Distributed-Feedback Lasers

Size: px
Start display at page:

Download "Distributed-Feedback Lasers"

Transcription

1 Distributed-Feedback Lasers Class: Integrated Photonic Devices Tie: Fri. 8:00a ~ 11:00a. Classroo: 資電 06 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Wavelength Dependence of Bragg Reflections Free-Space Bragg Reflection Waveguide Bragg Reflection dsinθ = lλ and l = 1,, 3,... Let θ = 90 Λ= ( / ) and l = 1,, 3,... l λ0 n e Effective index Usually only one ode will lie within the gain bandwidth of the laser

2 Coupling Efficiency of Wave Reflection The fraction of optical power that is reflected by a grating depends on Thickness of the waveguiding layer Depth of the grating teeth Length of the grating region Coupling Efficiency of Wave Reflection The coupling can be characterized by perturbation assuption ( ) 3 n n1 a 3( λ0/ a) 3( λ0 / a) 1 1/ 0 g 1 1 π κ = + + 3lλ n t π( n n ) 4 π ( n n ) where βλ l β is the propagation constant of the particular ode π

3 Coupling Efficiency of Wave Reflection A + A (incident wave, forward) (reflect wave, backward) For the first order (l=1) case, the reflection is essential liited to coupling between the forward and backward traveling wave [ κ z L ] + + cosh ( ) A ( z) = A cosh( κ L) and [ κ z L ] + κ sinh ( ) A ( z) = A κ cosh( κl) L: the length of grating Coupling Efficiency of Wave Reflection A + A (incident wave, forward) (reflect wave, backward) The reflectance and transittance are R eff = A A + and T eff = A A + + ( L) The incident power decreases exponentially with z, as power is reflected into the backward travelling wave

4 Ray Scattering of Higher-Order Bragg Gratings For higher-order gratings with periodicity Λ lλ0 Λ= l > 0 n e The extra path length ust be integral ultiples of the wavelength to have constructive scattering ray l = l λ0 b +Λ= n and b =Λsinθ Thus, 0 sinθ = 1 e e l λ n Λ l = 0,1,,3,... l l = 0,1,,3,... l Ray Scattering of Higher-Order Bragg Gratings For exaple of a second-order Bragg grating λ0 Λ= Then n e θ = l l = 0,1, sin 1 Three diffraction odes l = l = 0 l =1 l =

5 Coupling Efficiency of Wave Reflection A + A (incident wave, forward) (reflect wave, backward) Generally, the strong coupling in the transverse direction by second-order Bragg grating is undesirable A first-order grating is required to yield optiu perforance However, fabrication of the first-order grating is challenging. Lasing with Distributed Feedback E 0 L E r In a gain ediu (gain:g), κexp( jβ0z)sinh [ S( L z) ] ( β ) sinh ( ) cosh ( ) Er ( z) = E0 g j SL S SL where ( β ) S κ g j + The paraeter E 0 is the aplitude of a single ode incident on the grating (stiulus)

6 Lasing with Distributed Feedback E 0 L E r The phase isatching ter, β = β β 0 Where β 0 is the propagation constant at the Bragg wavelength The oscillation condition for the DFB laser corresponds to the case for E r E0 That is, ( g j β )sinh( SL) = Scosh( SL) Lasing with Distributed Feedback In general, nuerical ethod should be used for exactly solving g and Δβ siultaneously. A special case of solution of lasing frequency 1 πc ω = ω0 ( + ) nl Supposing that g >> κ, β g = 0, ± 1, ±,... ω 0 : Bragg Frequency β β β 0 ( ω ω ) c 0 n g It is interesting to note that no oscillation can occur at exactly the Bragg frequency ω 0. The ode spacing πc ω nl g However, only the lasing odes close to the Bragg frequency have the sallest threshold gain. Therefore, in a noral operating condition, the spectral feature of DFB laser often consists of the two longitudinal odes

7 Separate Confineent Heterostructure Lasers Lattice daage is usually created during the grating fabrication. It is better to separate the active layer out of the grating layer Distributed Bragg Reflection Lasers L 1 L L a Active Region Laser Eission Two Bragg gratings are eployed at both ends of the laser and outside of the electrically-puped active region To achieve a single longitudinal ode, one distributed reflector ust have narrow bandwidth, high reflectivity at the lasing wavelength

