Electrical Boundary Conditions. Electric Field Boundary Conditions: Magnetic Field Boundary Conditions: K=J s

Size: px
Start display at page:

Download "Electrical Boundary Conditions. Electric Field Boundary Conditions: Magnetic Field Boundary Conditions: K=J s"

Transcription

1 Electrical Boundar Condition Electric Field Boundar Condition: a n i a unit vector noral to the interface fro region to region 3 4 Magnetic Field Boundar Condition: K=J K=J 5 6

2 Dielectric- dielectric boundar condition Dielectric aterial are doinated b bound rather than free charge (E-field caue +ve and ve charge of olecule to eparate and for dipole throughout the aterial interior Conductor-dielectric boundar condition Therefore, the free charge denit and the urface current denit J are zero E n = E n B t B t The noral coponent of B i continuou acro the interface while the tangential coponent of E i continuou acro the interface 7 n D n 8 Conductor-free pace boundar condition D D E t t n E n 9

3 Electrodnaic (Not Yet) Electrotatic charge electrotatic field Stead current (otion of electric charge with unifor velocit agnetotatic field Tie varing current electroagnetic field 3 4 Changing Magnetic Field Current and Voltage In uar: Farada Law- Integral For B, H N S Current 5 6 Farada Law-Differential For 7 8

4 Tie Haronic field and their phaor repreentation In general, a phaor could be a calar or vector. If a vector E (,, z, t) i a tie-haronic field, the phaor for of E i E (,, z); the two quantitie are related a E = Re (E e jt ) If E = E o co(t -)a, we can write E a: E = Re (E o e -j a e jt ) E = E o e -j a phaor for 9 Notice that E jt jt Re( E e ) Re( jee ) t t E je t E Et j Mawell equation in ter of vector field phaor (E, H) and ource phaor (, J) in a iple linear, iotropic and hoogeneou ediu are: E H E H jh J v je E ds H ds S S L E dl j H ds H dl J ds je ds L v v dv Fro the table, note that the tie factor e jt diappear becaue it i aociated with ever ter and therefore factor out, reulting in tie independent equation Electroagnetic wave equation in free pace (coupling between E and H) Plane Wave Equation 3 4

5 Wave in General A wave i a function in both pace and tie. The variation of E with both tie and pace variable z, we a plot E a a function of t b keeping z contant and vice vera. 5 6 The poible olution in free pace i of the for: E ( z, t) Re( E e Re[ E e ) E e E co( t z) E co( t z) jt j( toz) o ] j( toz) o A negative ign in (t o z) i aociated with a wave propagating in the +z direction (forward traveling or poitive going wave) wherea a poitive ign indicate that a wave i traveling in the z direction (backward traveling or negative going wave) 7 8 A plane wave traveling in the poitive z direction What do Farada and Apere ean? B E. dl. d a changing agnetic field caue an electric field t H D. dl JC. d t a changing electric field/flu caue an agnetic field E or or ( z, t) Re[ E Re[ E e E ( z) e jt ] j( t z) ] co( t z) o o 9 Quetion : If we put thee together, can we get electric and agnetic field that, once created, utain one another? 3

6 Cro-breed Apere and Farada! D E H JC E... all in ter of E and H t t B H E... all in ter of E and H t t d d E H E... differentiate both ide dt dt t H E... curl of both ide t dh de d E dt dt dt dh E dt de d E E dt dt 3 Cro-breed Apere and Farada! D E H JC E... all in ter of E and H t t B H E... all in ter of E and H t t E E H E E... curl of both ide t t H E t H H H t t 3 Now oe iplification Travelling Wave E Y = E Y in(ωt-β) Take a tie-varing electric field, E, at a point E Y = E Y in(ωt) Add a econd one with a all phae difference, nearb E Y = E Y in(ωt) E Y = E Y in(ωt-) z E = (,E Y,) onl Align -ai with electric field and the -ai with the direction of (wave) propagation (a travelling wave propagating in the - direction, with onl a -coponent of E-field) 33 Now let have a lot of the, with a inuoidal variation of phae with direction. E Y = E Y in(ωt-β) 34 Plane Wave We will alo look for a plane wave olution where the field E Y i the ae (at an intant in tie) acro the entire z plane. Here i an aniation to ee what thi ean - looking at the z plane, down the direction of travel E Y = E Y in(ωt-β) Cro-breed Apere and Farada! i j k d d d de de E,, d d dz dz d E i j k d d d d E d E d E d E E,, d d dz dd dz d dzd de de dz d z E = (,E Y,) onl Look down here 35 And, a we have iplified down to E=(,E,), with E Y contant in the z plane, thi reduce to de E d 36

