CHAPTER 1: INTRODUCTION

Size: px
Start display at page:

Download "CHAPTER 1: INTRODUCTION"

Transcription

1 CHAPTER 1: INTRODUCTION 1.1 SCOPE AND CONTENT Counications and sensing systes are ubiquitous. They are found in ilitary, industrial, edical, consuer, and scientific applications eploying radio frequency, infrared, visible, and shorter wavelengths. Even acoustic systes operate under siilar principles. Counications eaples range fro optical fiber or satellite systes to wireless radio. Radio astronoy, radar, lidar, and sonar systes probe the environent and have counterparts in analytical instruents and eory systes used for a wide variety of purposes. HUMAN PROCESSOR TRANSDUCER A B C Radio Optical, Infrared Acoustic, other Electroagnetic Environent HUMAN PROCESSOR TRANSDUCER G F E D Figure 1.1: Architecture of counications and sensing systes. Figure 1.1 characterizes the ajor electroagnetic and signal processing eleents of such systes, not all which of are necessarily involved in any particular case. For eaple, in counication systes a huan (A) (or coputer counter-part) typically generates signals which are first processed (B) and then coupled to an electroagnetic environent (D) by a transducer or antenna (C). After propagating through the environent (D) the signals are intercepted by another transducer (E) which usually consists of an antenna followed by a detector which converts these electroagnetic signals into voltages and currents. The signals fro the transducer (E) are then generally anipulated in processor (F) before transission to the huan or coputer recipient (G). Counications and active systes that probe the environent generally involve all seven eleents (A)-(G). Passive systes generally involve only the last four, fro the environent (D) to the user (G). Eaples of the latter include environental or astronoical observations, edical systes seeking spectral or theral signatures of disease, and the readout of inforation fro eory systes such as copact disks. To copletely analyze such a broad range of systes would require several tetbooks. Here the fundaentals for each of the eleents in Figure 1.1 are presented in a generally coplete 1

2 way but, for efficiency, only few of their possible cobinations are presented in any detail. For eaple, the probability of sybol detection error is analyzed for counications systes, but this analysis is not repeated for other systes. It is hoped that readers of this book will acquire sufficient understanding of the eleents of Figure 1.1 to be able to conceive, design, and analyze a wide variety of electroagnetic signal-based systes by cobining these eleents appropriately. The chapters of this book can be divided into three groups. First Chapter 1 defines the basic notation and surveys briefly soe of the basic notation fundaental to signal processing and electroagnetic waves. The second group of chapters focuses on the fundaental eleents of counications and sensing systes. Chapter discusses basic noise processes and the devices used for detection of radio, infrared, and visible signals, including those first-stage signal processing operations that yield the desired signal, energy, or power spectral density estiates. Chapter 3 then discusses the transducers and antennas that link these detectors to the electroagnetic environent, including wire antennas, apertures, siple optics, coon propagation phenoena, and how the transitting and receiving properties of systes are related in a siple way. The third group of chapters deals with coplete systes applied to counications (Chapter 4) and both active and passive sensing (Chapter 5). Estiation techniques for both sensing and counication systes are then discussed separately in Chapter MATHEMATICAL NOTATION Because physical signals are generally analog, we rely in this tet ore heavily on continuous functions and operators than on discrete signals and the z transfor. Physical signals in tie or space are generally represented by lower case letters followed by their arguents in parentheses, whereas their transfors are generally represented by capital letters, again followed by their arguents in parentheses. Cople quantities are generally indicated by underbars. For eaple, the Fourier transfor relating a voltage pulse v(t) to its spectru V(f) is: jft Vf v t e dt volts Hzvoltsec (1..1) jft v t V f e df volts (1..) v(t) V(f ) (1..3) where frequency is generally represented by f(hz) or f (radians/ second). We abbreviate this Fourier relationship as: v(t) V(f ). These relations apply for pulses of finite energy, i.e.:

