s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

Size: px
Start display at page:

Download "s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr"

Transcription

1 Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent and Velocity, ha both Magnitude and Direction. Exaple Proble: Mr.p i driving hi Priu at 36 k/hr Eat when a baketball appear bouncing acro the treet in front of hi. Hi gut reaction i to la on the brake. Thi bring the vehicle to a top in.75 econd. What wa the acceleration of the vehicle? Known: v i 36 k hr Eat hr k 0 Eat; v f 0;.75; a? a Δv v f v i Eat FYI: v i 36 k hr 000 i k 609 Ye, wa a typo in the video, orry..374 i hr 003 Lecture Note - Introduction to Acceleration with Priu Brake Slaing Exaple Proble.docx page of

2 Flipping Phyic Lecture Note: A Baic Acceleration Exaple Proble and Undertanding Acceleration Direction Exaple Proble: Mr.p i riding hi bike at -4.3 k/hr when he begin pedaling the bike to caue a contant acceleration. If, after 6.4 econd, the bike i oving at -3.7 k/hr, what wa the acceleration of the bike? Known: v i 4.3 k hr hr k 3.97 ; v f 3.7 k hr hr k ; 6.4; a? a Δv v f v i Coon Quetion: If the bike i peeding up how can the acceleration be negative? If an object i peeding up that ean the agnitude of the velocity i increaing. That ean that the acceleration and the velocity will be in the ae direction. In other word, if the velocity i negative and the object i peeding up, then the acceleration will alo be negative. People are uually ued to having poitive velocitie and therefore a negative acceleration would be oppoite the velocity and the object would be lowing down. 004 Lecture Note - A Baic Acceleration Exaple Proble and Undertanding Acceleration Direction.docx page of

3 Flipping Phyic Lecture Note: Walking Poition, Velocity and Acceleration a a Function of Tie Graph velocity / lope rie run Δy Δx Δvelocity acceleration ie The lope of a velocity veru tie graph i acceleration. review: The lope of a poition veru tie graph i velocity. tie A tangent line i a traight line that touche a curve at a point but doe not cro the curve. Exaple # Exaple # poition poition Exaple #4 tie tie Velocity / tie tie Acceleration / Acceleration / Velocity / tie tie 005 Lecture Note - Walking Poition, Velocity and Acceleration a a Function of Tie Graph.docx page of

4 Exaple #3 poition tie tie Acceleration / Velocity / tie page of

5 Flipping Phyic Lecture Note: Introduction to Uniforly Accelerated Motion with Exaple of Object in UAM Uniforly Accelerated Motion UAM i otion of an object where the acceleration i contant. In other word, the acceleration reain unifor; the acceleration i equal to a nuber and that nuber doe not change a a function of tie. Exaple of object in UAM: A ball rolling down an incline. A peron falling fro a plane. A bicycle on which you have applied the brake. A ball dropped fro the top of a ladder. A toy baby bottle releaed fro the botto of a bathtub. Technically, becaue of friction and a non-contant gravitational field, etc., they are not quite Uniforly Accelerated Motion, however, at thi point we will treat the a if they are, becaue it i cloe enough, for now. Thee are the equation that decribe an object in Uniforly Accelerated Motion: v f vi + a Δx vi + a v f vi + aδx Δx vi + v f There are 5 variable in the UAM equation: vi velocityinitial v f velocity final a acceleration Δx diplaceent changeintie My Suggetion. When you ue the UAM equation, you hould ue bae SI dienion; eter and econd. Here i how it work: There are FIVE variable in the UAM equation. There are FOUR UAM equation. If you know THREE of the variable, you can deterine the other TWO variable. Thi leave you with ONE happy phyic tudent. note: not one anwer. There can be ore than one anwer. A helpful definition: peanut gallery noun: a group of people who criticize oeone, often by focuing on inignificant detail. 006 Lecture Note - Introduction to Uniforly Accelerated Motion.docx page of