7 Cro-breed Apere and Farada! So de d E E (in 3D) dt dt Becoe the D equation d E de d E d dt dt Plane wave equation for E decribe the variation in tie and pace of an electric plane wave With a -coponent onl (we have aligned the -ai with E) propagating in the -direction. There i an eactl equivalent equation for H Eliinate E, not H, fro the cobination of Apere and Farada. rather a wate of our tie. We can, however, infer that whatever behaviour we get for E will appl to H, although we do not et know the direction of H. 37 What have we here? Variation of E in pace (=direction of propagation) d E de d E d Magnetic pereabilit (4p 7 in vacuu, larger in a agnet) dt Conductivit ( in an inulator, uch larger in a conductor) Variation of E with tie dt Dielectric contant ( in a vacuu, larger in a dielectric) 38 Start with an inulator to ake life ea (=) d E de d E becoe d dt dt d E d E j ( t ) Look for a olution of the for E Ee Where and depend upon and the characteritic of the inulator d E d E E, E d dt d, what doe thi ean?? p p Reeber, p frequenc = p f, = = and v f wavelength dt 39 Still don t know what it ean Travelling wave of the for j ( t ) E E e E co t p It travel with a velocit v f p In a vacuu, = =4p -7, = = v 3 /... a failiar peed? In (eg) gla, = =4p -7, = r = r 8 v.43 /... light low down in gla 4 Thi i wh lene work V=3 8 / V=.43 8 / V=3 8 / 4 ( ) E (, Ee j t,) What i H up to? H de,,, Farada a E E,, je t d j ( t ) e j t H j t H (,, Hz) Hz Hze,,, jhze So and if t j t j ( t ) Hze Ee So Hand E are at 9 to one another... (,, Hz) and (, E,) Hand E are in tie-phae in a non-conductor Alo, Hz E E E, the intrinic ipedance ( Z i )of the ediu, i real for an inulator 4

8 Suar o far : Inulator H and E both obe e j(t-) H and E are in tie-phae E =Z i H i the characteritic ipedance Z i i real in an inulator Z i = 377Ω in free pace (air!) Z i 5Ω in gla Wave travel at a velocit v =/ 3 8 / in free pace Now a conductor Field lead to current Current caue Joule heating (I R) Lead to lo of energ Field till ocillate, but the deca Multipl the olution we have alread b a ter e -a? e -a HEAT! e -a in(ωt-β) HEAT! 43 HEAT! 44 Now a conductor In general: the electric field in a conductor a be epreed in the for: E (, t) Re( E ( ) e E e a Where E and E jt ) co( t ) E e a co( t ) were replaced in ter of their ag. and phae Now a conductor > d E de d E d dt dt Look for a olution of the for j ( t ) a E Ee e j t j E Ee e a For tidine, write a j. i called the propagation contant a j E E j E E j j, j j j t E E e e Eaple : Good Conductor j t, E E e e j j f a v 6 7 (S/) MHz / j 6.6 j 79 6 j.54 ( j) Coent : a=, o E and H are 45 out of (tie) phae v<< peed of light a =.54 5 >> rapid attenuation via e -a Let have a look at e -a Eaple : Good Conductor e -a μ μ μ 3μ.36=/e Aplitude fall b.36=/e in 6 i.e. the wave doen t get far in copper! Skin Depth : the depth of penetration into a good conductor (the wave will be attenuated b a factor e.368 a pf 48