3 v(t) dt (1..4) Sf Vf and has units volts Hz for the case where v(t) has units [volts]. This energy density spectru is the Fourier transfor of the voltage autocorrelation function R(), where: The energy spectru Vf Sf R v t v t dt v sec or J, etc. (1..5) Parseval s theore, which says that the integral of power over tie equals the integral of energy spectral density S(f) over frequency, follows easily fro Equation (1..5) and the definition of a Fourier transfor (1..) for t = 0: R(0) v t dt = Sf df. (1..6) These relationships for analytic pulse signals can be represented copactly by the following notation: v R t V f V f S f (1..7) The single-headed arrows pointing downward indicate that the transforations fro v(t) to R(), and fro V to V f are irreversible. The units of these quantities depends on the units f associated with v(t). For eaple, if v(t) represents volts as a function of tie, then the units in clockwise order in (1..7) for these four quantities are: volts, volts/hz, (volts/hz), and volts seconds. If this voltage v(t) is across a 1-oh resistor, then we can associate the autocorrelation function R() with the units Joules, and the energy density spectru S(f) with the units Joules/Hz. Another iportant operator is convolution, represented by an asterisk, where: 3

4 . (1..8) a(t) b(t) a b t- d = c t Note that a unit ipulse convolved with any function yields the original function, where we define the unit ipulse (t) as a function which is zero for t > 0, and has an integral of value unity. Periodic signals with finite energy in each period T can be reversibly characterized by their Fourier series and irreversibly characterized by their autocorrelation function R() and its Fourier transfor, the energy density spectru. These are related as suggested in Equation 1..9 vt V(volts) -1 R watts Hz or S(f ) (Joules) (1..9) The Fourier series V can be siply coputed fro the original wavefor v(t) as: T 1 jf t o V T v(t)e dt (1..10) T where T equals f o -1 and: v(t) V e jf t o (1..11) T jfo (1..1) R( ) v(t)v (t )dt V e T T 1 jf T o V T R( )e d (1..13) Rando signals (t) can often be characterized by their autocorrelation function: Ett. (1..14) Such signals are called wide-sense stationary stochastic signals. For the special case where the signal (t) is the voltage across a 1-oh resistor, the autocorrelation function () for = 0 ay 4

5 be regarded as the average power dissipated in the resistor, and the Fourier transfor of the autocorrelation function can be regarded as the power spectral density f (watts/hz) where: v t v? f (1..15) In any cases we shall encounter Gaussian noise n(t), where the probability distribution of n is: 1 n P n e (1..16) E n pnn dn. (1..17) Band-liited Gaussian white noise, which is defined as having a unifor power spectral density (f) over a band of width B (Hz), can be characterized by the noise power spectral density N o, where: En NB (1..18) o Signal or wave powers are often characterized in ters of decibels, where if a signal increases its power of P 1 to P we say there has been a gain of: db gain 10 log P P 10 1 (1..19) Thus an aplifier having power output equal to the power input ehibits 0 db gain, where power gains of a factor of 10 or 100 correspond to 10 db and 0 db, respectively. 1.3 ELECTROMAGNETIC NOTATION We characterize electroagnetic phenoena in ters of the electric field E (volts/eter) and agnetic field H (aperes/eter), where these fields have both a agnitude and direction at each point in space and tie. We represent the electric displaceent by D (coulobs / eter ), where for siple edia D E and the perittivity for vacuu is o farads / eter ; F/. 4 B Tesla Weber 10 Gauss We represent the agnetic flu density by, where for siple edia B H and the pereability for 5

6 vacuu is o henries/eter; H/. The electric current density is represented by J(aperes / eter ; A / ) and the electric charge density by (coloubs/eter 3 ; C/ 3 ). This tet uses SI (ks) units throughout, in which case Mawell s equations becoe: B E t (1.3.1) D H J (1.3.) t D (1.3.3) B 0 (1.3.4) ˆ ŷ y ẑ z (1.3.5) where, ˆ y, ˆ and zˆ are unit vectors in Cartesian coordinates. In general these field quantities are functions of both space and tie and can be represented in different ways. For eaple, the coponent of a onochroatic electric field at frequency and position r can be represented as: E r,t Re E r e Re E r e j( t (r)) jt (1.3.6) where the operator Re{ } etracts the real part of its arguent, and the phasor can be represented as: j r E r E r e (1.3.7) In general, we ay cobine all three vector coponents of Er,t in a phasor representation to yield: E r,t Re E r e jt (1.3.8) E r has si nubers associated with it (three vectors, each with agnitude where we note that and phase). The other variables are also epressible as phasors when the signals are onochroatic. 6