6 Flipping Phyic Lecture Note: Introductory Uniforly Accelerated Motion Proble A Braking Bicycle Exaple Proble: Mr.p i riding hi bike at.9 k/hr when he applie the brake cauing the bike to low down with a contant acceleration. After.0 econd he ha traveled 4.00 eter. a What wa hi acceleration and b what wa hi final peed? Known: vi.9 k hr ; Δx 4.00;.0;v f?;a? hr 3600ec k Δx vi Δx vi + a Δx vi a a a Part a Part b v f vi + aδx v f vi + aδx Note: I could alo have ued v f vi + a Δx Δx v f + vi v f + vi vi v f & gotten the ae anwer, again. vf.0 Or even Δx The reaon there are 3 equation we could ue i becaue after we have olved part a we now know four of the UAM variable and not jut 3. Hopefully Helpful Definition: Perpicaciou adjective: having or howing an ability to notice and undertand thing that are difficult or not obviou. ilk noun: a type of people or thing iilar to thoe already referred to. Pedantic adjective: of or like a pedant. Pedant noun: a peron who i exceively concerned with inor detail and rule or with diplaying acadeic learning. 007 Lecture Note - Introductory Uniforly Accelerated Motion Proble.docx page of

7 Flipping Phyic Lecture Note: Toy Car UAM Proble with Two Difference Acceleration Exaple Proble: A toy car tart fro ret and experience an acceleration of.56 / for.6 econd and then brake for. econd and experience an acceleration of -.07 /. a How fat i the car going at the end of the braking period and b how far ha it oved? Known: Part : vi 0;.6; a.56 ;.; a.07 ; v f?; Δxt? v f vi + a vi Note: vf vi becaue they are at the ae oent in tie. The end of part i the beginning of part. Part : v f vi + a [anwer for part a] In order to olve part b, you need to realize that the total diplaceent i equal to the diplaceent for part plu the diplaceent for part. technically, the agnitude of the diplaceent becaue we don t have direction. So now we need to find each diplaceent individually and then add the together. v f + vi Part : Δx vi + a Total: Δxt Δx + Δx [anwer for part b] Part : Δx The following i an incorrect olution to part b Δxt v f + vi t v f + vi Becaue the acceleration i not contant for the whole proble; it i only contant for each part individually, not a a whole. 008 Lecture Note - Toy Car UAM Proble with Two Different Acceleration.docx page of

8 Flipping Phyic Lecture Note: Undertanding Uniforly Accelerated Motion We uually look at the dienion for acceleration a: a Δv Δv or every econd Today we are going to look at the dienion for acceleration a: a Exaple #: A ball i releaed fro ret and ha an acceleration of eter per econd every econd. a What i the velocity of the ball at t,, 3, 4 and 5 econd? b If the initial poition of the ball i zero, what i the poition of the ball at t,, 3, 4 and 5 econd? every econd, then the velocity will increae by every econd. At t 0, v 0 ; at t, v ; at t, v 4 ; at t 3, v 6 ; at t 4, v 8 & at t 5 v 0. Part b: Δx v i + a 0 + Δx Δx ; Δx 4 Part a: If the initial velocity of the ball i zero and the acceleration i Δx ; Δx ; Δx Exaple #: A ball i given an initial velocity of -0 / and ha an acceleration of eter per econd every econd. a What i the velocity of the ball at t,, 3, 4 and 5 econd? b If the initial poition of the ball i 5 eter, what i the poition of the ball at t,, 3, 4 and 5 econd? and the acceleration i every econd, then the velocity will increae by every econd. At t 0, v -0 ; at t, v -8 ; at t, v -6 ; at t 3, v -4 ; at t 4, v - & at t 5 v 0. Part a: If the initial velocity of the ball i -0 Δx x f x i v i + a x f x f x f ; x f Part b: x 3f ; x 4f Lecture Note - Undertanding Uniforly Accelerated Motion.docx ; x 5 f page of

