Coupled Lines Coupled Transmission Lines Problems 593. , τ = L. τ = Z 0C

Size: px
Start display at page:

Download "Coupled Lines Coupled Transmission Lines Problems 593. , τ = L. τ = Z 0C"

Transcription

1 .6. Probles 593 where T d /c is the one-way travel tie to the fault. Show that the corresponding tie constant τ /a is in the four cases: τ Z C, τ Z C, τ L Z, τ L Z For a resistive fault, show that Γ Z /R + Z ), or, Γ R/R + Z ), for a shunt or series R. Moreover, show that Γ Z Z )/Z + Z ), where Z is the parallel in the shunt-r case) or series cobination of R with Z and give an intuitive explanation of this fact. For a series C, show that the voltage wave along the two segents is given as follows, and also derive siilar expressions for all the other cases: V ut z/c)+v e at+z/c T ) ut + z/c T ), for z<d Vt, z) V e at z/c) ut z/c), for d <z d + d Make a plot of V d t) for t 5T, assuing a for the C and L faults, and Γ corresponding to a shorted shunt or an opened series fault. The MATLAB file TDRovie. generates a ovie of the step input as it propagates and gets reflected fro the fault. The lengths were d 6, d 4 in units such that c ), and the input was V.. Coupled Transission Lines Coupled Lines Coupling between two transission lines is introduced by their proxiity to each other. Coupling effects ay be undesirable, such as crosstalk in printed circuits, or they ay be desirable, as in directional couplers where the objective is to transfer power fro one line to the other. In Sections..3, we discuss the equations, and their solutions, describing coupled lines and crosstalk In Sec..4, we discuss directional couplers, as well as fiber Bragg gratings, based on coupled-ode theory Fig... shows an exaple of two coupled icrostrip lines over a coon ground plane, and also shows a generic circuit odel for coupled lines. Fig... Coupled Transission Lines. For siplicity, we assue that the lines are lossless. Let L i,c i, i, bethe distributed inductances and capacitances per unit length when the lines are isolated fro each other. The corresponding propagation velocities and characteristic ipedances are: v i / L i C i, Z i L i /C i, i,. The coupling between the lines is odeled by introducing a utual inductance and capacitance per unit length, L,C. Then, the coupled versions of telegrapher s equations.5.) becoe: C is related to the capacitance to ground C g via C C g + C, so that the total charge per unit length on line- is Q C V C V C gv V g)+c V V ), where V g.

2 .. Coupled Transission Lines Coupled Lines V z L I t L I t, I z C V t + C V t..) V z L I t L I t, I z C V t + C V t When L C, they reduce to the uncoupled equations describing the isolated individual lines. Eqs...) ay be written in the atrix fors: V z L L I L L t..) I z C C V C C t where V, I are the colun vectors: V V V, I I For sinusoidal tie dependence e jωt, the syste..) becoes: dv jω L L I L L di jω C C V C C I..3)..4) It proves convenient to recast these equations in ters of the forward and backward waves that are noralized with respect to the uncoupled ipedances Z,Z : a V + Z I Z, b V Z I Z a V + Z I Z, b V Z I Z a a a, b b b..5) The a, b waves are siilar to the power waves defined in Sec The total average power on the line can be expressed conveniently in ters of these: P ReV I ReV I + ReV I P + P a b ) + a b ) a + a ) b + b ) a a b b..6) where the dagger operator denotes the conjugate-transpose, for exaple, a a,a. Thus, the a-waves carry power forward, and the b-waves, backward. After soe algebra, it can be shown that Eqs...4) are equivalent to the syste: da jf a + jg b db jg a + jf b d a j b F G G F a b..7) with the atrices F, G given by: β κ χ F, G κ β χ..8) where β,β are the uncoupled wavenubers β i ω/v i ω L i C i, i, and the coupling paraeters κ, χ are: ) κ ω L C Z Z L β β Z Z L L ) χ ω L + C Z Z L β β + Z Z L L C ) C C C )..9) C C A consequence of the structure of the atrices F, G is that the total power P defined in..6) is conserved along z. This follows by writing the power in the following for, where I is the identity atrix: I a P a a b b a, b I b Using..7), we find: dp ja, b F G G F I I I I F G G F ) a b the latter following fro the conditions F F and G G. Eqs...6) and..7) for the basis of coupled-ode theory. Next, we specialize to the case of two identical lines that have L L L and C C C, so that β β ω L C β and Z Z L /C Z, and speed v / L C. Then, the a, b waves and the atrices F, G take the sipler fors: a V + Z I Z, b V Z I a V + Z I Z, b V Z I..) β κ χ F, G..) κ β χ where, for siplicity, we reoved the coon scale factor Z fro the denoinator of a, b. The paraeters κ, χ are obtained by setting Z Z Z in..9): κ β L L C ), χ C β L L + C ),..) C The atrices F, G coute with each other. In fact, they are both exaples of atrices of the for: a a A a a a I + a J, I, J..3)

3 .. Coupled Transission Lines Coupled Lines where a,a are real such that a a. Such atrices for a coutative subgroup of the group of nonsingular atrices. Their eigenvalues are λ ± a ± a and they can all be diagonalized by a coon unitary atrix: Q e +, e, e +, e..4) so that we have QQ Q Q I and Ae ± λ ± e ±. The eigenvectors e ± are referred to as the even and odd odes. To siplify subsequent expressions, we will denote the eigenvalues of A by A ± a ± a and the diagonalized atrix by Ā. Thus, A+ a + a A QĀQ, Ā..5) A a a Such atrices, as well as any atrix-valued function thereof, ay be diagonalized siultaneously. Three exaples of such functions appear in the solution of Eqs...7): B F + G)F G) Q F + Ḡ) F Ḡ)Q Z Z F + G)F G) Z Q F + Ḡ) F Ḡ) Q..6) Γ Z Z I)Z + Z I) Q Z Z I) Z + Z I) Q Using the property FG GF, and differentiating..7) one ore tie, we obtain the decoupled second-order equations, with B as defined in..6): d a d b B a, B b However, it is better to work with..7) directly. This syste can be decoupled by foring the following linear cobinations of the a, b waves: A a Γ b B b Γa A B I Γ Γ I a b The A, B can be written in ters of V, I and the ipedance atrix Z as follows: A D) V + ZI) B D) V ZI) V DA + B) ZI DA B)..7) D Z + Z I Z..8) Using..7), we find that A, B satisfy the decoupled first-order syste: d A B j B B A B da jba, with solutions expressed in ters of the atrix exponentials e ±jbz : db jbb..9) Az) e jbz A), Bz) e jbz B)..) Using..8), we obtain the solutions for V, I : Vz) D e jbz A)+e jbz B) ZIz) D e jbz A) e jbz B)..) To coplete the solution, we assue that both lines are terinated at coon generator and load ipedances, that is, Z G Z G Z G and Z L Z L Z L. The generator voltages V G,V G are assued to be different. We define the generator voltage vector and source and load atrix reflection coefficients: V G VG V G, The terinal conditions for the line are at z and z l : Γ G Z G I Z)Z G I + Z) Γ L Z L I Z)Z L I + Z)..) V G V)+Z G I), Vl) Z L Il)..3) They ay be re-expressed in ters of A, B with the help of..8): A) Γ G B) D ZZ + Z G I) V G, Bl) Γ L Al)..4) But fro..9), we have: e jbl B) Bl) Γ L Al) Γ L e jbl A) B) Γ L e jbl A)..5) Inserting this into..4), we ay solve for A) in ters of the generator voltage: A) D I Γ G Γ L e jbl ZZ + ZG I) V G..6) Using..6) into..), we finally obtain the voltage and current at an arbitrary position z along the lines: Vz) e jbz + Γ L e jbl e jbz I Γ G Γ L e jbl ZZ + ZG I) V G Iz) e jbz Γ L e jbl e jbz I Γ G Γ L e jbl Z + ZG I) V G..7) These are the coupled-line generalizations of Eqs..9.7). Resolving V G and Vz) into their even and odd odes, that is, expressing the as linear cobinations of the eigenvectors e ±, we have: V G V G+ e + + V G e, where V G± V G ± V G Vz) V + z)e + + V z)e, V ± z) V z)±v z)..8) In this basis, the atrices in..7) are diagonal resulting in the equivalent solution: Vz) V + z)e + + V z)e e jβ+z + Γ L+ e jβ+l e jβ+z Z + Γ G+ Γ L+ e jβ+l V G+ e + Z + + Z G The atrices D, Z, Γ G,Γ L,Γ,B all coute with each other. + e jβ z + Γ L e jβ l e jβ z Γ G Γ L e jβ l Z Z + Z G V G e..9)

