEAT TRANSFER Zhuomin M. Zhang Georgia Institute of Technology Atlanta, Georgia New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM

DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM DIGITAL CORRELATION OF FIRST ORDER SPACE TIME IN A FLUCTUATING MEDIUM Budi Santoso Center For Partnership in Nuclear Technolog, National Nuclear Energ Agenc (BATAN) Puspiptek, Serpong ABSTRACT DIGITAL

More information

Characterization of Left-Handed Materials

Characterization of Left-Handed Materials Characterization of Left-Handed Materials Massachusetts Institute of Technology 6.635 lecture notes 1 Introduction 1. How are they realized? 2. Why the denomination Left-Handed? 3. What are their properties?

More information

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials ECE8: Nano-Plasonics and Its Applications Week8 Negative Refraction & Plasonic Metaaterials Anisotropic Media c k k y y ω μ μ + Dispersion relation for TM wave isotropic anisotropic k r k i, S i S r θ

More information

Determination of Young s modulus of glass by Cornu s apparatus

Determination of Young s modulus of glass by Cornu s apparatus Determination of Young s modulus of glass b Cornu s apparatus Objective To determine Young s modulus and Poisson s ratio of a glass plate using Cornu s method. Theoretical Background Young s modulus, also

More information

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case ECE 604, Lecture 17 October 30, 2018 In this lecture, we will cover the following topics: Duality Principle Reflection and Transmission Single Interface Case Interesting Physical Phenomena: Total Internal

More information

Separation of Variables in Cartesian Coordinates

Separation of Variables in Cartesian Coordinates Lecture 9 Separation of Variables in Cartesian Coordinates Phs 3750 Overview and Motivation: Toda we begin a more in-depth loo at the 3D wave euation. We introduce a techniue for finding solutions to partial

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

Zero Group Velocity Modes of Insulator Metal Insulator and Insulator Insulator Metal Waveguides

Zero Group Velocity Modes of Insulator Metal Insulator and Insulator Insulator Metal Waveguides Zero Group Velocity Modes of Insulator Metal Insulator and Insulator Insulator Metal Waveguides Dmitry Fedyanin, Aleksey Arsenin, Vladimir Leiman and Anantoly Gladun Department of General Physics, Moscow

More information

Usama Anwar. June 29, 2012

Usama Anwar. June 29, 2012 June 29, 2012 What is SPR? At optical frequencies metals electron gas can sustain surface and volume charge oscillations with distinct resonance frequencies. We call these as plasmom polaritons or plasmoms.

More information

Electromagnetic wave propagation through ultra-narrow channels filled

Electromagnetic wave propagation through ultra-narrow channels filled 31st October, HKUST, Hong-Kong Electromagnetic wave propagation through ultra-narrow channels filled with an ENZ material Mário G. Silveirinha How to have ε-nearε zero (ENZ) Media? 2 ω p ε r ~1 ω ω ( +

More information

Negative refractive index in coaxial plasmon waveguides

Negative refractive index in coaxial plasmon waveguides Negative refractive inde in coaial plasmon waveguides René de Waele,, Stanle P. Burgos, Harr A. Atwater, and Albert Polman Center for Nanophotonics, FOM-Institute for Atomic and Molecular Phsics (AMOLF),

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

Photonic crystals: from Bloch modes to T-matrices

Photonic crystals: from Bloch modes to T-matrices Photonic crstals: from Bloch modes to T-matrices B. Gralak, S. Enoch, G. Taeb Institut Fresnel, Marseille, France Objectives : Links between Bloch modes and grating theories (transfer matri) Stud of anomalous

More information

Fundamentals of fiber waveguide modes

Fundamentals of fiber waveguide modes SMR 189 - Winter College on Fibre Optics, Fibre Lasers and Sensors 1-3 February 007 Fundamentals of fiber waveguide modes (second part) K. Thyagarajan Physics Department IIT Delhi New Delhi, India Fundamentals

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2 Applied Spectroscop Ala-Arg-Pro-Tr-Asn-Phe-Cpa-Leu-NH 2 Cpa Ala Pro Guillermo Mona What is Spectroscop? Without going into latin or greek, spectroscop is the stud of the interactions between light and

More information

Surface plasmon waveguides

Surface plasmon waveguides Surface plasmon waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics Photonic integrated system with subwavelength scale components CMOS transistor: Medium-sized molecule

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Electromagnetic Enhancement in Lossy Optical. Transition Metamaterials

Electromagnetic Enhancement in Lossy Optical. Transition Metamaterials Electromagnetic Enhancement in Loss Optical Transition Metamaterials Irene Mozjerin 1, Tolana Gibson 1, Edward P. Furlani 2, Ildar R. Gabitov 3, Natalia M. Litchinitser 1* 1. The State Universit of New

More information

1. Reminder: E-Dynamics in homogenous media and at interfaces

1. Reminder: E-Dynamics in homogenous media and at interfaces 0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.4.1

More information

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Sourangsu Banerji Department of Electronics & Communication Engineering, RCC Institute of Information

More information

Giant Transverse Optical Forces in Nanoscale Slot Waveguides. of Hyperbolic Metamaterials

Giant Transverse Optical Forces in Nanoscale Slot Waveguides. of Hyperbolic Metamaterials Giant Transverse Optical Forces in Nanoscale Slot Waveguides of Hperbolic Metamaterials Yingran He 1,2, Sailing He 2, Jie Gao 1 and Xiaodong Yang 1,* 1 Department of Mechanical and Aerospace Engineering,

More information

CONTINUOUS SPATIAL DATA ANALYSIS

CONTINUOUS SPATIAL DATA ANALYSIS CONTINUOUS SPATIAL DATA ANALSIS 1. Overview of Spatial Stochastic Processes The ke difference between continuous spatial data and point patterns is that there is now assumed to be a meaningful value, s

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1 AE/ME 339 Professor of Aerospace Engineering December 21, 2001 topic13_grid_generation 1 The basic idea behind grid generation is the creation of the transformation laws between the phsical space and the

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announceents HW#3 is due next Wednesday, Feb. 21 st No class Monday Feb.