9 Flipping Phyic Lecture Note: Undertanding Intantaneou and Average Velocity uing a Graph Intantaneou Velocity: The velocity at a pecific point in tie. - The UAM variable Velocity Final and Velocity initial are intantaneou velocitie becaue they are at pecific point in tie. Average Velocity: The velocity over a tie period. - v Δx i an average velocity becaue i the tie period over which the velocity occur. Exaple Graph: 8.0# Poition'' 7.0# 6.0# 5.0#.0#.0#.0#.0# 5.0# 6.0# 7.0# 8.0# 9.0#.0#.0# 5.0# 6.0# 7.0# 8.0# Tie'' v Δx Δx x f xi x5 x0 0 v 0 5ec 0 t f ti t5 t V0-5 ec > An average velocity becaue it i a tie period fro 0 to 5 econd. v 5 0ec Δx x0 x t0 t again, an average velocity Velocity at 6 econd, at 7 econd, at econd are all equal to.0 /. All are at a pecific point in tie and therefore intantaneou velocitie. Note: It the lope of the line, which we have hown to be velocity. v 0 7ec Δx x7 x t7 t Lecture Note - Undertanding Intantaneou and Average Velocity uing a Graph.docx page of

10 Flipping Phyic Lecture Note: Graphical UAM Exaple Proble Poition'' Exaple Proble: Auing an initial poition of zero, coplete the epty graph. aue ig fig pleae note: in the proble, only the velocity veru tie graph wa given, the other two were blank We know the acceleration i contant and thi i a graph of Uniforly Accelerated Motion becaue the lope of the velocity v. tie graph i contant and the lope of a velocity v. tie graph i acceleration. 9.0# 8.0# 7.0# 6.0# 5.0#.0#.0# a.0#.0# Δv v f vi a v f vi v f vi + a Tie'' a Therefore the equation definition of acceleration: Velcoity'/' And the UAM equation: v f vi + a Are equivalent and we can ue either to find acceleration. 7.0# 6.0# 5.0#.0#.0# a Δv v f vi t f ti 3 0 Therefore on the acceleration v. tie graph we draw a horizontal line with a lope of zero at a value of.0 /..0#.0# Tie'' Acceleration'/ ^' Δv.5#.0#.5#.0# The poition a a function of tie graph i lightly ore coplicated. We know: - The initial poition i zero, becaue it wa tated in the proble. - The lope of the line hould increae a tie increae becaue the velocity increae. In other word, it i an upward loping curve. - The lope of the poition v. tie graph tart at zero becaue the initial velocity i zero. - We can ue a UAM equation becaue the acceleration i contant. Now we need to pick oe tie and tart deterining diplaceent..0#.0# Tie'' v f vi v f vi t f ti Δx0 v v0 t t Δx0 v v0 t t Δx0 3 v3 v0 t 3 t Δx 0.5# After you deterine your diplaceent, plot the point and then add the upward loping curve to connect the point. 00 Lecture Note - Graphical UAM Exaple Proble.docx page of

11 Flipping Phyic Lecture Note: Experientally Graphing Uniforly Accelerated Motion In the video a treet hockey puck i given an initial velocity to the left and the poition, velocity and acceleration a a function of tie are experientally deterined. The black quare are the experientally oberved data. In the poition and velocity a a function of tie graph, the blue curve/line i a bet-fit curve/line that bet approxiate and interpolate the data. 00 Lecture Note - Experientally Graphing Uniforly Accelerated Motion.docx page of

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: KEY Block: Date: 1. A change in velocity occur when the peed o an object change, or it direction o motion change, or both. Thee change in velocity can either be poitive

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration.