4 .. Coupled Transission Lines 599 where β ± are the eigenvalues of B, Z ± the eigenvalues of Z, and Γ G±,Γ L± are: Γ G± Z G Z ±, Γ L± Z L Z ±..3) Z G + Z ± Z L + Z ± The voltages V z), V z) are obtained by extracting the top and botto coponents of..9), that is, V, z) V + z)±v z) / : V z) e jβ+z + Γ L+ e jβ+l e jβ+z Γ G+ Γ L+ e jβ+l V + + e jβ z + Γ L e jβ l e jβ z Γ G Γ L e jβ l V V z) e jβ+z + Γ L+ e jβ+l e jβ+z Γ G+ Γ L+ e jβ+l V + e jβ z + Γ L e jβ l e jβ z Γ G Γ L e jβ l V..3) where we defined: ) Z ± VG± V ± Z ± + Z G 4 Γ G±)V G ± V G )..3) The paraeters β ±,Z ± are obtained using the rules of Eq...5). Fro Eq...), we find the eigenvalues of the atrices F ± G: F + G) ± β ± κ + χ) β ± L ) ω L ± L ) Z F G) ± β ± κ χ) β C ) ωz C C ) C Then, it follows that: β + F + G) + F G) + ω L + L )C C ) β F + G) F G) ω L L )C + C ) F + G) + L + L Z + Z F G) + Z Z F + G) F G) L C C L L C + C..33)..34) Thus, the coupled syste acts as two uncoupled lines with wavenubers and characteristic ipedances β ±,Z ±, propagation speeds v ± / L ± L )C C ), and propagation delays T ± l/v ±. The even ode is energized when V G V G, or, V G+,V G, and the odd ode, when V G V G, or, V G+,V G. When the coupled lines are iersed in a hoogeneous ediu, such as two parallel wires in air over a ground plane, then the propagation speeds ust be equal to the speed of light within this ediu 69, that is, v + v / μɛ. This requires: L + L )C C ) μɛ L L )C + C ) μɛ L μɛc C C L μɛc C C..35) Therefore, L /L C /C, or, equivalently, κ. On the other hand, in an inhoogeneous ediu, such as for the case of the icrostrip lines shown in Fig..., the propagation speeds ay be different, v + v, and hence T + T. 6. Coupled Lines. Crosstalk Between Lines When only line- is energized, that is, V G,V G, the coupling between the lines induces a propagating wave in line-, referred to as crosstalk, which also has soe inor influence back on line-. The near-end and far-end crosstalk are the values of V z) at z and z l, respectively. Setting V G in..3), we have fro..3): V ) Γ G+ ) + Γ L+ ζ+ ) Γ G+ Γ L+ ζ+ V V l) ζ + Γ G+) + Γ L+ ) Γ G+ Γ L+ ζ + V Γ G ) + Γ L ζ ) Γ G Γ L ζ V ζ Γ G ) + Γ L ) Γ G Γ L ζ V..) where we defined V V G / and introduced the z-transfor delay variables ζ ± e jωt± e jβ±l. Assuing purely resistive terination ipedances Z G,Z L, we ay use Eq..5.5) to obtain the corresponding tie-doain responses: V,t) Γ G+) Vt)+ + ) Γ G+ Γ L+ ) Vt T + ) Γ G+ Γ G Γ G ) Vt)+ + ) Γ G Γ L ) Vt T ) V l, t) Γ G+) + Γ L+ ) Γ G+ Γ L+ ) Vt T + T + ) Γ G ) + Γ L ) Γ G Γ L ) Vt T T )..) where Vt) V G t)/. Because Z ± Z, there will be ultiple reflections even when the lines are atched to Z at both ends. Setting Z G Z L Z, gives for the reflection coefficients..3): Γ G± Γ L± Z Z ± Γ ±..3) Z + Z ± In this case, we find for the crosstalk signals: V,t) + Γ +) Vt) Γ+ ) Γ + Vt T + ) + Γ ) Vt) Γ ) Γ Vt T )..4) V l, t) Γ +) Γ ) Γ + Vt T + T + ) Γ Vt T T ) Vt) is the signal that would exist on a atched line- in the absence of line-, V Z V G /Z +Z G ) V G /, provided Z G Z.