7 Mawell s equations can be therefore rewritten in ters of phasors as: E j B (1.3.9) H jd J (1.3.10) D (1.3.11) B 0 (1.3.1) Many waves in counications or sensing systes travel on wires or transission lines where they ay be characterized in ters of voltages V(z, t) and currents I(z,t) as a function of position z and tie t. Most coonly such signals travel on transverse-electroagnetic-field (TEM) transission lines for which the voltage is easured between the two conductors at a particular position z and the currents I(z,t) in the two wires are equal and opposite at any position z. Such transission lines can be characterized by their inductance L per unit length (H/) and their capacitance C per unit length (C/). In general, LC =, where is a function of the ediu between and around the conductors. In general such transission lines satisfy the wave equation: v v LC z t (1.3.13) The general wave equation solution is the linear superposition of an arbitrarily shaped forward oving wave v z t LC and a backward oving wave where: which leads to: vz,t v zt LC v z t LC (1.3.14) z,t C L z t LC z t LC i v v (1.3.15) The instantaneous power at any position z on the transission line is siply the product of the voltage v and current i at that point in space and tie. The phasor equivalents of equations (1.3.14) and (1.3.15) are: and jkz jkz V z V e V e (1.3.16) 7

8 jkz jkz Iz Yo Ve Ve (1.3.17) where the wave nuber or propagation constant k LC, and the characteristic 1 adittance of the transission line Yo Zo C L, and where Z o (ohs) is called the characteristic ipedance of the TEM transission line. Waves are also characterized by their wavelength, where = c/f and c is the phase velocity of the electroagnetic waves in that ediu. 8

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator Successful Brushless A.C. Power Extraction Fro The Faraday Acyclic Generator July 11, 21 Volt =.2551552 volt 1) If we now consider that the voltage is capable of producing current if the ri of the disk

More information

General Properties of Radiation Detectors Supplements

General Properties of Radiation Detectors Supplements Phys. 649: Nuclear Techniques Physics Departent Yarouk University Chapter 4: General Properties of Radiation Detectors Suppleents Dr. Nidal M. Ershaidat Overview Phys. 649: Nuclear Techniques Physics Departent

More information

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet 111 Field Mass Generation and Control Chapter 6 The faous two slit experient proved that a particle can exist as a wave and yet still exhibit particle characteristics when the wavefunction is altered by

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

J. Electrical Systems x-x (xxx): x-xx. Regular paper. Reflected Signal on a Nonuniform Overhead Transmission Line at High Frequency

J. Electrical Systems x-x (xxx): x-xx. Regular paper. Reflected Signal on a Nonuniform Overhead Transmission Line at High Frequency A. Boudjeaa S. Tahi B. Bennaane T. B. Berbar B. Lehouidj J. Electrical Systes x-x (xxx): x-xx Regular paper Reflected Signal on a Nonunifor Overhead Transission Line at High Frequency The effect of the

More information

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES

DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES DESIGN OF MECHANICAL SYSTEMS HAVING MAXIMALLY FLAT RESPONSE AT LOW FREQUENCIES V.Raachran, Ravi P.Raachran C.S.Gargour Departent of Electrical Coputer Engineering, Concordia University, Montreal, QC, CANADA,

More information

Mutual capacitor and its applications

Mutual capacitor and its applications Mutual capacitor and its applications Chun Li, Jason Li, Jieing Li CALSON Technologies, Toronto, Canada E-ail: calandli@yahoo.ca Published in The Journal of Engineering; Received on 27th October 2013;

More information

Faraday's Law Warm Up

Faraday's Law Warm Up Faraday's Law-1 Faraday's Law War Up 1. Field lines of a peranent agnet For each peranent agnet in the diagra below draw several agnetic field lines (or a agnetic vector field if you prefer) corresponding

More information

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle.