8 Distributed Bragg Reflection Lasers L 1 L L a Active Region Laser Eission For the passive grating region, The Transittivity: The Reflectivity: T R = γ exp j( β β) L = ( α + j β) sinh ( γl) + γ cosh ( γl) jκsinh ( γl) ( α + j β) sinh ( γl) + γ cosh ( γl) where (coplex) ( j ) γ κ + α + β Loss of grating Distributed Bragg Reflection Lasers R R1 L eff L 1 L L a Active Region Laser Eission Since the reflectivity is coplex nuber, we can consider an effective cavity length L eff L = L a 1+ + La L 1 L ( α ) 1 + a ( α + κ + α ) 1

9 Distributed Bragg Reflection Lasers R R1 L eff L 1 L L a Active Region Laser Eission The longitudinal ode spacing between the -th and (±1)-th lasing ode is approxiately π β β ± 1 = L eff Wavelength Selectability Copared with Fabry-Perot lasers, DFB or DBR laser is easy to achieve single-longitudinal-ode operation because the spacing between the -th and the (±1)-th ode is generally large and the reflectivity is ode-dependent

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM School of Electrical and Computer Engineering, Cornell University ECE 533: Semiconductor Optoelectronics Fall 14 Homewor 8 Due on Nov, 14 by 5: PM This is a long -wee homewor (start early). It will count

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Modeling of Low Power Multilayer Vertical Cavity Surface Emitting Laser

Modeling of Low Power Multilayer Vertical Cavity Surface Emitting Laser International Journal of Optics and Applications 15, 5(5): 155-16 DOI: 1.593/j.optics.1555.3 Modeling of Low Power Multilayer Vertical Cavity Surface Eitting Laser Shashad Akther Khan *, M. A. Hasnayeen

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 17 Optical Sources- Introduction to LASER Fiber Optics, Prof. R.K. Shevgaonkar,

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

Design of Uniform Fiber Bragg grating using Transfer matrix method

Design of Uniform Fiber Bragg grating using Transfer matrix method International Journal of Computational Engineering Research Vol, 3 Issue, 5 Design of Uniform Fiber Bragg grating using Transfer matrix method Deba Kumar Mahanta Department of Electrical Engineering, Assam

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Theory of Optical Waveguide

Theory of Optical Waveguide Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ

More information

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Ashim Kumar Saha (D3) Supervisor: Prof. Toshiaki Suhara Doctoral Thesis Defense Quantum Engineering Design Course Graduate

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.66 1 Announceents Hoework # is due today, HW#3 is assigned due Feb. 1 st No

More information

Basic Principles of Light Emission in Semiconductors

Basic Principles of Light Emission in Semiconductors Basic Principles of Light Emission in Semiconductors Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 06 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Model for Light Generation and

More information

In this chapter we will study sound waves and concentrate on the following topics:

In this chapter we will study sound waves and concentrate on the following topics: Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

Terahertz Fabry-Perot interferometer constructed by metallic meshes with micrometer period and high ratio of linewidth/period

Terahertz Fabry-Perot interferometer constructed by metallic meshes with micrometer period and high ratio of linewidth/period Terahertz Fabry-Perot interferoeter constructed by etallic eshes with icroeter period and high ratio of linewidth/period Lu Zhengang 1,, Tan Jiubin, Fan Zhigang 1 1 Postdoctoral Research Station of Optical

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announceents HW#3 is due next Wednesday, Feb. 21 st No class Monday Feb.

More information

Gain Apodization in Highly Doped, Distributed-Feedback (DFB) Fiber Lasers

Gain Apodization in Highly Doped, Distributed-Feedback (DFB) Fiber Lasers Gain Apodization in Highly Doped Distributed- Feedback (DFB) Fiber Lasers Introduction Fiber lasers have been the subect of much research over the past ten years. They can provide high reliability fiber

More information

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES Progress In Electromagnetics Research, PIER 22, 197 212, 1999 A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES M. Akbari, M. Shahabadi, and K. Schünemann Arbeitsbereich Hochfrequenztechnik Technische

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information

The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches

The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches Journal of Physics: Conference Series PAPER OPEN ACCESS The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches To cite this article: A M Altark and A D Kanareykin

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

Refractive Index Measurement by Gain- or Loss-Induced Resonance

Refractive Index Measurement by Gain- or Loss-Induced Resonance Refractive Index Measurement by Gain- or Loss-Induced Resonance 59 Refractive Index Measurement by Gain- or Loss-Induced Resonance Markus Miller Using a semiconductor optical resonator consisting of a

More information

On Constant Power Water-filling

On Constant Power Water-filling On Constant Power Water-filling Wei Yu and John M. Cioffi Electrical Engineering Departent Stanford University, Stanford, CA94305, U.S.A. eails: {weiyu,cioffi}@stanford.edu Abstract This paper derives

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee)