5 .. Crosstalk Between Lines 6 6. Coupled Lines Siilarly, the near-end and far-end signals on the driven line are found by adding, instead of subtracting, the even- and odd-ode ters: V,t) + Γ +) Vt) Γ+ ) Γ + Vt T + ) + + Γ ) Vt) Γ ) Γ Vt T )..5) V l, t) Γ + ) Γ+ Vt T + T + ) + Γ ) Γ Vt T T ) These expressions siplify drastically if we assue weak coupling. It is straightforward to verify that to first-order in the paraeters L /L,C /C, or equivalently, to first-order in κ, χ, we have the approxiations: β ± β ± Δβ β ± κ, Γ ± ± ΔΓ ± χ β, Z ± Z ± ΔZ Z ± Z χ β, T ± T ± ΔT T ± T κ β v ± v v κ β..6) where T l/v. Because the Γ ± s are already first-order, the ultiple reflection ters in the above suations are a second-order effect, and only the lowest ters will contribute, that is, the ter for the near-end, and for the far end. Then, V,t) Γ + Γ )Vt) V l, t) Vt T+ ) Vt T ) Γ+ Vt T + ) Γ Vt T ) Using a Taylor series expansion and..6), we have to first-order: Vt T ± ) Vt T ΔT) Vt T) ΔT) Vt T), Vt T ± ) Vt T ΔT) Vt T) ΔT) Vt T) V dv dt Therefore, Γ ± Vt T ± ) Γ ± Vt T) ΔT) V Γ ± Vt T), where we ignored the second-order ters Γ ± ΔT) V. It follows that: V,t) Γ + Γ ) Vt) Vt T) ΔΓ) Vt) Vt T) V l, t) Vt T) ΔT) V Vt T) ΔT) V dvt T) ΔT) dt These can be written in the coonly used for: V,t) K b Vt) Vt T) V l, t) K f dvt T) dt near- and far-end crosstalk)..7) where K b,k f are known as the backward and forward crosstalk coefficients: K b χ β v ) L + C Z, K f T κ ) 4 Z β v T L C Z Z..8) where we ay replace l v T. The sae approxiations give for line-, V,t) Vt) and V l, t) Vt T). Thus, to first-order, line- does not act back to disturb line-. Exaple..: Fig... shows the signals V, t), V l, t), V, t), V l, t) for a pair of coupled lines atched at both ends. The uncoupled line ipedance was Z 5 Ω L /L.4, C /C.3 line near end line far end line near end line far end t/t L /L.8, C /C.7 line near end line far end line near end line far end t/t Fig... Near- and far-end crosstalk signals on lines and. For the left graph, we chose L /L.4, C /C.3, which results in the even and odd ode paraeters using the exact forulas): Z Ω, Z Ω, v +.v, v.3v Γ +.7, Γ.9, T +.99T, T.88T, K b.75, K f.5 The right graph corresponds to L /L.8, C /C.7, with paraeters: Z +.47 Ω, Z 7.5 Ω, v +.36v, v.7v Γ +.4, Γ.49, T +.73T, T.58T, K b.375, K f.5 The generator input to line- was a rising step with rise-tie t r T/4, that is, Vt) V Gt) t t r ut) ut tr ) + ut t r ) The weak-coupling approxiations are ore closely satisfied for the left case. Eqs...7) predict for V,t) a trapezoidal pulse of duration T and height K b, and for V l, t), a rectangular pulse of width t r and height K f /t r. starting at t T: V l, t) K f dvt T) dt K f t r ut T) ut T tr ) These predictions are approxiately correct as can be seen in the figure. The approxiation predicts also that V,t) Vt) and V l, t) Vt T), which are not quite true the effect of line- on line- cannot be ignored copletely.

6 .3. Weakly Coupled Lines with Arbitrary Terinations Coupled Lines The interaction between the two lines is seen better in the MATLAB ovie xtalkovie., which plots the waves V z, t) and V z, t) as they propagate to and get reflected fro their respective loads, and copares the to the uncoupled case V z, t) Vt z/v ). The waves V, z, t) are coputed by the sae ethod as for the ovie pulseovie. of Exaple.5., applied separately to the even and odd odes..3 Weakly Coupled Lines with Arbitrary Terinations The even-odd ode decoposition can be carried out only in the case of identical lines both of which have the sae load and generator ipedances. The case of arbitrary terinations has been solved in closed for only for hoogeneous edia 66,69. It has also been solved for arbitrary edia under the weak coupling assuption 76. Following 76, we solve the general equations..7)..9) for weakly coupled lines assuing arbitrary terinating ipedances Z Li,Z Gi, with reflection coefficients: Γ Li Z Li Z i, Γ Gi Z Gi Z i, i,.3.) Z Li + Z i Z Gi + Z i Working with the forward and backward waves, we write Eq...7) as the 4 4 atrix equation: a β κ χ dc jmc, c a b, M κ β χ χ β κ b χ κ β The weak coupling assuption consists of ignoring the coupling of a,b on a,b. This aounts to approxiating the above linear syste by: β dc j κ β χ ˆMc, ˆM.3.) β χ κ β Its solution is given by cz) e j ˆMz c), where the transition atrix e j ˆMz can be expressed in closed for as follows: e jβz κ e j ˆMz ˆκe jβz e jβz ) e jβz ˆχe jβz e jβz ) ˆκ β β, e jβz χ ˆχ ˆχe jβz e jβz ) ˆκe jβz e jβz ) e jβz β + β The transition atrix e j ˆMl ay be written in ters of the z-doain delay variables ζ i e jβil e iωti, i,, where T i are the one-way travel ties along the lines, that is, T i l/v i. Then, we find: a l) a l) b l) b l) ζ ˆκζ ζ ) ζ ˆχζ ζ ) ζ ˆχζ ζ ) ˆκζ ζ ) ζ a ) a ) b ) b ).3.3) These ust be appended by the appropriate terinating conditions. Assuing that only line- is driven, we have: V )+Z G I ) V G, V )+Z G I ), which can be written in ters of the a, b waves: V l) Z L I l) V l) Z L I l) a ) Γ G b ) U, b l) Γ L a l) a ) Γ G b ), b l) Γ L a l), U Γ G ) V G Z.3.4) Eqs..3.3) and.3.4) provide a set of eight equations in eight unknowns. Once these are solved, the near- and far-end voltages ay be deterined. For line-, we find: Z V ) a )+b ) + Γ Lζ Γ G Γ L ζ V Z V l) a l)+b l) ζ + Γ L ) Γ G Γ L ζ V where V Γ G )V G / Z V G /Z + Z G ). For line-, we have: V ) κζ ζ )Γ L ζ + Γ L ζ )+ χ ζ ζ ) + Γ L Γ L ζ ζ Γ G Γ L ζ ) Γ G Γ L ζ ) V l) κζ ζ ) + Γ L Γ G ζ ζ )+ χ ζ ζ )Γ L ζ + Γ G ζ Γ G Γ L ζ ) Γ G Γ L ζ ).3.5) ) V ) V l.3.6) where V + Γ G )V + Γ G ) Γ G )V G / and V l + Γ L )V, and we defined κ, χ by: κ χ Z ˆκ Z Z ˆχ Z Z Z Z Z κ β β χ β + β ) ω L C Z β β Z ) ω L + C Z β + β Z.3.7) In the case of identical lines with Z Z Z and β β β ω/v, we ust take the liit: e jβl e jβl li d e jβl jle jβl β β β β dβ Then, we obtain: κζ ζ ) jωk f e jβl jω l ) L C Z e jβl Z χ K b v ).3.8) L + C Z 4 Z where K f,k b were defined in..8). Setting ζ ζ ζ e jβl e jωt, we obtain the crosstalk signals:

7 .4. Coupled-Mode Theory Coupled Lines V ) jωk f Γ L + Γ L )ζ + K b ζ ) + Γ L Γ L ζ ) V Γ G Γ L ζ ) Γ G Γ L ζ ) V l) jωk f + Γ L Γ G ζ )ζ + K b ζ )Γ L + Γ G )ζ Γ G Γ L ζ ) Γ G Γ L ζ ) V l.3.9) The corresponding tie-doain signals will involve the double ultiple reflections arising fro the denoinators. However, if we assue the each line is atched in at least one of its ends, so that Γ G Γ L Γ G Γ L, then the denoinators can be eliinated. Replacing jω by the tie-derivative d/dt and each factor ζ by a delay by T, we obtain: V,t) K f Γ L + Γ L + Γ L Γ G ) Vt T) + K b + Γ G ) Vt) Vt T) + K b Γ L Γ L Vt T) Vt 4T) V l, t) K f + ΓL ) Vt T)+Γ L Γ G Vt 3T) + K b Γ L + Γ G + Γ L Γ L ) Vt T) Vt 3T).3.) where Vt) Γ G )V G t)/, and we used the property Γ G Γ L to siplify the expressions. Eqs..3.) reduce to..7) when the lines are atched at both ends..4 Coupled-Mode Theory In its siplest for, coupled-ode or coupled-wave theory provides a paradig for the interaction between two waves and the exchange of energy fro one to the other as they propagate. Reviews and earlier literature ay be found in Refs , see also for the relationship to fiber Bragg gratings and distributed feedback lasers. There are several echanical and electrical analogs of coupled-ode theory, such as a pair of coupled pendula, or two asses at the ends of two springs with a third spring connecting the two, or two LC circuits with a coupling capacitor between the. In these exaples, the exchange of energy is taking place over tie instead of over space. Coupled-wave theory is inherently directional. If two forward-oving waves are strongly coupled, then their interactions with the corresponding backward waves ay be ignored. Siilarly, if a forward- and a backward-oving wave are strongly coupled, then their interactions with the corresponding oppositely oving waves ay be ignored. Fig..4. depicts these two cases of co-directional and contra-directional coupling. Fig..4. Directional Couplers. Eqs...7) for the basis of coupled-ode theory. In the co-directional case, if we assue that there are only forward waves at z, that is, a) and b), then it ay shown that the effect of the backward waves on the forward ones becoes a second-order effect in the coupling constants, and therefore, it ay be ignored. To see this, we solve the second of Eqs...7) for b in ters of a, assuing zero initial conditions, and substitute it in the first: z bz) j e jfz z ) G az ) da z jf a + Ge jfz z ) G az ) The second ter is second-order in G, or in the coupling constant χ. Ignoring this ter, we obtain the standard equations describing a co-directional coupler: da jf a d a β κ a j.4.) a κ β a For the contra-directional case, a siilar arguent that assues the initial conditions a ) b ) gives the following approxiation that couples the a and b waves: d a β χ a j.4.) b χ β b The conserved powers are in the two cases: P a + a, P a b.4.3) The solution of Eq..4.) is obtained with the help of the transition atrix e jfz : e jfz e jβz cos σz j δ sin σz σ j κ sin σz σ j κ sin σz σ cos σz + j δ.4.4) sin σz σ where β β + β Thus, the solution of.4.) is: a z) a z), δ β β e jβz cos σz j δ sin σz σ j j κ sin σz σ cos, σ δ + κ.4.5) κ sin σz σ σz j δ a ) a sin σz ) σ.4.6) Starting with initial conditions a ) and a ), the total initial power will be P a ) + a ). As the waves propagate along the z-direction, power is exchanged between lines and according to: P z) a z) cos σz + δ σ sin σz P z) a z) κ σ sin σz P z).4.7) Fig..4. shows the two cases for which δ/κ and δ/κ.5. In both cases, axiu exchange of power occurs periodically at distances that are odd ultiples of z π/σ. Coplete power exchange occurs only in the case δ, or equivalently, when β β. In this case, we have σ κ and P z) cos κz, P z) sin κz.

8 .5. Fiber Bragg Gratings Coupled Lines Co directional coupler, δ /κ P z) P z).5.5 σ z /π Fig Fiber Bragg Gratings Co directional coupler, δ /κ.5 P z) P z).5.5 σ z /π Power exchange in co-directional couplers. As an exaple of contra-directional coupling, we consider the case of a fiber Bragg grating FBG), that is, a fiber with a segent that has a periodically varying refractive index, as shown in Fig..5.. Fig..5. Fiber Bragg grating. The backward wave is generated by the reflection of a forward-oving wave incident on the interface fro the left. The grating behaves very siilarly to a periodic ultilayer structure, such as a dielectric irror at noral incidence, exhibiting high-reflectance bands. A siple odel for an FBG is as follows : d az) j bz) β κ e jkz κe jkz β az) bz).5.) where K π/λ is the Bloch wavenuber, Λ is the period, and az), bz) represent the forward and backward waves. The following transforation reoves the phase factor e jkz fro the coupling constant: Az) e jkz/ Bz) e jkz/ d Az) j Bz) az) e jkz/ az) bz) e jkz/ bz) δ κ κ δ Az) Bz).5.).5.3) where δ β K/ is referred to as a detuning paraeter. The conserved power is given by Pz) az) bz). The fields at z are related to those at z l by: A) Al) δ κ e jfl, with F B) Bl) κ.5.4) δ The transfer atrix e jfl is given by: e jfl cos σl + j δ sin σl σ j j κ sin σl σ cos κ sin σl σ σl j δ U U U sin σl U σ.5.5) where σ δ κ.if δ < κ, then σ becoes iaginary. In this case, it is ore convenient to express the transfer atrix in ters of the quantity γ κ δ : e jfl cosh γl + j δ sinh γl γ j j κ γ sinh γl cosh κ sinh γl γ γl j δ.5.6) sinh γl γ The transfer atrix has unit deterinant, which iplies that U U. Using this property, we ay rearrange.5.4) into its scattering atrix for that relates the outgoing fields to the incoing ones: B) Γ T Al) T Γ A), Γ U, Γ U, T.5.7) Bl) U U U where Γ, Γ are the reflection coefficients fro the left and right, respectively, and T is the transission coefficient. We have explicitly, j κ sin σl Γ σ cos σl + j δ, T σ sin σl cos σl + j δ.5.8) σ sin σl If there is only an incident wave fro the left, that is, A) and Bl), then.5.7) iplies that B) ΓA) and Al) TA). A consequence of power conservation, A) B) Al) Bl),is the unitarity of the scattering atrix, which iplies the property Γ + T. The reflectance Γ ay be expressed in the following two fors, the first being appropriate when δ κ, and the second when δ κ : Γ T κ sin σl σ cos σl + δ sin σl κ sinh γl γ cosh γl + δ sinh γl.5.9) Fig..5. shows Γ as a function of δ. The high-reflectance band corresponds to the range δ κ. The left graph has κl 3 and the right one κl 6. As κl increases, the reflection band becoes sharper. The asyptotic width of the band is κ δ κ. For any finite value of κl, the axiu reflectance achieved