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle. BEF 5503 BEF 5503 Chapter BASC PRNCPLES Outline 1 3 4 5 6 7 8 9 ntroduction Phasor Representation Coplex Power Triangle Power Factor Coplex Power in AC Single Phase Circuits Coplex Power in Balanced Three-Phase

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

A NEW ELECTROSTATIC FIELD GEOMETRY. Jerry E. Bayles

A NEW ELECTROSTATIC FIELD GEOMETRY. Jerry E. Bayles INTRODUCTION A NEW ELECTROSTATIC FIELD GEOMETRY by Jerry E Bayles The purpose of this paper is to present the electrostatic field in geoetrical ters siilar to that of the electrogravitational equation

More information

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19

PH 222-2C Fall Electromagnetic Oscillations and Alternating Current. Lectures 18-19 H - Fall 0 Electroagnetic Oscillations and Alternating urrent ectures 8-9 hapter 3 (Halliday/esnick/Walker, Fundaentals of hysics 8 th edition) hapter 3 Electroagnetic Oscillations and Alternating urrent

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

Q ESTIMATION WITHIN A FORMATION PROGRAM q_estimation

Q ESTIMATION WITHIN A FORMATION PROGRAM q_estimation Foration Attributes Progra q_estiation Q ESTIMATION WITHIN A FOMATION POGAM q_estiation Estiating Q between stratal slices Progra q_estiation estiate seisic attenuation (1/Q) on coplex stratal slices using

More information

Using a De-Convolution Window for Operating Modal Analysis

Using a De-Convolution Window for Operating Modal Analysis Using a De-Convolution Window for Operating Modal Analysis Brian Schwarz Vibrant Technology, Inc. Scotts Valley, CA Mark Richardson Vibrant Technology, Inc. Scotts Valley, CA Abstract Operating Modal Analysis

More information

On the Mixed Discretization of the Time Domain Magnetic Field Integral Equation

On the Mixed Discretization of the Time Domain Magnetic Field Integral Equation On the Mixed Discretization of the Tie Doain Magnetic Field Integral Equation H. A. Ülkü 1 I. Bogaert K. Cools 3 F. P. Andriulli 4 H. Bağ 1 Abstract Tie doain agnetic field integral equation (MFIE) is

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ]

VIBRATING SYSTEMS. example. Springs obey Hooke s Law. Terminology. L 21 Vibration and Waves [ 2 ] L 1 Vibration and Waves [ ] Vibrations (oscillations) resonance pendulu springs haronic otion Waves echanical waves sound waves usical instruents VIBRATING SYSTEMS Mass and spring on air trac Mass hanging

More information

( ') ( ) 3. Magnetostatic Field Introduction

( ') ( ) 3. Magnetostatic Field Introduction 3. Magnetostatic Field 3.. Introduction A agnetostatic field is a agnetic field produced by electric charge in peranent unifor oveent, i.e. in a peranent oveent with constant velocity. Any directed oveent

More information

Chapter 10 ACSS Power

Chapter 10 ACSS Power Objectives: Power concepts: instantaneous power, average power, reactive power, coplex power, power factor Relationships aong power concepts the power triangle Balancing power in AC circuits Condition

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on Deceber 15, 2014 Partners Naes: Grade: EXPERIMENT 8 Electron Beas 0. Pre-Laboratory Work [2 pts] 1. Nae the 2 forces that are equated in order to derive the charge to

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

PHY 101 General Physics I (Oscillations, Waves I and II) 2017/18 academic session

PHY 101 General Physics I (Oscillations, Waves I and II) 2017/18 academic session PHY 101 General Physics I (Oscillations, Waves I and II) 017/18 acadeic session Segun Fawole PhD (AMInstP) Dept. of Physics & Engr. Physics Obafei Awolowo University, Ile-Ife, Nigeria. eail: gofawole@oauife.edu.ng

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

AVOIDING PITFALLS IN MEASUREMENT UNCERTAINTY ANALYSIS

AVOIDING PITFALLS IN MEASUREMENT UNCERTAINTY ANALYSIS VOIDING ITFLLS IN ESREENT NERTINTY NLYSIS Benny R. Sith Inchwor Solutions Santa Rosa, Suary: itfalls, both subtle and obvious, await the new or casual practitioner of easureent uncertainty analysis. This

More information

Data-Driven Imaging in Anisotropic Media

Data-Driven Imaging in Anisotropic Media 18 th World Conference on Non destructive Testing, 16- April 1, Durban, South Africa Data-Driven Iaging in Anisotropic Media Arno VOLKER 1 and Alan HUNTER 1 TNO Stieltjesweg 1, 6 AD, Delft, The Netherlands

More information

Physics (Theory) CBSE Physics XII Board Paper SET C. General Instructions: (i) All questions are compulsory.