9 Eaple : Good Conductor, E=Z i H. Intrinic Ipedance H de jt Farada a E, E,,,, E e t d j (,, ) t H j,,, t So and if H Hz Hz Hz e j Hze t j E H Z H z i z j j j Z i j j j Eaple : Good Conductor, E=Z i H. Intrinic Ipedance p j j j 4 i z z z z E Z H H H e H j E So Hz relate the agnitude of H and E p j e 4 p and E lead Hz b Siilaritie and difference between the propagation of unifor plane wave in free pace and conductive ediu Siilaritie: In both cae, the electric and agnetic field are unifor in the plane perpendicular to the direction of propagation. The electric and agnetic field are perpendicular to each other, and to the direction of propagation i.e.no coponent of either the electric or the agnetic field i in the direction of propagation. Difference: Free Space Conductive Mediu E, H vector are in phae, the E, H vector are not in phae, the intrinic wave ipedance o i a real intrinic wave ipedance i a conuber. ple nuber. The phae velocit = c (peed of The phae velocit i le than the light. peed of light. For a plane wave of a given freq., o The =p/ i horter than o i longer than in the aterial ediu. Doe not attenuate in agnitude a it It eponentiall attenuate, with propagate. the kin depth b = /a 5 5 Polarization of plane wave For a wave propagating along the z ai, the electric field a be epreed a having two coponent in the and direction: E = (A a + B a ) e -jz where the aplitude A and B a be cople. A ja Ae, B B e. If A and B have the ae phae angle (a = b). In thi cae, the and coponent of the electric field will be in phae E ( A a E ( A a B a ) e j( za) jb B a )co( t z a). If A and B have different phae angle. In thi cae, E will no longer reain in one plane: E A co( t a z) E B co( t b z) The locu of the end point of the electric field vector will trace out an ellipe once each ccle Elliptical polarization 3. If A and B are equal in agnitude and differ in phae angle b p/, the ellipe becoe a circle Circular Polarization The tip of the E vector follow a line Linear polarization 53 54

10 - If one take a naphot of a circularl polarized wave at an intant then he will ee the picture below. - The E-field vector doe not change in agnitude but it direction twit in pace. - An oberver itting in the path of the wave will ee the E- field vector rotate in a circular trajector at hi location a the wave pae b

EELE 3332 Electromagnetic II Chapter 10

EELE 3332 Electromagnetic II Chapter 10 EELE 333 Electromagnetic II Chapter 10 Electromagnetic Wave Propagation Ilamic Univerity of Gaza Electrical Engineering Department Dr. Talal Skaik 01 1 Electromagnetic wave propagation A changing magnetic

More information

Lecture 23 Date:

Lecture 23 Date: Lecture 3 Date: 4.4.16 Plane Wave in Free Space and Good Conductor Power and Poynting Vector Wave Propagation in Loy Dielectric Wave propagating in z-direction and having only x-component i given by: E

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information

Optics. Measuring the velocity of light Geometrical Optics. What you need:

Optics. Measuring the velocity of light Geometrical Optics. What you need: Geoetrical Optic Optic Meauring the velocity of light -01 What you can learn about Refractive index Wavelength Frequency Phae Modulation Electric field contant Magnetic field contant Principle: The intenity

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Matheatic Reviion Guide Introduction to Differential Equation Page of Author: Mark Kudlowki MK HOME TUITION Matheatic Reviion Guide Level: A-Level Year DIFFERENTIAL EQUATIONS Verion : Date: 3-4-3 Matheatic

More information

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector 34 C HAPTER 1 KINEMATICS OF A PARTICLE 1 1.5 Curvilinear Motion: Rectangular Component Occaionall the motion of a particle can bet be decribed along a path that can be epreed in term of it,, coordinate.

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

Homework #6. 1. Continuum wave equation. Show that for long wavelengths the equation of motion,, reduces to the continuum elastic wave equation dt

Homework #6. 1. Continuum wave equation. Show that for long wavelengths the equation of motion,, reduces to the continuum elastic wave equation dt Hoework #6 Continuu wave equation Show that for long wavelength the equation of otion, d u M C( u u u, reduce to the continuu elatic wave equation u u v t x where v i the velocity of ound For a, u u i

More information

5.2. Example: Landau levels and quantum Hall effect

5.2. Example: Landau levels and quantum Hall effect 68 Phs460.nb i ħ (-i ħ -q A') -q φ' ψ' = + V(r) ψ' (5.49) t i.e., using the new gauge, the Schrodinger equation takes eactl the sae for (i.e. the phsics law reains the sae). 5.. Eaple: Lau levels quantu