9 .5. Fiber Bragg Gratings Coupled Lines Γ Fiber Bragg Grating, κ l 3 Γ Fiber Bragg Grating, κ l 6 where we replaced U Γ/T and U /T. Assuing a quarter-wavelength spacing d λ B /4 Λ/, we have βd δ + π/λ)d δd + π/. Replacing e jβd e jδd+jπ/ je jδd, we obtain: Γ cop Γ T e jδd Te jδd) T e jδd Γ Te jδd.5.3) At δ, we have T T / cosh κ l, and therefore, Γ cop. Fig..5.4 depicts the reflectance, Γ cop, and transittance, Γ cop, for the case κl... Copound Grating, κ l Copound Grating, κ l δ /κ Fig δ /κ Reflectance of fiber Bragg gratings. at the center of the band, δ, is given by Γ ax tanh κl. The reflectance at the asyptotic band edges is given by: Reflectance Transittance Γ κl, + κl at δ ± κ The zeros of the reflectance correspond to sin σl, or, σ π/l, which gives δ ± κ + π/l), where is a non-zero integer. The Bragg wavelength λ B is the wavelength at the center of the reflecting band, that is, corresponding to δ, or, β K/, or λ B π/β 4π/K Λ. By concatenating two identical FBGs separated by a spacer of length d λ B /4 Λ/, we obtain a quarter-wave phase-shifted FBG, which has a narrow transission window centered at δ. Fig..5.3 depicts such a copound grating. Within the spacer, the A, B waves propagate with wavenuber β as though they are uncoupled. Fig..5.3 Quarter-wave phase-shifted fiber Bragg grating. The copound transfer atrix is obtained by ultiplying the transfer atrices of the two FBGs and the spacer: V U FBG U spacer U FBG, or, explicitly: V V U U e jβd U U V V U U e jβd U U.5.) where the U ij are given in Eq..5.5). It follows that the atrix eleents of V are: V Ue jβd + U e jβd, V U U e jβd + Ue jβd).5.) The reflection coefficient of the copound grating will be: Γ cop V U U e jβd + Ue jβd) V Ue Γ T e jβd + Te jβd) jβd + U e jβd T e jβd + Γ Te jβd.5.) δ /κ Fig δ /κ Quarter-wave phase-shifted fiber Bragg grating. Quarter-wave phase-shifted FBGs are siilar to the Fabry-Perot resonators discussed in Sec Iproved designs having narrow and flat transission bands can be obtained by cascading several quarter-wave FBGs with different lengths Soe applications of FBGs in DWDM systes were pointed out in Sec Diffuse Reflection and Transission Another exaple of contra-directional coupling is the two-flux odel of Schuster and Kubelka-Munk describing the absorption and ultiple scattering of light propagating in a turbid ediu The odel has a large nuber of applications, such as radiative transfer in stellar atospheres, reflectance spectroscopy, reflection and transission properties of powders, papers, paints, skin tissue, dental aterials, and the sea. The odel assues a siplified parallel-plane geoetry, as shown in Fig..6.. Let I ± z) be the forward and backward radiation intensities per unit frequency interval at location z within the aterial. The odel is described by the two coefficients k, s of absorption and scattering per unit length. For siplicity, we assue that k, s are independent of z. Within a layer, the forward intensity I + will be diinished by an aount of I + k due to absorption and an aount of I + sdue to scattering, and it will be increased by an aount of I sarising fro the backward-oving intensity that is getting scattered

10 .6. Diffuse Reflection and Transission 6 6. Coupled Lines Fig..6. Forward and backward intensities in stratified ediu. The reflectance and transittance corresponding to a black, non-reflecting, background are obtained by setting R g in Eq..6.4): R U s sinh βl U β cosh βl + α sinh βl T.6.5) β U β cosh βl + α sinh βl The reflectance of an infinitely-thick ediu is obtained in the liit l : R s α + β s k + s + kk + s) k s R ) R.6.6) forward. Siilarly, the backward intensity, going fro z + to z, will be decreased by I k + s) ) and increased by I + s ). Thus, the increental changes are: or, written in atrix for: d di + k + s)i + + si di k + s)i + si + I+ z) k + s s I z) s k s I+ z) I z).6.) This is siilar in structure to Eq..5.3), except the atrix coefficients are real. The solution at distance z l is obtained in ters of the initial values I ± ) by: I+ l) e Fl I+ ) k + s s, with F I l) I ) s k s The transfer atrix e Fl is: U e Fl cosh βl α s sinh βl β s sinh βl β cosh sinh βl β βl + α sinh βl U U U U β.6.).6.3) where α k + s and β α s kk + s). The transfer atrix is uniodular, that is, det U U U U U. Of interest are the input reflectance the albedo) R I )/I + ) of the length-l structure and its transittance T I + l)/i + ), both expressed in ters of the output, or background, reflectance R g I l)/i + l). Using Eq..6.), we find: For the special case of an absorbing but non-scattering ediu k,s ), we have α β k and the transfer atrix.6.3) and Eq..6.4) siplify into: e U e Fl kl e kl, R e kl R g, T e kl.6.7) These are in accordance with our expectations for exponential attenuation with distance. The intensities are related by I + l) e kl I + ) and I l) e kl I ). Thus, the reflectance corresponds to traversing a forward and a reverse path of length l, and the transittance only a forward path. Perhaps, the ost surprising prediction of this odel first pointed out by Schuster) is that, in the case of a non-absorbing but scattering ediu k,s ), the transittance is not attenuating exponentially, but rather, inversely with distance. Indeed, setting α s and taking the liit β sinh βl l as β, we find: sl sl U e Fl, R sl + sl)r g, T.6.8) sl + sl + sl slr g + sl slr g In particular, for the case of a non-reflecting background, we have:.7 Probles R sl + sl, T + sl.6.9). Show that the coupled telegrapher s equations..4) can be written in the for..7).. Consider the practical case in which two lines are coupled only over a iddle portion of length l, with their beginning and ending segents being uncoupled, as shown below: R U + U R g U U R g T s sinh βl + β cosh βl α sinh βl)r g β cosh βl + α sr g )sinh βl β U U R g β cosh βl + α sr g )sinh βl These are related to the noralized Kubelka 5 variables a α/s, b β/s..6.4) Assuing weakly coupled lines, how should Eqs..3.6) and.3.9) be odified in this case? Hint: Replace the segents to the left of the reference plane A and to the right of plane B by their Thévenin equivalents.