Physics (Theory) CBSE Physics XII Board Paper SET C. General Instructions: (i) All questions are compulsory. Physics (Theory) [Tie allowed: 3 hours] [Maxiu arks:7] General Instructions: (i) All questions are copulsory. (ii) (iii) (iv) (v) There are 3 questions in total. Questions to 8 carry one ark each. Questions

More information

ma x = -bv x + F rod.

ma x = -bv x + F rod. Notes on Dynaical Systes Dynaics is the study of change. The priary ingredients of a dynaical syste are its state and its rule of change (also soeties called the dynaic). Dynaical systes can be continuous

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.010: Systems Modeling and Dynamics III. Final Examination Review Problems ASSACHUSETTS INSTITUTE OF TECHNOLOGY Departent of echanical Engineering 2.010: Systes odeling and Dynaics III Final Eaination Review Probles Fall 2000 Good Luck And have a great winter break! page 1 Proble

More information

Figure 1: Equivalent electric (RC) circuit of a neurons membrane

Figure 1: Equivalent electric (RC) circuit of a neurons membrane Exercise: Leaky integrate and fire odel of neural spike generation This exercise investigates a siplified odel of how neurons spike in response to current inputs, one of the ost fundaental properties of

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

Causality and the Kramers Kronig relations

Causality and the Kramers Kronig relations Causality and the Kraers Kronig relations Causality describes the teporal relationship between cause and effect. A bell rings after you strike it, not before you strike it. This eans that the function

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

This exam is formed of three exercises in three pages numbered from 1 to 3 The use of non-programmable calculators is recommended.

This exam is formed of three exercises in three pages numbered from 1 to 3 The use of non-programmable calculators is recommended. 009 وزارة التربية والتعلين العالي الوديرية العاهة للتربية دائرة االهتحانات اهتحانات الشهادة الثانىية العاهة الفرع : علىم الحياة مسابقة في مادة الفيزياء المدة ساعتان االسن: الرقن: الدورة العادية للعام This

More information

1 Brownian motion and the Langevin equation

1 Brownian motion and the Langevin equation Figure 1: The robust appearance of Robert Brown (1773 1858) 1 Brownian otion and the Langevin equation In 1827, while exaining pollen grains and the spores of osses suspended in water under a icroscope,

More information

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all

2 Q 10. Likewise, in case of multiple particles, the corresponding density in 2 must be averaged over all Lecture 6 Introduction to kinetic theory of plasa waves Introduction to kinetic theory So far we have been odeling plasa dynaics using fluid equations. The assuption has been that the pressure can be either

More information

Electrical Boundary Conditions. Electric Field Boundary Conditions: Magnetic Field Boundary Conditions: K=J s

Electrical Boundary Conditions. Electric Field Boundary Conditions: Magnetic Field Boundary Conditions: K=J s Electrical Boundar Condition Electric Field Boundar Condition: a n i a unit vector noral to the interface fro region to region 3 4 Magnetic Field Boundar Condition: K=J K=J 5 6 Dielectric- dielectric boundar

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions )

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions ) 22 - ELECTRON AND PHOTONS Page 1 1 ) A photocell is illuinated by a sall source placed 1 away. When the sae source of light is placed 1 / 2 away, the nuber of electrons eitted by photocathode would ( a

More information

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum

Lecture 8 Symmetries, conserved quantities, and the labeling of states Angular Momentum Lecture 8 Syetries, conserved quantities, and the labeling of states Angular Moentu Today s Progra: 1. Syetries and conserved quantities labeling of states. hrenfest Theore the greatest theore of all ties

More information

Important Formulae & Basic concepts. Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER

Important Formulae & Basic concepts. Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER Iportant Forulae & Basic concepts Unit 3: CHAPTER 4 - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM CHAPTER 5 MAGNETISM AND MATTER S. No. Forula Description 1. Magnetic field induction at a point due to current

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electroagnetic scattering Graduate Course Electrical Engineering (Counications) 1 st Seester, 1388-1389 Sharif University of Technology Contents of lecture 5 Contents of lecture 5: Scattering fro a conductive