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

ELECTROMAGNETIC WAVES AND PHOTONS

ELECTROMAGNETIC WAVES AND PHOTONS CHAPTER ELECTROMAGNETIC WAVES AND PHOTONS Problem.1 Find the magnitude and direction of the induced electric field of Example.1 at r = 5.00 cm if the magnetic field change at a contant rate from 0.500

More information

Accelerator School Transverse Beam Dynamics-3. V. S. Pandit

Accelerator School Transverse Beam Dynamics-3. V. S. Pandit Accelerator School 8 Tranvere Bea Dnaic-3 V S Pandit Cloed or olution Equation o otion K i a or o Hill equation arge accelerator and tranport line are equipped with an dipole or delection and quadrupole

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes SPH4U/SPH3UW Unit.3 Appling Newton Law of Motion Page 1 of 7 Note Phic Tool Bo Solving Newton Law of Motion Proble o Read quetion to enure full undertanding o Draw and label a ree Bod Diagra o Separate

More information

6.641 Electromagnetic Fields, Forces, and Motion

6.641 Electromagnetic Fields, Forces, and Motion MIT OpenCoureWare http://ocw.it.edu 6.64 Electroagnetic Field, Force, and Motion Spring 009 For inforation about citing thee aterial or our Ter of Ue, viit: http://ocw.it.edu/ter. 6.64 Electroagnetic Field,

More information

Three Phase Induction Motors

Three Phase Induction Motors Chapter (8) hree Phae Induction Motor Introduction he three-phae induction otor are the ot widely ued electric otor in indutry. hey run at eentially contant peed fro no-load to full-load. However, the

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Electromagnetics I Exam No. 3 December 1, 2003 Solution Electroagnetics Ea No. 3 Deceber 1, 2003 Solution Please read the ea carefull. Solve the folloing 4 probles. Each proble is 1/4 of the grade. To receive full credit, ou ust sho all ork. f cannot understand

More information

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration.

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration. Chapter 3 Motion in a Plane Practice Proble Solution Student Textbook page 80 1. Frae the Proble - Sketch and label a diagra of the otion. 40 v(/) 30 0 10 0 4 t () - The equation of otion apply to the

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

Electrodynamics Part 1 12 Lectures

Electrodynamics Part 1 12 Lectures NASSP Honour - Electrodynamic Firt Semeter 2014 Electrodynamic Part 1 12 Lecture Prof. J.P.S. Rah Univerity of KwaZulu-Natal rah@ukzn.ac.za 1 Coure Summary Aim: To provide a foundation in electrodynamic,

More information

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number:

( ) ( s ) Answers to Practice Test Questions 4 Electrons, Orbitals and Quantum Numbers. Student Number: Anwer to Practice Tet Quetion 4 Electron, Orbital Quantu Nuber. Heienberg uncertaint principle tate tat te preciion of our knowledge about a particle poition it oentu are inverel related. If we ave ore

More information

( ) Zp THE VIBRATION ABSORBER. Preamble - A NEED arises: lbf in. sec. X p () t = Z p. cos Ω t. Z p () r. ω np. F o. cos Ω t. X p. δ s.

( ) Zp THE VIBRATION ABSORBER. Preamble - A NEED arises: lbf in. sec. X p () t = Z p. cos Ω t. Z p () r. ω np. F o. cos Ω t. X p. δ s. THE VIBRATION ABSORBER Preable - A NEED arie: Lui San Andre (c) 8 MEEN 363-617 Conider the periodic forced repone of a yte (Kp-Mp) defined by : 1 1 5 lbf in : 1 3 lb (t) It natural frequency i: : ec F(t)

More information

R L R L L sl C L 1 sc

R L R L L sl C L 1 sc 2260 N. Cotter PRACTICE FINAL EXAM SOLUTION: Prob 3 3. (50 point) u(t) V i(t) L - R v(t) C - The initial energy tored in the circuit i zero. 500 Ω L 200 mh a. Chooe value of R and C to accomplih the following:

More information

TAP 518-7: Fields in nature and in particle accelerators

TAP 518-7: Fields in nature and in particle accelerators TAP - : Field in nature and in particle accelerator Intruction and inforation Write your anwer in the pace proided The following data will be needed when anwering thee quetion: electronic charge 9 C a

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space Chapter 4 Waves in Unbounded Medium 4. lectromagnetic Sources 4. Uniform plane waves in free space Mawell s equation in free space is given b: H rot = (4..) roth = (4..) div = (4..3) divh = (4..4) which

More information

Section Induction motor drives

Section Induction motor drives Section 5.1 - nduction motor drive Electric Drive Sytem 5.1.1. ntroduction he AC induction motor i by far the mot widely ued motor in the indutry. raditionally, it ha been ued in contant and lowly variable-peed

More information

CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION CHAPTER 1: INTRODUCTION 1.1 SCOPE AND CONTENT Counications and sensing systes are ubiquitous. They are found in ilitary, industrial, edical, consuer, and scientific applications eploying radio frequency,

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

Motion of Charges in Uniform E

Motion of Charges in Uniform E Motion of Charges in Unifor E and Fields Assue an ionized gas is acted upon by a unifor (but possibly tie-dependent) electric field E, and a unifor, steady agnetic field. These fields are assued to be

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

PHYS 102 Previous Exam Problems

PHYS 102 Previous Exam Problems PHYS 102 Previous Exa Probles CHAPTER 16 Waves Transverse waves on a string Power Interference of waves Standing waves Resonance on a string 1. The displaceent of a string carrying a traveling sinusoidal

More information

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1 AP CHEM WKST KEY: Atoic Structure Unit Review p. 1 1) a) ΔE = 2.178 x 10 18 J 1 2 nf 1 n 2i = 2.178 x 10 18 1 1 J 2 2 6 2 = 4.840 x 10 19 J b) E = λ hc λ = E hc = (6.626 x 10 34 J )(2.9979 x 10 4.840 x

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

Contact us:

Contact us: . Fro a dic of radiu and a M, a circular hole of diaeter, whoe ri pae through the centre i cut. What i the oent of inertia of the reaining part of the dic about a perpendicular axi, paing through the centre?

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

The Measurement of DC Voltage Signal Using the UTI

The Measurement of DC Voltage Signal Using the UTI he Meaurement of DC Voltage Signal Uing the. INRODUCION can er an interface for many paive ening element, uch a, capacitor, reitor, reitive bridge and reitive potentiometer. By uing ome eternal component,

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Lecture 6: Resonance II. Announcements

Lecture 6: Resonance II. Announcements EES 5 Spring 4, Lecture 6 Lecture 6: Reonance II EES 5 Spring 4, Lecture 6 Announcement The lab tart thi week You mut how up for lab to tay enrolled in the coure. The firt lab i available on the web ite,

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

LTV System Modelling

LTV System Modelling Helinki Univerit of Technolog S-72.333 Potgraduate Coure in Radiocommunication Fall 2000 LTV Stem Modelling Heikki Lorentz Sonera Entrum O heikki.lorentz@onera.fi Januar 23 rd 200 Content. Introduction

More information

PHY 171 Practice Test 3 Solutions Fall 2013

PHY 171 Practice Test 3 Solutions Fall 2013 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford,

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Homework 3 Solutions

Homework 3 Solutions Hoework 3 ME 53 Fall 07 80 point Proble (0 point) Piton 0.0 Partially aborbing urface p () e jk + 0.6e jk (at ingle frequency ω) a) p r ; plot a function of at 000 Hz; how that inia in tanding-wave pattern

More information

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction.