11 .7. Probles 63.3 Derive the transition atrix e j ˆMz of weakly coupled lines described by Eq..3.)..4 Verify explicitly that Eq..4.6) is the solution of the coupled-ode equations.4.)..5 Coputer Experient Fiber Bragg Gratings. Reproduce the results and graphs of Figures.5. and Ipedance Matching 3. Conjugate and Reflectionless Matching The Thévenin equivalent circuits depicted in Figs... and..3 also allow us to answer the question of axiu power transfer. Given a generator and a length-d transission line, axiu transfer of power fro the generator to the load takes place when the load is conjugate atched to the generator, that is, Z L Z th conjugate atch) 3..) The proof of this result is postponed until Sec Writing Z th R th + jx th and Z L R L +jx L, the condition is equivalent to R L R th and X L X th. In this case, half of the generated power is delivered to the load and half is dissipated in the generator s Thévenin resistance. Fro the Thévenin circuit shown in Fig..., we find for the current through the load: I L V th V th Z th + Z L R th + R L )+jx th + X L ) V th R th Thus, the total reactance of the circuit is canceled. It follows then that the power delivered by the Thévenin generator and the powers dissipated in the generator s Thévenin resistance and the load will be: P tot ReV th I L) V th 4R th P th R th I L V th 8R th P tot, P L R L I L V th P tot 8R th 3..) Assuing a lossless line real-valued Z and β), the conjugate atch condition can also be written in ters of the reflection coefficients corresponding to Z L and Z th : Γ L Γ th Γ G ejβd conjugate atch) 3..3) Moving the phase exponential to the left, we note that the conjugate atch condition can be written in ters of the sae quantities at the input side of the transission line:

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t = τ). Consequently,

More information

Distributed-Feedback Lasers

Distributed-Feedback Lasers Distributed-Feedback Lasers Class: Integrated Photonic Devices Tie: Fri. 8:00a ~ 11:00a. Classroo: 資電 06 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Wavelength Dependence of Bragg Reflections Free-Space Bragg

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t τ). Consequently,

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

P032 3D Seismic Diffraction Modeling in Multilayered Media in Terms of Surface Integrals

P032 3D Seismic Diffraction Modeling in Multilayered Media in Terms of Surface Integrals P032 3D Seisic Diffraction Modeling in Multilayered Media in Ters of Surface Integrals A.M. Aizenberg (Institute of Geophysics SB RAS, M. Ayzenberg* (Norwegian University of Science & Technology, H.B.

More information

Chapter 2. Small-Signal Model Parameter Extraction Method

Chapter 2. Small-Signal Model Parameter Extraction Method Chapter Sall-Signal Model Paraeter Extraction Method In this chapter, we introduce a new paraeter extraction technique for sall-signal HBT odeling. Figure - shows the sall-signal equivalent circuit of

More information

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators Suppleentary Inforation for Design of Bending Multi-Layer Electroactive Polyer Actuators Bavani Balakrisnan, Alek Nacev, and Elisabeth Sela University of Maryland, College Park, Maryland 074 1 Analytical

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) =

SOLUTIONS. PROBLEM 1. The Hamiltonian of the particle in the gravitational field can be written as, x 0, + U(x), U(x) = SOLUTIONS PROBLEM 1. The Hailtonian of the particle in the gravitational field can be written as { Ĥ = ˆp2, x 0, + U(x), U(x) = (1) 2 gx, x > 0. The siplest estiate coes fro the uncertainty relation. If

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Data-Driven Imaging in Anisotropic Media

Data-Driven Imaging in Anisotropic Media 18 th World Conference on Non destructive Testing, 16- April 1, Durban, South Africa Data-Driven Iaging in Anisotropic Media Arno VOLKER 1 and Alan HUNTER 1 TNO Stieltjesweg 1, 6 AD, Delft, The Netherlands

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES V.Raachran, Ravi P.Raachran C.S.Gargour Departent of Electrical Coputer Engineering, Concordia University, Montreal, QC, CANADA,

More information

Figure 1: Equivalent electric (RC) circuit of a neurons membrane

Figure 1: Equivalent electric (RC) circuit of a neurons membrane Exercise: Leaky integrate and fire odel of neural spike generation This exercise investigates a siplified odel of how neurons spike in response to current inputs, one of the ost fundaental properties of

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle.

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle. BEF 5503 BEF 5503 Chapter BASC PRNCPLES Outline 1 3 4 5 6 7 8 9 ntroduction Phasor Representation Coplex Power Triangle Power Factor Coplex Power in AC Single Phase Circuits Coplex Power in Balanced Three-Phase

More information

A new type of lower bound for the largest eigenvalue of a symmetric matrix

A new type of lower bound for the largest eigenvalue of a symmetric matrix Linear Algebra and its Applications 47 7 9 9 www.elsevier.co/locate/laa A new type of lower bound for the largest eigenvalue of a syetric atrix Piet Van Mieghe Delft University of Technology, P.O. Box

More information

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3 A. Find all ordered pairs a, b) of positive integers for which a + b = 3 08. Answer. The six ordered pairs are 009, 08), 08, 009), 009 337, 674) = 35043, 674), 009 346, 673) = 3584, 673), 674, 009 337)

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Using a De-Convolution Window for Operating Modal Analysis

Using a De-Convolution Window for Operating Modal Analysis Using a De-Convolution Window for Operating Modal Analysis Brian Schwarz Vibrant Technology, Inc. Scotts Valley, CA Mark Richardson Vibrant Technology, Inc. Scotts Valley, CA Abstract Operating Modal Analysis

More information

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2

The Hydrogen Atom. Nucleus charge +Ze mass m 1 coordinates x 1, y 1, z 1. Electron charge e mass m 2 coordinates x 2, y 2, z 2 The Hydrogen Ato The only ato that can be solved exactly. The results becoe the basis for understanding all other atos and olecules. Orbital Angular Moentu Spherical Haronics Nucleus charge +Ze ass coordinates

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lecture Oscillations (Chapter 6) What We Did Last Tie Analyzed the otion of a heavy top Reduced into -diensional proble of θ Qualitative behavior Precession + nutation Initial condition

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

MA304 Differential Geometry

MA304 Differential Geometry MA304 Differential Geoetry Hoework 4 solutions Spring 018 6% of the final ark 1. The paraeterised curve αt = t cosh t for t R is called the catenary. Find the curvature of αt. Solution. Fro hoework question

More information

III.H Zeroth Order Hydrodynamics

III.H Zeroth Order Hydrodynamics III.H Zeroth Order Hydrodynaics As a first approxiation, we shall assue that in local equilibriu, the density f 1 at each point in space can be represented as in eq.iii.56, i.e. f 0 1 p, q, t = n q, t

More information

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Seisic Analysis of Structures by K Dutta, Civil Departent, II Delhi, New Delhi. Module 5: Response Spectru Method of Analysis Exercise Probles : 5.8. or the stick odel of a building shear frae shown in

More information

The Energy Flux Method for Reverberation: Modeling and Inversion

The Energy Flux Method for Reverberation: Modeling and Inversion DISTRIBUTION STATEMENT A Approved for public release; distribution is unliited The Energy Flux Method for Reverberation: Modeling and Inversion Ji-Xun Zhou School of Mechanical Engineering Georgia Institute