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler I Class: Integrated Photonic Devices Time: Fri. 8:am ~ 11:am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler n 1 > n n Waveguide 1 n 1 n Waveguide n 1 n How to switch

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

A Study of Electromagnetic Wave Propagation. in the Foam Core Sandwich Structures

A Study of Electromagnetic Wave Propagation. in the Foam Core Sandwich Structures ID-83 A Study of Electroagnetic Wave Propagation in the Foa Core Sandwich Structures H. J. Chun and H. S. Shin School of Electrical and Mechanical Engineering, Yonsei University 34, Shinchon-dong, Seodaeun-gu,

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Sourangsu Banerji Department of Electronics & Communication Engineering, RCC Institute of Information

More information

Lecture 12: Waves in periodic structures

Lecture 12: Waves in periodic structures Lecture : Waves in periodic structures Phonons: quantised lattice vibrations of a crystalline solid is: To approach the general topic of waves in periodic structures fro a specific standpoint: Lattice

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

Chapter 6 Aberrations

Chapter 6 Aberrations EE90F Chapter 6 Aberrations As we have seen, spherical lenses only obey Gaussian lens law in the paraxial approxiation. Deviations fro this ideal are called aberrations. F Rays toward the edge of the pupil

More information

Scattering by a Multi-Electron Atom, Atomic Scattering Factors; Wave Propagation and Refractive Index

Scattering by a Multi-Electron Atom, Atomic Scattering Factors; Wave Propagation and Refractive Index Scattering by a Multi-Electron Atom, Atomic Scattering Factors; Wave Propagation and Refractive Index David Attwood University of California, Berkeley (http://www.coe.berkeley.edu/ast/srms) Scattering

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 221-3A Fall 2010 Waves - II Lectures 27-28 Chapter 17 (Halliday/Resnick/Walker, Fundaentals of Physics 8 th edition) 1 Chapter 17 Waves II In this chapter we will study sound waves and concentrate on

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

THE fiber phase grating written by ultraviolet light into

THE fiber phase grating written by ultraviolet light into JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 8, AUGUST 1997 1277 Fiber Grating Spectra Turan Erdogan, Member, IEEE (Invited Paper) Abstract In this paper, we describe the spectral characteristics that

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Photonics and Optical Communication

Photonics and Optical Communication Photonics and Optical Communication (Course Number 300352) Spring 2007 Optical Source Dr. Dietmar Knipp Assistant Professor of Electrical Engineering http://www.faculty.iu-bremen.de/dknipp/ 1 Photonics

More information

Numerical analysis of supermodes, modal gain, and differential gain in heterogeneously integrated InP/Si lasers

Numerical analysis of supermodes, modal gain, and differential gain in heterogeneously integrated InP/Si lasers Numerical analysis of supermodes, modal gain, and differential gain in heterogeneously integrated InP/Si lasers Chen-Kuo Wu Promoter: Prof. dr. Geert Morthier Supervisor: Amin Abbasi Master's dissertation

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Photonic Bandgap and Electromagnetic Metamaterials Andrew Kirk andrew.kirk@mcgill.ca ca Department of Electrical and Computer Engineering McGill Institute for Advanced Materials A Kirk 11/24/2008 Photonic

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

P032 3D Seismic Diffraction Modeling in Multilayered Media in Terms of Surface Integrals

P032 3D Seismic Diffraction Modeling in Multilayered Media in Terms of Surface Integrals P032 3D Seisic Diffraction Modeling in Multilayered Media in Ters of Surface Integrals A.M. Aizenberg (Institute of Geophysics SB RAS, M. Ayzenberg* (Norwegian University of Science & Technology, H.B.

More information

Periodic Structures. Chapter Introduction. Contents

Periodic Structures. Chapter Introduction. Contents Chapter 6 Periodic Structures Contents 6.1 Introduction......................................... 6 1 6.2 Diffraction at surface gratings.............................. 6 2 6.3 Bragg condition and k-vector

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

Photonic crystals. Semi-conductor crystals for light. The smallest dielectric lossless structures to control whereto and how fast light flows

Photonic crystals. Semi-conductor crystals for light. The smallest dielectric lossless structures to control whereto and how fast light flows Photonic crystals Semi-conductor crystals for light The smallest dielectric lossless structures to control whereto and how fast light flows Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl

More information

Distributed Feedback Laser ECE 464. Tin Nguyen

Distributed Feedback Laser ECE 464. Tin Nguyen Distributed Feedbac Laser ECE 464 Tin Nguyen La Rosa, Spring 2008 Abstract In recent year, distributed feedbac laser was one of the hot topics that have been study for many years. It was introduced and