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration. Chapter 3 Motion in a Plane Practice Proble Solution Student Textbook page 80 1. Frae the Proble - Sketch and label a diagra of the otion. 40 v(/) 30 0 10 0 4 t () - The equation of otion apply to the

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

Unit I Review Worksheet Key

Unit I Review Worksheet Key Unit I Review Workheet Key 1. Which of the following tatement about vector and calar are TRUE? Anwer: CD a. Fale - Thi would never be the cae. Vector imply are direction-conciou, path-independent quantitie

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice inal (all 009) olution or Capu Learning Aitance Service at UCSB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train

More information

Unit 2 Linear Motion

Unit 2 Linear Motion Unit Linear Motion Linear Motion Key Term - How to calculate Speed & Ditance 1) Motion Term: a. Symbol for time = (t) b. Diplacement (X) How far omething travel in a given direction. c. Rate How much omething

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

HSC PHYSICS ONLINE KINEMATICS EXPERIMENT

HSC PHYSICS ONLINE KINEMATICS EXPERIMENT HSC PHYSICS ONLINE KINEMATICS EXPERIMENT RECTILINEAR MOTION WITH UNIFORM ACCELERATION Ball rolling down a ramp Aim To perform an experiment and do a detailed analyi of the numerical reult for the rectilinear

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Impulse. calculate the impulse given to an object calculate the change in momentum as the result of an impulse

Impulse. calculate the impulse given to an object calculate the change in momentum as the result of an impulse Add Important Impule Page: 386 Note/Cue Here NGSS Standard: N/A Impule MA Curriculum Framework (2006): 2.5 AP Phyic 1 Learning Objective: 3.D.2.1, 3.D.2.2, 3.D.2.3, 3.D.2.4, 4.B.2.1, 4.B.2.2 Knowledge/Undertanding

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

Related Rates section 3.9

Related Rates section 3.9 Related Rate ection 3.9 Iportant Note: In olving the related rate proble, the rate of change of a quantity i given and the rate of change of another quantity i aked for. You need to find a relationhip

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1.

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1. Exaple 1: 60 kg, v 1 100 N (wet), v 2 220 N (eat), a? Exaple 1: wo force parallel to the ground act upon a box with a a of 60 kg. One force i directed wet and ha a trength of 100 N. he other force i directed

More information

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation Colliion in Two Dienion: Glancing Colliion So ar, you have read aout colliion in one dienion. In thi ection, you will exaine colliion in two dienion. In Figure, the player i lining up the hot o that the

More information

3.3. The Derivative as a Rate of Change. Instantaneous Rates of Change. DEFINITION Instantaneous Rate of Change

3.3. The Derivative as a Rate of Change. Instantaneous Rates of Change. DEFINITION Instantaneous Rate of Change 3.3 The Derivative a a Rate of Change 171 3.3 The Derivative a a Rate of Change In Section 2.1, we initiated the tudy of average and intantaneou rate of change. In thi ection, we continue our invetigation

More information

POSTER PRESENTATION OF A PAPER BY: Alex Shved, Mark Logillo, Spencer Studley AAPT MEETING, JANUARY, 2002, PHILADELPHIA

POSTER PRESENTATION OF A PAPER BY: Alex Shved, Mark Logillo, Spencer Studley AAPT MEETING, JANUARY, 2002, PHILADELPHIA POSTER PRESETATIO OF A PAPER BY: Ale Shved, Mar Logillo, Spencer Studley AAPT MEETIG, JAUARY, 00, PHILADELPHIA Daped Haronic Ocillation Uing Air a Drag Force Spencer Studley Ale Shveyd Mar Loguillo Santa

More information

Frames of Reference and Relative Velocity

Frames of Reference and Relative Velocity 1.5 frame of reference coordinate ytem relative to which motion i oberved Frame of Reference and Relative Velocity Air how provide element of both excitement and danger. When high-peed airplane fly in

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 113 Engineering Mechanic TOPIC 8 KINEMATIC OF PARTICLES Lecturer: Roli Anang Dr. Mohd Yunu Ihak Dr. Tan Cher Siang Outline Introduction Rectilinear Motion Curilinear Motion Problem Introduction General

More information

Physics 20 Lesson 16 Friction

Physics 20 Lesson 16 Friction Phyic 0 Leon 16 riction In the previou leon we learned that a rictional orce i any orce that reit, retard or ipede the otion o an object. In thi leon we will dicu how riction reult ro the contact between

More information

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time?

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time? Unit 1 Leon 1 Invetigation 1 Think About Thi Situation Name: Conider variou port that involve downhill racing. Think about the factor that decreae or increae the time it take to travel from top to bottom.