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Electromagnetic fields modeling of power line communication (PLC)

Electromagnetic fields modeling of power line communication (PLC) Electroagnetic fields odeling of power line counication (PLC) Wei Weiqi UROP 3 School of Electrical and Electronic Engineering Nanyang echnological University E-ail: 4794486@ntu.edu.sg Keyword: power line

More information

J. Electrical Systems x-x (xxx): x-xx. Regular paper. Reflected Signal on a Nonuniform Overhead Transmission Line at High Frequency

J. Electrical Systems x-x (xxx): x-xx. Regular paper. Reflected Signal on a Nonuniform Overhead Transmission Line at High Frequency A. Boudjeaa S. Tahi B. Bennaane T. B. Berbar B. Lehouidj J. Electrical Systes x-x (xxx): x-xx Regular paper Reflected Signal on a Nonunifor Overhead Transission Line at High Frequency The effect of the

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

The Chebyshev Matching Transformer

The Chebyshev Matching Transformer /9/ The Chebyshev Matching Transforer /5 The Chebyshev Matching Transforer An alternative to Binoial (Maxially Flat) functions (and there are any such alternatives!) are Chebyshev polynoials. Pafnuty Chebyshev

More information

General Properties of Radiation Detectors Supplements

General Properties of Radiation Detectors Supplements Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Suppleents Dr. Nidal M. Ershaidat Overview Phys. 649: Nuclear Techniques Physics Departent

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

Waveform Design for Distributed Aperture using Gram-Schmidt Orthogonalization

Waveform Design for Distributed Aperture using Gram-Schmidt Orthogonalization avefor Design for Distributed Aperture using Gra-Schidt Orthogonalization an Evren Yaran, rond Varslot, Birsen Yazıcı Deparent of Electrical, oputer Systes Engineering Rensselaer Polytechnic Institute

More information

Lecture 16: Scattering States and the Step Potential. 1 The Step Potential 1. 4 Wavepackets in the step potential 6

Lecture 16: Scattering States and the Step Potential. 1 The Step Potential 1. 4 Wavepackets in the step potential 6 Lecture 16: Scattering States and the Step Potential B. Zwiebach April 19, 2016 Contents 1 The Step Potential 1 2 Step Potential with E>V 0 2 3 Step Potential with E

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

Anisotropic reference media and the possible linearized approximations for phase velocities of qs waves in weakly anisotropic media

Anisotropic reference media and the possible linearized approximations for phase velocities of qs waves in weakly anisotropic media INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 5 00 007 04 PII: S00-770867-6 Anisotropic reference edia and the possible linearized approxiations for phase

More information

Modeling of Low Power Multilayer Vertical Cavity Surface Emitting Laser

Modeling of Low Power Multilayer Vertical Cavity Surface Emitting Laser International Journal of Optics and Applications 15, 5(5): 155-16 DOI: 1.593/j.optics.1555.3 Modeling of Low Power Multilayer Vertical Cavity Surface Eitting Laser Shashad Akther Khan *, M. A. Hasnayeen

More information

Mutual capacitor and its applications

Mutual capacitor and its applications Mutual capacitor and its applications Chun Li, Jason Li, Jieing Li CALSON Technologies, Toronto, Canada E-ail: calandli@yahoo.ca Published in The Journal of Engineering; Received on 27th October 2013;

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

Homework 4 Solutions

Homework 4 Solutions Hoework 4 s Fall 017 65 Points Proble 6.. (10 points) A plane wave is reflected fro the ocean floor at noral incidence with a level 0 db below that of the incident wave Possible values of the specific

More information

Simple and Compound Harmonic Motion

Simple and Compound Harmonic Motion Siple Copound Haronic Motion Prelab: visit this site: http://en.wiipedia.org/wii/noral_odes Purpose To deterine the noral ode frequencies of two systes:. a single ass - two springs syste (Figure );. two

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Study Committee B5 Colloquium 2005 September Calgary, CANADA

Study Committee B5 Colloquium 2005 September Calgary, CANADA 36 Study oittee B olloquiu Septeber 4-6 algary, ND ero Sequence urrent opensation for Distance Protection applied to Series opensated Parallel Lines TKHRO KSE* PHL G BEUMONT Toshiba nternational (Europe

More information

Singularity Extraction for Reflected Sommerfeld Integrals over Multilayered Media

Singularity Extraction for Reflected Sommerfeld Integrals over Multilayered Media Telfor Journal, Vol. 6, No., 4. 7 Singularity Extraction for Reflected Soerfeld Integrals over Multilayered Media Vladiir V. Petrovic, Senior Meber, IEEE, Aleksandra J. Krneta, and Branko M. Kolundzija,

More information

Chapter 11: Vibration Isolation of the Source [Part I]

Chapter 11: Vibration Isolation of the Source [Part I] Chapter : Vibration Isolation of the Source [Part I] Eaple 3.4 Consider the achine arrangeent illustrated in figure 3.. An electric otor is elastically ounted, by way of identical isolators, to a - thick

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

In this chapter we will study sound waves and concentrate on the following topics:

In this chapter we will study sound waves and concentrate on the following topics: Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves

More information

Faraday's Law Warm Up

Faraday's Law Warm Up Faraday's Law-1 Faraday's Law War Up 1. Field lines of a peranent agnet For each peranent agnet in the diagra below draw several agnetic field lines (or a agnetic vector field if you prefer) corresponding

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

The Wilson Model of Cortical Neurons Richard B. Wells

The Wilson Model of Cortical Neurons Richard B. Wells The Wilson Model of Cortical Neurons Richard B. Wells I. Refineents on the odgkin-uxley Model The years since odgkin s and uxley s pioneering work have produced a nuber of derivative odgkin-uxley-like

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Celal S. Konor Release 1.1 (identical to 1.0) 3/21/08. 1-Hybrid isentropic-sigma vertical coordinate and governing equations in the free atmosphere

Celal S. Konor Release 1.1 (identical to 1.0) 3/21/08. 1-Hybrid isentropic-sigma vertical coordinate and governing equations in the free atmosphere Celal S. Konor Release. (identical to.0) 3/2/08 -Hybrid isentropic-siga vertical coordinate governing equations in the free atosphere This section describes the equations in the free atosphere of the odel.