More information

Consideration of Shock Waves in Airbag Deployment Simulations

Consideration of Shock Waves in Airbag Deployment Simulations Consideration of Shock Waves in Airbag Deploment Simulations Doris Rieger BMW Group ABSTRACT When the inflation process of a simple flat airbag was simulated with the MADYMO gas flow module, the resulting

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Light propagation in Photonic. Crystal. Fibers infiltrated with Nematic. Liquid

Light propagation in Photonic. Crystal. Fibers infiltrated with Nematic. Liquid Light propagation in Photonic Crstal Fibers infiltrated with Nematic Liquid Crstals Tomasz R. Wolinski,, K. A. Brzdakiewicz, P. Lesiak, S. rtman,, A. Czapla, K. Nowecka, and A. W. Domanski Facult of Phsics,

More information

Conservation of Linear Momentum

Conservation of Linear Momentum Conservation of Linear Momentum Once we have determined the continuit equation in di erential form we proceed to derive the momentum equation in di erential form. We start b writing the integral form of

More information

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES Igor Zozouleno Solid State Electronics Department of Science and Technology Linöping University Sweden igozo@itn.liu.se http://www.itn.liu.se/meso-phot

More information

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force Phsics 360 Notes on Griffths - pluses and minuses No tetbook is perfect, and Griffithsisnoeception. Themajorplusisthat it is prett readable. For minuses, see below. Much of what G sas about the del operator

More information

SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE

SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE International Journal of Education and Research Vol. No. November 03 SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE Ramona GALATUS, Lorant SZOLGA, Emil VOICULESCU Technical

More information

Canalization of Sub-wavelength Images by Electromagnetic Crystals

Canalization of Sub-wavelength Images by Electromagnetic Crystals Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 37 Canalization of Sub-wavelength Images by Electromagnetic Crystals P. A. Belov 1 and C. R. Simovski 2 1 Queen Mary

More information

Dielectric Slab Waveguide

Dielectric Slab Waveguide Chapter Dielectric Slab Waveguide We will start off examining the waveguide properties of a slab of dielectric shown in Fig... d n n x z n Figure.: Cross-sectional view of a slab waveguide. { n, x < d/

More information

Geometries and materials for subwavelength surface plasmon modes

Geometries and materials for subwavelength surface plasmon modes Geometries and materials for subwavelength surface plasmon modes Plasmon slot waveguides : Metal-Insulator-Metal (MIM) Metal nanorods and nanotips Metal nanoparticles Metal Dielectric Dielectric Metal

More information

Polarized optical wave in optical fiber communication system

Polarized optical wave in optical fiber communication system IOSR Journal of Applied Phsics (IOSR-JAP) e-issn: 2278-4861.Volume 9, Issue 5 Ver. IV (Sep. - Oct. 2017), PP 09-14 www.iosrjournals.org Polarized optical wave in optical fiber communication sstem Dinesh

More information

Negative epsilon medium based optical fiber for transmission around UV and visible region

Negative epsilon medium based optical fiber for transmission around UV and visible region I J C T A, 9(8), 2016, pp. 3581-3587 International Science Press Negative epsilon medium based optical fiber for transmission around UV and visible region R. Yamuna Devi*, D. Shanmuga Sundar** and A. Sivanantha

More information

PHYSICS PART II SECTION- I. Straight objective Type

PHYSICS PART II SECTION- I. Straight objective Type PHYSICS PAT II SECTION- I Straight objective Tpe This section contains 9 multiple choice questions numbered to 1. Each question has choices,, (C) and, out of which ONLY ONE is correct.. A parallel plate

More information

Superconductivity Induced Transparency

Superconductivity Induced Transparency Superconductivity Induced Transparency Coskun Kocabas In this paper I will discuss the effect of the superconducting phase transition on the optical properties of the superconductors. Firstly I will give

More information

Finite element simulation of surface plasmon-polaritons: generation by edge effects, and resonance

Finite element simulation of surface plasmon-polaritons: generation by edge effects, and resonance 1 Matthias Maier May 18, Finite2017 element simulation of SPPs: edge effects and resonance Finite element simulation of surface plasmon-polaritons: generation by edge effects, and resonance Matthias Maier

More information

Simultaneous Orthogonal Rotations Angle

Simultaneous Orthogonal Rotations Angle ELEKTROTEHNIŠKI VESTNIK 8(1-2): -11, 2011 ENGLISH EDITION Simultaneous Orthogonal Rotations Angle Sašo Tomažič 1, Sara Stančin 2 Facult of Electrical Engineering, Universit of Ljubljana 1 E-mail: saso.tomaic@fe.uni-lj.si

More information

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Dispersion Introduction - An electromagnetic wave with an arbitrary wave-shape

More information