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction. Lecture quiz toda. Small change to webite. Problem 4.30 the peed o the elevator i poitive even though it i decending. The WebAign anwer i wrong. ewton Law o Motion (page 9-99) 1. An object velocit vector

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

FUNDAMENTALS OF POWER SYSTEMS

FUNDAMENTALS OF POWER SYSTEMS 1 FUNDAMENTALS OF POWER SYSTEMS 1 Chapter FUNDAMENTALS OF POWER SYSTEMS INTRODUCTION The three baic element of electrical engineering are reitor, inductor and capacitor. The reitor conume ohmic or diipative

More information

Related Rates section 3.9

Related Rates section 3.9 Related Rate ection 3.9 Iportant Note: In olving the related rate proble, the rate of change of a quantity i given and the rate of change of another quantity i aked for. You need to find a relationhip

More information

I.3.5 Ringing. Ringing=Unwanted oscillations of voltage and/or current

I.3.5 Ringing. Ringing=Unwanted oscillations of voltage and/or current I.3.5 Ringing Ringing=Unwanted oscillations of voltage and/or current Ringing is caused b multiple reflections. The original wave is reflected at the load, this reflection then gets reflected back at the

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

The University of Akron Descriptive Astronomy Department of Physics. 3650: Exam #2 SVD 10/12/17

The University of Akron Descriptive Astronomy Department of Physics. 3650: Exam #2 SVD 10/12/17 The Univerity of Akron Decriptive Atronoy Departent of Phyic 3650:130-001 Exa # SVD 10/1/17 1. What phyical quantity i ued to deterine the aount of inertia an object ha? (a) force (b) a (c) weight (d)

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

Part I: Multiple-Choice

Part I: Multiple-Choice Part I: Multiple-Choice Circle your anwer to each quetion. Any other ark will not be given credit. Each ultiple-choice quetion i worth point for a total of 0 point. 1. The dead-quiet caterpillar drive

More information

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions )

22 - ELECTRON AND PHOTONS Page 1 ( Answers at the end of all questions ) 22 - ELECTRON AND PHOTONS Page 1 1 ) A photocell is illuinated by a sall source placed 1 away. When the sae source of light is placed 1 / 2 away, the nuber of electrons eitted by photocathode would ( a

More information

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2

4.5 Evaporation and Diffusion Evaporation and Diffusion through Quiescent Air (page 286) bulk motion of air and j. y a,2, y j,2 or P a,2, P j,2 4.5 Evaporation and Diffuion 4.5.4 Evaporation and Diffuion through Quiecent Air (page 86) z bul otion of air and j z diffuion of air (a) diffuion of containant (j) y a,, y j, or P a,, P j, z 1 volatile

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Deriving 0 and 0 from First Principles and Defining the Fundamental Electromagnetic Equations Set

Deriving 0 and 0 from First Principles and Defining the Fundamental Electromagnetic Equations Set International Journal of Engineering Reearch and Developent e-issn: 78-67X, p-issn: 78-8X, www.ijerd.co Volue 7, Iue 4 (May 3), PP. 3-39 Deriving and fro Firt Principle and Defining the Fundaental Electroagnetic

More information

III. Quantization of electromagnetic field

III. Quantization of electromagnetic field III. Quantization of electroagnetic field Using the fraework presented in the previous chapter, this chapter describes lightwave in ters of quantu echanics. First, how to write a physical quantity operator

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

Chapter 1 BASIC ACCELERATOR PHYSICS

Chapter 1 BASIC ACCELERATOR PHYSICS Chapter SIC CCLRTOR HSICS The guiding and focuing of a charged particle bea in a circular accelerator rel on a erie of agnetic eleent, eparated b field-free drift pace, that for the accelerator lattice.

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Assessment Schedule 2017 Scholarship Physics (93103)

Assessment Schedule 2017 Scholarship Physics (93103) Scholarhip Phyic (93103) 201 page 1 of 5 Aement Schedule 201 Scholarhip Phyic (93103) Evidence Statement Q Evidence 1-4 mark 5-6 mark -8 mark ONE (a)(i) Due to the motion of the ource, there are compreion

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

Effects of vector attenuation on AVO of offshore reflections

Effects of vector attenuation on AVO of offshore reflections GEOPHYSICS, VOL. 64, NO. 3 MAY-JUNE 1999); P. 815 819, 9 FIGS., 1 TABLE. Effect of vector attenuation on AVO of offhore reflection J. M. Carcione ABSTRACT Wave tranmitted at the ocean bottom have the characteritic