More information

2.9 Feedback and Feedforward Control

2.9 Feedback and Feedforward Control 2.9 Feedback and Feedforward Control M. F. HORDESKI (985) B. G. LIPTÁK (995) F. G. SHINSKEY (970, 2005) Feedback control is the action of oving a anipulated variable in response to a deviation or error

More information

Linear Transformations

Linear Transformations Linear Transforations Hopfield Network Questions Initial Condition Recurrent Layer p S x W S x S b n(t + ) a(t + ) S x S x D a(t) S x S S x S a(0) p a(t + ) satlins (Wa(t) + b) The network output is repeatedly

More information

( ). One set of terms has a ω in

( ). One set of terms has a ω in Laptag Class Notes W. Gekelan Cold Plasa Dispersion relation Suer Let us go back to a single particle and see how it behaves in a high frequency electric field. We will use the force equation and Maxwell

More information

Waves & Normal Modes. Matt Jarvis

Waves & Normal Modes. Matt Jarvis Waves & Noral Modes Matt Jarvis January 19, 016 Contents 1 Oscillations 1.0.1 Siple Haronic Motion - revision................... Noral Modes 5.1 The coupled pendulu.............................. 6.1.1

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

5.7 Chebyshev Multi-section Matching Transformer

5.7 Chebyshev Multi-section Matching Transformer 3/8/6 5_7 Chebyshev Multisection Matching Transforers / 5.7 Chebyshev Multi-section Matching Transforer Reading Assignent: pp. 5-55 We can also build a ultisection atching network such that Γ f is a Chebyshev

More information

A New Algorithm for Reactive Electric Power Measurement

A New Algorithm for Reactive Electric Power Measurement A. Abiyev, GAU J. Soc. & Appl. Sci., 2(4), 7-25, 27 A ew Algorith for Reactive Electric Power Measureent Adalet Abiyev Girne Aerican University, Departernt of Electrical Electronics Engineering, Mersin,

More information

Chapter 2 General Properties of Radiation Detectors

Chapter 2 General Properties of Radiation Detectors Med Phys 4RA3, 4RB3/6R3 Radioisotopes and Radiation Methodology -1 Chapter General Properties of Radiation Detectors Ionizing radiation is ost coonly detected by the charge created when radiation interacts

More information

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13 Physics 0H - Introctory Quantu Physics I Hoework # - Solutions Fall 004 Due 5:0 PM, Monday 004//3 [70 points total] Journal questions. Briefly share your thoughts on the following questions: What aspects

More information

Supporting Information for Supression of Auger Processes in Confined Structures

Supporting Information for Supression of Auger Processes in Confined Structures Supporting Inforation for Supression of Auger Processes in Confined Structures George E. Cragg and Alexander. Efros Naval Research aboratory, Washington, DC 20375, USA 1 Solution of the Coupled, Two-band

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

ENGI 3424 Engineering Mathematics Problem Set 1 Solutions (Sections 1.1 and 1.2)

ENGI 3424 Engineering Mathematics Problem Set 1 Solutions (Sections 1.1 and 1.2) ENGI 344 Engineering Matheatics Proble Set 1 Solutions (Sections 1.1 and 1.) 1. Find the general solution of the ordinary differential equation y 0 This ODE is not linear (due to the product y ). However,

More information

+ -d-t-' )=1. = vpi. Aportaciones Matematicas Comunicaciones 17 (1996) 5-10.

+ -d-t-' )=1. = vpi. Aportaciones Matematicas Comunicaciones 17 (1996) 5-10. Aportaciones Mateaticas Counicaciones 17 (1996) 5-10. 1. A suary of the proble Much of the processing that is used in the petroleu industry requires the consideration of a large nuber of cheical reactions.

More information

Classical Mechanics Small Oscillations

Classical Mechanics Small Oscillations Classical Mechanics Sall Oscillations Dipan Kuar Ghosh UM-DAE Centre for Excellence in Basic Sciences, Kalina Mubai 400098 Septeber 4, 06 Introduction When a conservative syste is displaced slightly fro

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

Harmonic Standing-Wave Excitations of Simply-Supported Isotropic Solid Elastic Circular Cylinders: Exact 3D Linear Elastodynamic Response.

Harmonic Standing-Wave Excitations of Simply-Supported Isotropic Solid Elastic Circular Cylinders: Exact 3D Linear Elastodynamic Response. Haronic Standing-Wave Excitations of Siply-Supported Isotropic Solid Elastic Circular Cylinders: Exact 3D inear Elastodynaic Response Jaal Sakhr and Blaine A. Chronik Departent of Physics and Astronoy,

More information

Complex Numbers, Phasors and Circuits

Complex Numbers, Phasors and Circuits Complex Numbers, Phasors and Circuits Transmission Lines Complex numbers are defined by points or vectors in the complex plane, and can be represented in Cartesian coordinates or in polar (exponential)

More information

7. Renormalization and universality in pionless EFT

7. Renormalization and universality in pionless EFT Renoralization and universality in pionless EFT (last revised: October 6, 04) 7 7. Renoralization and universality in pionless EFT Recall the scales of nuclear forces fro Section 5: Pionless EFT is applicable

More information

Vector Spaces in Physics 8/6/2015. Chapter 4. Practical Examples.

Vector Spaces in Physics 8/6/2015. Chapter 4. Practical Examples. Vector Spaces in Physics 8/6/15 Chapter 4. Practical Exaples. In this chapter we will discuss solutions to two physics probles where we ae use of techniques discussed in this boo. In both cases there are

More information

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics

ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS. A Thesis. Presented to. The Faculty of the Department of Mathematics ESTIMATING AND FORMING CONFIDENCE INTERVALS FOR EXTREMA OF RANDOM POLYNOMIALS A Thesis Presented to The Faculty of the Departent of Matheatics San Jose State University In Partial Fulfillent of the Requireents

More information

A NEW ELECTROSTATIC FIELD GEOMETRY. Jerry E. Bayles

A NEW ELECTROSTATIC FIELD GEOMETRY. Jerry E. Bayles INTRODUCTION A NEW ELECTROSTATIC FIELD GEOMETRY by Jerry E Bayles The purpose of this paper is to present the electrostatic field in geoetrical ters siilar to that of the electrogravitational equation

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION CHAPTER 1: INTRODUCTION 1.1 SCOPE AND CONTENT Counications and sensing systes are ubiquitous. They are found in ilitary, industrial, edical, consuer, and scientific applications eploying radio frequency,

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

IN A SENSE, every material is a composite, even if the

IN A SENSE, every material is a composite, even if the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 11, NOVEMBER 1999 2075 Magnetis fro Conductors and Enhanced Nonlinear Phenoena J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,

More information

ANALYSIS ON RESPONSE OF DYNAMIC SYSTEMS TO PULSE SEQUENCES EXCITATION

ANALYSIS ON RESPONSE OF DYNAMIC SYSTEMS TO PULSE SEQUENCES EXCITATION The 4 th World Conference on Earthquake Engineering October -7, 8, Beijing, China ANALYSIS ON RESPONSE OF DYNAMIC SYSTEMS TO PULSE SEQUENCES EXCITATION S. Li C.H. Zhai L.L. Xie Ph. D. Student, School of

More information

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005

Hyperbolic Horn Helical Mass Spectrometer (3HMS) James G. Hagerman Hagerman Technology LLC & Pacific Environmental Technologies April 2005 Hyperbolic Horn Helical Mass Spectroeter (3HMS) Jaes G Hageran Hageran Technology LLC & Pacific Environental Technologies April 5 ABSTRACT This paper describes a new type of ass filter based on the REFIMS

More information