More information

PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall Waves - II. Lectures Chapter 17 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 221-3A Fall 2010 Waves - II Lectures 27-28 Chapter 17 (Halliday/Resnick/Walker, Fundaentals of Physics 8 th edition) 1 Chapter 17 Waves II In this chapter we will study sound waves and concentrate on

More information

IN A SENSE, every material is a composite, even if the

IN A SENSE, every material is a composite, even if the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 11, NOVEMBER 1999 2075 Magnetis fro Conductors and Enhanced Nonlinear Phenoena J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8 th edition 2012; Text Book

Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8 th edition 2012; Text Book Text Book Dr. Naser Abu-Zaid Page 1 9/4/2012 Course syllabus Electroagnetic 2 (63374) Seester Language Copulsory / Elective Prerequisites Course Contents Course Objectives Learning Outcoes and Copetences

More information

2.141 Modeling and Simulation of Dynamic Systems Assignment #2

2.141 Modeling and Simulation of Dynamic Systems Assignment #2 2.141 Modeling and Siulation of Dynaic Systes Assignent #2 Out: Wednesday Septeber 20, 2006 Due: Wednesday October 4, 2006 Proble 1 The sketch shows a highly siplified diagra of a dry-dock used in ship

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

Singularity Extraction for Reflected Sommerfeld Integrals over Multilayered Media

Singularity Extraction for Reflected Sommerfeld Integrals over Multilayered Media Telfor Journal, Vol. 6, No., 4. 7 Singularity Extraction for Reflected Soerfeld Integrals over Multilayered Media Vladiir V. Petrovic, Senior Meber, IEEE, Aleksandra J. Krneta, and Branko M. Kolundzija,

More information

Motion of Charges in Uniform E

Motion of Charges in Uniform E Motion of Charges in Unifor E and Fields Assue an ionized gas is acted upon by a unifor (but possibly tie-dependent) electric field E, and a unifor, steady agnetic field. These fields are assued to be

More information

The Wilson Model of Cortical Neurons Richard B. Wells

The Wilson Model of Cortical Neurons Richard B. Wells The Wilson Model of Cortical Neurons Richard B. Wells I. Refineents on the odgkin-uxley Model The years since odgkin s and uxley s pioneering work have produced a nuber of derivative odgkin-uxley-like

More information

A New Algorithm for Reactive Electric Power Measurement

A New Algorithm for Reactive Electric Power Measurement A. Abiyev, GAU J. Soc. & Appl. Sci., 2(4), 7-25, 27 A ew Algorith for Reactive Electric Power Measureent Adalet Abiyev Girne Aerican University, Departernt of Electrical Electronics Engineering, Mersin,

More information

THE KALMAN FILTER: A LOOK BEHIND THE SCENE

THE KALMAN FILTER: A LOOK BEHIND THE SCENE HE KALMA FILER: A LOOK BEHID HE SCEE R.E. Deain School of Matheatical and Geospatial Sciences, RMI University eail: rod.deain@rit.edu.au Presented at the Victorian Regional Survey Conference, Mildura,

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

Electromagnetic fields modeling of power line communication (PLC)

Electromagnetic fields modeling of power line communication (PLC) Electroagnetic fields odeling of power line counication (PLC) Wei Weiqi UROP 3 School of Electrical and Electronic Engineering Nanyang echnological University E-ail: 4794486@ntu.edu.sg Keyword: power line

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

IDAN Shock Mount Isolation Vibration Study November 1, The operation of shock and vibration isolation base plate

IDAN Shock Mount Isolation Vibration Study November 1, The operation of shock and vibration isolation base plate dr. Istvan Koller RTD USA BME Laboratory. Background In 998, Real Tie Devices USA, Inc. introduced a novel packaging concept for ebedded PC/04 odules to build Intelligent Data Acquisition Nodes. This syste,

More information

Tele-Operation of a Mobile Robot Through Haptic Feedback

Tele-Operation of a Mobile Robot Through Haptic Feedback HAVE 00 IEEE Int. Workshop on Haptic Virtual Environents and Their Applications Ottawa, Ontario, Canada, 7-8 Noveber 00 Tele-Operation of a Mobile Robot Through Haptic Feedback Nicola Diolaiti, Claudio