More information

SEMICONDUCTOR ring or microdisk lasers have been

SEMICONDUCTOR ring or microdisk lasers have been IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 49, NO. 1, DECEMBER 013 1097 Theoretical Analysis of Unidirectional Operation and Reflection Sensitivity of Semiconductor Ring or Disk Lasers Geert Morthier, Senior

More information

S. Blair September 27,

S. Blair September 27, S. Blair September 7, 010 54 4.3. Optical Resonators With Spherical Mirrors Laser resonators have the same characteristics as Fabry-Perot etalons. A laser resonator supports longitudinal modes of a discrete

More information

The Energy Flux Method for Reverberation: Modeling and Inversion

The Energy Flux Method for Reverberation: Modeling and Inversion DISTRIBUTION STATEMENT A Approved for public release; distribution is unliited The Energy Flux Method for Reverberation: Modeling and Inversion Ji-Xun Zhou School of Mechanical Engineering Georgia Institute

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Nonlinear Fiber Optics and its Applications in Optical Signal Processing 1/44 Nonlinear Fiber Optics and its Applications in Optical Signal Processing Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

Coupled Lines Coupled Transmission Lines Problems 593. , τ = L. τ = Z 0C

Coupled Lines Coupled Transmission Lines Problems 593. , τ = L. τ = Z 0C .6. Probles 593 where T d /c is the one-way travel tie to the fault. Show that the corresponding tie constant τ /a is in the four cases: τ Z C, τ Z C, τ L Z, τ L Z For a resistive fault, show that Γ Z

More information

Modulation of Harmonic Emission Spectra from Intense Laser-Plasma Interactions

Modulation of Harmonic Emission Spectra from Intense Laser-Plasma Interactions Modulation of Haronic Eission Spectra fro Intense Laser-Plasa Interactions T.J.M. Boyd and R. Ondarza-Rovira 2 Centre for Physics, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K. 2 ININ, A.P.

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Modeling and Design of Integrated Optical Microresonator with Rectangular Cavity Shapes. Didit Yudistira

Modeling and Design of Integrated Optical Microresonator with Rectangular Cavity Shapes. Didit Yudistira Modeling and Design of Integrated Optical Microresonator with Rectangular Cavity Shapes Didit Yudistira June, 2003 Contents 1 Introduction 3 1.1 Background............................. 3 1.2 Objective...............................

More information

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE,

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE, PERIODIC SEADY SAE ANALYSIS, EFFECIVE VALUE, DISORSION FACOR, POWER OF PERIODIC CURRENS t + Effective value of current (general definition) IRMS i () t dt Root Mean Square, in Czech boo denoted I he value

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers Introduction Fundamentals of laser Types of lasers Semiconductor lasers Is it Light Amplification and Stimulated Emission Radiation? No. So what if I know an acronym? What exactly is Light Amplification

More information

Scattering by a Blade on a Metallic Plane

Scattering by a Blade on a Metallic Plane UEMG #121474 Scattering by a Blade on a Metallic Plane DANILO ERRICOLO PIERGIORGIO L. E. USLENGHI BADRIA ELNOUR FRANCESCA MIOC QUERY SHEET QY: Au: Please check all artwork throughout article for correctness.

More information

RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS MEMBRANE

RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS MEMBRANE Proceedings of ICIPE rd International Conference on Inverse Probles in Engineering: Theory and Practice June -8, 999, Port Ludlow, Washington, USA : RECOVERY OF A DENSITY FROM THE EIGENVALUES OF A NONHOMOGENEOUS

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics Chapter 4 Optical Source - Outline 4.1 Semiconductor physics - Energy band - Intrinsic and Extrinsic Material - pn Junctions - Direct and Indirect Band Gaps 4. Light Emitting Diodes (LED) - LED structure

More information

Supporting Information for Supression of Auger Processes in Confined Structures

Supporting Information for Supression of Auger Processes in Confined Structures Supporting Inforation for Supression of Auger Processes in Confined Structures George E. Cragg and Alexander. Efros Naval Research aboratory, Washington, DC 20375, USA 1 Solution of the Coupled, Two-band

More information

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities Yu et al. Vol. 15, No. 2/February 1998/J. Opt. Soc. Am. B 617 Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities M.