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

Topic 7 Fuzzy expert systems: Fuzzy inference

Topic 7 Fuzzy expert systems: Fuzzy inference Topic 7 Fuzzy expert yte: Fuzzy inference adani fuzzy inference ugeno fuzzy inference Cae tudy uary Fuzzy inference The ot coonly ued fuzzy inference technique i the o-called adani ethod. In 975, Profeor

More information

Oscillatory Hydromagnetic Couette Flow in a Rotating System with Induced Magnetic Field *

Oscillatory Hydromagnetic Couette Flow in a Rotating System with Induced Magnetic Field * CHAPTER-4 Oscillator Hdroagnetic Couette Flow in a Rotating Sste with Induced Magnetic Field * 4. Introduction Lainar flow within a channel or duct in the absence of agnetic field is a phenoenon which

More information

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine?

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine? Exam Electrical Machine and Drive (ET4117) 6 November 009 from 9.00 to 1.00. Thi exam conit of 4 problem on 4 page. Page 5 can be ued to anwer problem quetion b. The number before a quetion indicate how

More information

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4.

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4. 05 PhyicBowl Solution # An # An # An # An # An B B B 3 D 4 A C D A 3 D 4 C 3 A 3 C 3 A 33 C 43 B 4 B 4 D 4 C 34 A 44 E 5 E 5 E 5 E 35 E 45 B 6 D 6 A 6 A 36 B 46 E 7 A 7 D 7 D 37 A 47 C 8 E 8 C 8 B 38 D

More information

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems! Math 33 - ODE Due: 7 December 208 Written Problem Set # 4 Thee are practice problem for the final exam. You hould attempt all of them, but turn in only the even-numbered problem! Exercie Solve the initial

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV PHYSICS 3 Exa- NAME. In the figure shown, light travels fro aterial I, through three layers of other aterials with surfaces parallel to one another, and then back into another layer of aterial I. The refractions

More information

Section J8b: FET Low Frequency Response

Section J8b: FET Low Frequency Response ection J8b: FET ow Frequency epone In thi ection of our tudie, we re o to reiit the baic FET aplifier confiuration but with an additional twit The baic confiuration are the ae a we etiated ection J6 of

More information

Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8 th edition 2012; Text Book

Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8 th edition 2012; Text Book Text Book Dr. Naser Abu-Zaid Page 1 9/4/2012 Course syllabus Electroagnetic 2 (63374) Seester Language Copulsory / Elective Prerequisites Course Contents Course Objectives Learning Outcoes and Copetences

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

12.1 Static Magnetic Field in the Presence of Magnetic Materials

12.1 Static Magnetic Field in the Presence of Magnetic Materials Electroagnetics P1-1 Lesson 1 Magnetostatics in Materials 1.1 Static Magnetic Field in the Presence o Magnetic Materials Concept o induced agnetic dipoles An aterial has an icroscopic agnetic dipoles (i.e.,

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability 5/7/2007 11_2 tability 1/2 112 tability eading Aignment: pp 542-548 A gain element i an active device One potential problem with every active circuit i it tability HO: TABIITY Jim tile The Univ of Kana

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

The Features For Dark Matter And Dark Flow Found.

The Features For Dark Matter And Dark Flow Found. The Feature For Dark Matter And Dark Flow Found. Author: Dan Vier, Alere, the Netherland Date: January 04 Abtract. Fly-By- and GPS-atellite reveal an earth-dark atter-halo i affecting the orbit-velocitie

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electroagnetic scattering Graduate Course Electrical Engineering (Counications) 1 st Seester, 1388-1389 Sharif University of Technology Contents of lecture 5 Contents of lecture 5: Scattering fro a conductive

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

Chemistry I Unit 3 Review Guide: Energy and Electrons

Chemistry I Unit 3 Review Guide: Energy and Electrons Cheitry I Unit 3 Review Guide: Energy and Electron Practice Quetion and Proble 1. Energy i the capacity to do work. With reference to thi definition, decribe how you would deontrate that each of the following

More information

Physics 20 Lesson 16 Friction

Physics 20 Lesson 16 Friction Phyic 0 Leon 16 riction In the previou leon we learned that a rictional orce i any orce that reit, retard or ipede the otion o an object. In thi leon we will dicu how riction reult ro the contact between

More information