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1

Quiz 5 PRACTICE--Ch12.1, 13.1, 14.1 Nae: Class: Date: ID: A Quiz 5 PRACTICE--Ch2., 3., 4. Multiple Choice Identify the choice that best copletes the stateent or answers the question.. A bea of light in air is incident at an angle of 35 to

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Unit IV Review Solutions Student Book pages 440 443 Vocabulary. aplitude: axiu displaceent of an oscillation antinodes: points of

More information

Chapter 2 General Properties of Radiation Detectors

Chapter 2 General Properties of Radiation Detectors Med Phys 4RA3, 4RB3/6R3 Radioisotopes and Radiation Methodology -1 Chapter General Properties of Radiation Detectors Ionizing radiation is ost coonly detected by the charge created when radiation interacts

More information

Chapter 1 Circuit Variables

Chapter 1 Circuit Variables Chapter 1 Circuit Variables 1.1 Electrical Engineering: An Overview 1.2 The International System of Units 1.3 Circuit Analysis: An Overview 1.4 Voltage and Current 1.5 The Ideal Basic Circuit Element 1.6

More information

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions

Lecture Frontier of complexity more is different Think of a spin - a multitude gives all sorts of magnetism due to interactions Lecture 1 Motivation for course The title of this course is condensed atter physics which includes solids and liquids (and occasionally gases). There are also interediate fors of atter, e.g., glasses,

More information

PULSE-TRAIN BASED TIME-DELAY ESTIMATION IMPROVES RESILIENCY TO NOISE

PULSE-TRAIN BASED TIME-DELAY ESTIMATION IMPROVES RESILIENCY TO NOISE PULSE-TRAIN BASED TIME-DELAY ESTIMATION IMPROVES RESILIENCY TO NOISE 1 Nicola Neretti, 1 Nathan Intrator and 1,2 Leon N Cooper 1 Institute for Brain and Neural Systes, Brown University, Providence RI 02912.

More information

2009 Academic Challenge

2009 Academic Challenge 009 Acadeic Challenge PHYSICS TEST - REGIONAL This Test Consists of 5 Questions Physics Test Production Tea Len Stor, Eastern Illinois University Author/Tea Leader Doug Brandt, Eastern Illinois University

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Liited Edinburgh Gate Harlow Esse CM0 JE England and Associated Copanies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Liited 04 All rights

More information

Chapter 11: Vibration Isolation of the Source [Part I]

Chapter 11: Vibration Isolation of the Source [Part I] Chapter : Vibration Isolation of the Source [Part I] Eaple 3.4 Consider the achine arrangeent illustrated in figure 3.. An electric otor is elastically ounted, by way of identical isolators, to a - thick

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE,

PERIODIC STEADY STATE ANALYSIS, EFFECTIVE VALUE, PERIODIC SEADY SAE ANALYSIS, EFFECIVE VALUE, DISORSION FACOR, POWER OF PERIODIC CURRENS t + Effective value of current (general definition) IRMS i () t dt Root Mean Square, in Czech boo denoted I he value

More information

Quantum Ground States as Equilibrium Particle Vacuum Interaction States

Quantum Ground States as Equilibrium Particle Vacuum Interaction States Quantu Ground States as Euilibriu article Vacuu Interaction States Harold E uthoff Abstract A rearkable feature of atoic ground states is that they are observed to be radiationless in nature despite (fro

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact

Physically Based Modeling CS Notes Spring 1997 Particle Collision and Contact Physically Based Modeling CS 15-863 Notes Spring 1997 Particle Collision and Contact 1 Collisions with Springs Suppose we wanted to ipleent a particle siulator with a floor : a solid horizontal plane which

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

In this chapter we will study sound waves and concentrate on the following topics:

In this chapter we will study sound waves and concentrate on the following topics: Chapter 17 Waves II In this chapter we will study sound waves and concentrate on the following topics: Speed of sound waves Relation between displaceent and pressure aplitude Interference of sound waves

More information

Four-vector, Dirac spinor representation and Lorentz Transformations

Four-vector, Dirac spinor representation and Lorentz Transformations Available online at www.pelagiaresearchlibrary.co Advances in Applied Science Research, 2012, 3 (2):749-756 Four-vector, Dirac spinor representation and Lorentz Transforations S. B. Khasare 1, J. N. Rateke

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

The Transactional Nature of Quantum Information

The Transactional Nature of Quantum Information The Transactional Nature of Quantu Inforation Subhash Kak Departent of Coputer Science Oklahoa State University Stillwater, OK 7478 ABSTRACT Inforation, in its counications sense, is a transactional property.