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Recent progress on single-mode quantum cascade lasers

Recent progress on single-mode quantum cascade lasers Recent progress on single-mode quantum cascade lasers B. Hinkov 1,*, P. Jouy 1, A. Hugi 1, A. Bismuto 1,2, M. Beck 1, S. Blaser 2 and J. Faist 1 * bhinkov@phys.ethz.ch 1 Institute of Quantum Electronics,

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

A SIMPLIFIED METHOD FOR CALCULATING THE EFFECTIVE SOLAR OPTICAL PROPERTIES OF A DRAPERY

A SIMPLIFIED METHOD FOR CALCULATING THE EFFECTIVE SOLAR OPTICAL PROPERTIES OF A DRAPERY nd Canadian Solar Buildings Conference Calgary, une 4, 7 A SIMPLIFIED METHOD FOR CALCULATING THE EFFECTIVE SOLAR OPTICAL PROPERTIES OF A DRAPERY N. A. Kotey,.L. Wright and M.R. Collins Departent of Mechanical

More information

PS210 - Optical Techniques. Section VI

PS210 - Optical Techniques. Section VI PS210 - Optical Techniques Section VI Section I Light as Waves, Rays and Photons Section II Geometrical Optics & Optical Instrumentation Section III Periodic and Non-Periodic (Aperiodic) Waves Section

More information

EE485 Introduction to Photonics

EE485 Introduction to Photonics Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,

More information

Optical Parametric Generation

Optical Parametric Generation x (2) Parametric Processes 27 Optical Parametric Generation Spontaneous parametric down-conversion occurs when a pump photon at v P spontaneously splits into two photons called the signal at v S, and the

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Structured Illumination Super-Resolution Imaging Achieved by Two Steps based on the Modulation of Background Light Field

Structured Illumination Super-Resolution Imaging Achieved by Two Steps based on the Modulation of Background Light Field 017 nd International Seinar on Applied Physics, Optoelectronics and Photonics (APOP 017) ISBN: 978-1-60595-5-3 Structured Illuination Super-Resolution Iaging Achieved by Two Steps based on the Modulation

More information

Homework 1. Property LASER Incandescent Bulb

Homework 1. Property LASER Incandescent Bulb Homework 1 Solution: a) LASER light is spectrally pure, single wavelength, and they are coherent, i.e. all the photons are in phase. As a result, the beam of a laser light tends to stay as beam, and not

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Measuring orbital angular momentum superpositions of light by mode transformation

Measuring orbital angular momentum superpositions of light by mode transformation CHAPTER 7 Measuring orbital angular oentu superpositions of light by ode transforation In chapter 6 we reported on a ethod for easuring orbital angular oentu (OAM) states of light based on the transforation

More information

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1 Nae: Class: Date: ID: A Quiz 5 PRACTICE--Ch2., 3., 4. Multiple Choice Identify the choice that best copletes the stateent or answers the question.. A bea of light in air is incident at an angle of 35 to

More information

Chapter9. Amplification of light. Lasers Part 2

Chapter9. Amplification of light. Lasers Part 2 Chapter9. Amplification of light. Lasers Part 06... Changhee Lee School of Electrical and Computer Engineering Seoul National Univ. chlee7@snu.ac.kr /9 9. Stimulated emission and thermal radiation The

More information

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser Elena G. Turitsyna*, Sergei K. Turitsyn, and Vladimir K. Mezentsev Photonics Research Group, Aston University,

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electroagnetic scattering Graduate Course Electrical Engineering (Counications) 1 st Seester, 1388-1389 Sharif University of Technology Contents of lecture 5 Contents of lecture 5: Scattering fro a conductive

More information

Optical Properties of Plasmas of High-Z Elements

Optical Properties of Plasmas of High-Z Elements Forschungszentru Karlsruhe Techni und Uwelt Wissenschaftlishe Berichte FZK Optical Properties of Plasas of High-Z Eleents V.Tolach 1, G.Miloshevsy 1, H.Würz Project Kernfusion 1 Heat and Mass Transfer

More information

Light Interaction with Small Structures

Light Interaction with Small Structures Light Interaction with Small Structures Molecules Light scattering due to harmonically driven dipole oscillator Nanoparticles Insulators Rayleigh Scattering (blue sky) Semiconductors...Resonance absorption

More information

Quantum Chemistry Exam 2 Take-home Solutions

Quantum Chemistry Exam 2 Take-home Solutions Cheistry 60 Fall 07 Dr Jean M Standard Nae KEY Quantu Cheistry Exa Take-hoe Solutions 5) (0 points) In this proble, the nonlinear variation ethod will be used to deterine an approxiate solution for the

More information

Fiber Lasers: Fundamentals and Applications

Fiber Lasers: Fundamentals and Applications Fiber Lasers: Fundamentals and Applications Lecture 4 V R Supradeepa Center for Nano Science and Engineering (CeNSE) Indian Institute of Science Nonlinear Photonics and High Power Lasers Laboratory, CeNSE,

More information