More information

CHAPTER 4 TWO STANDARD SHORTCUTS USED TO TRANSFORM ELECTROMAGNETIC EQUATIONS 4.1 THE FREE-PARAMETER METHOD

CHAPTER 4 TWO STANDARD SHORTCUTS USED TO TRANSFORM ELECTROMAGNETIC EQUATIONS 4.1 THE FREE-PARAMETER METHOD CHAPTER 4 TWO STANDARD SHORTCUTS USED TO TRANSFORM ELECTROMAGNETIC EQUATIONS The last several chapters have explained how the standard rules for changing units apply to electroagnetic physical quantities.

More information

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm

Symbolic Analysis as Universal Tool for Deriving Properties of Non-linear Algorithms Case study of EM Algorithm Acta Polytechnica Hungarica Vol., No., 04 Sybolic Analysis as Universal Tool for Deriving Properties of Non-linear Algoriths Case study of EM Algorith Vladiir Mladenović, Miroslav Lutovac, Dana Porrat

More information

Spectral Analysis of Relativistic Bunched Beams

Spectral Analysis of Relativistic Bunched Beams SLACPUB7159 because the bea would have to be decelerated for that to happen. The iage current flowing through a bea detector produces a voltage VOut given by Vout () =, (4) where S is the detector longitudinal

More information

Electrocardiographical Signals Parameters Measuring

Electrocardiographical Signals Parameters Measuring Electrocardiographical Signals Paraeters Measuring Dan Milici 1, Mariana Milici 2, Stefan Gh. Pentiuc 3 Stefan cel Mare University of Suceava, Universitatii Street, 13, Suceava - 720229, Roania, 1 da@eed.usv.ro,

More information

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES S. E. Ahed, R. J. Tokins and A. I. Volodin Departent of Matheatics and Statistics University of Regina Regina,

More information

Does Information Have Mass?

Does Information Have Mass? P O I N T O F V I E W Does Inforation Have Mass? By LASZLO B. KISH Departent of Electrical and Coputer Engineering, Texas A&M University, College Station, TX 77843-3128 USA CLAES G. GRANQVIST Departent

More information

arxiv: v3 [physics.optics] 1 Nov 2016

arxiv: v3 [physics.optics] 1 Nov 2016 Super-resolution iaging using the spatial-frequency filtered intensity fluctuation correlation Jane Sprigg 1,*, Tao Peng 1, and Yanhua Shih 1 arxiv:1409.134v3 [physics.optics] 1 Nov 016 1 University of

More information

Optimal Jamming Over Additive Noise: Vector Source-Channel Case

Optimal Jamming Over Additive Noise: Vector Source-Channel Case Fifty-first Annual Allerton Conference Allerton House, UIUC, Illinois, USA October 2-3, 2013 Optial Jaing Over Additive Noise: Vector Source-Channel Case Erah Akyol and Kenneth Rose Abstract This paper

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

Visualization Techniques to Identify and Quantify Sources and Paths of Exterior Noise Radiated from Stationary and Nonstationary Vehicles

Visualization Techniques to Identify and Quantify Sources and Paths of Exterior Noise Radiated from Stationary and Nonstationary Vehicles Purdue University Purdue e-pubs Publications of the ay W. Herrick Laboratories School of Mechanical Engineering 6-2 Visualization Techniques to Identify and Quantify Sources and Paths of Exterior Noise

More information

Upper bound on false alarm rate for landmine detection and classification using syntactic pattern recognition

Upper bound on false alarm rate for landmine detection and classification using syntactic pattern recognition Upper bound on false alar rate for landine detection and classification using syntactic pattern recognition Ahed O. Nasif, Brian L. Mark, Kenneth J. Hintz, and Nathalia Peixoto Dept. of Electrical and

More information