More information

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes SPH4U/SPH3UW Unit.3 Appling Newton Law of Motion Page 1 of 7 Note Phic Tool Bo Solving Newton Law of Motion Proble o Read quetion to enure full undertanding o Draw and label a ree Bod Diagra o Separate

More information

Cumulative Review of Calculus

Cumulative Review of Calculus Cumulative Review of Calculu. Uing the limit definition of the lope of a tangent, determine the lope of the tangent to each curve at the given point. a. f 5,, 5 f,, f, f 5,,,. The poition, in metre, of

More information

Physics 30 Lesson 3 Impulse and Change in Momentum

Physics 30 Lesson 3 Impulse and Change in Momentum Phyic 30 Leon 3 Ipule and Change in Moentu I. Ipule and change in oentu According to Newton nd Law of Motion (Phyic Principle 1 on the Data Sheet), to change the otion (i.e. oentu) of an object an unbalanced

More information

Part I: Multiple-Choice

Part I: Multiple-Choice Part I: Multiple-Choice Circle your anwer to each quetion. Any other ark will not be given credit. Each ultiple-choice quetion i worth point for a total of 0 point. 1. The dead-quiet caterpillar drive

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions Pearon Phyic Level 0 Unit III Circular Motion, Work, and Energy: Unit III Review Solution Student Book page 6 9 Vocabulary. artificial atellite: a huan-ade object in orbit around a celetial body axi of

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

Chemistry I Unit 3 Review Guide: Energy and Electrons

Chemistry I Unit 3 Review Guide: Energy and Electrons Cheitry I Unit 3 Review Guide: Energy and Electron Practice Quetion and Proble 1. Energy i the capacity to do work. With reference to thi definition, decribe how you would deontrate that each of the following

More information

The University of Akron Descriptive Astronomy Department of Physics. 3650: Exam #2 SVD 10/12/17

The University of Akron Descriptive Astronomy Department of Physics. 3650: Exam #2 SVD 10/12/17 The Univerity of Akron Decriptive Atronoy Departent of Phyic 3650:130-001 Exa # SVD 10/1/17 1. What phyical quantity i ued to deterine the aount of inertia an object ha? (a) force (b) a (c) weight (d)

More information

Optics. Measuring the velocity of light Geometrical Optics. What you need:

Optics. Measuring the velocity of light Geometrical Optics. What you need: Geoetrical Optic Optic Meauring the velocity of light -01 What you can learn about Refractive index Wavelength Frequency Phae Modulation Electric field contant Magnetic field contant Principle: The intenity

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Iporan Linear Moion, Speed & Velociy Page: 136 Linear Moion, Speed & Velociy NGSS Sandard: N/A MA Curriculu Fraework (2006): 1.1, 1.2 AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3 Knowledge/Underanding

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

The Features For Dark Matter And Dark Flow Found.

The Features For Dark Matter And Dark Flow Found. The Feature For Dark Matter And Dark Flow Found. Author: Dan Vier, Alere, the Netherland Date: January 04 Abtract. Fly-By- and GPS-atellite reveal an earth-dark atter-halo i affecting the orbit-velocitie

More information

PHY 171 Practice Test 3 Solutions Fall 2013

PHY 171 Practice Test 3 Solutions Fall 2013 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford,

More information

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s BLM -6: Chapter Tet/Aeent. (a) D (b) Δd (0 ) ( 0 [E]) + 0 ( 0 [E]) ( 30 + 0) + 0 [E] Δd 00 [E] + 00 [E] + 50 [E] Δd 550 [E] (c) Refer to the calculation below. A) B) uu (0 0) [E] a [E] (0 0) uu (0 0) [E]

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

Tactics Box 2.1 Interpreting Position-versus-Time Graphs

Tactics Box 2.1 Interpreting Position-versus-Time Graphs 1D kineatic Retake Assignent Due: 4:32p on Friday, October 31, 2014 You will receive no credit for ites you coplete after the assignent is due. Grading Policy Tactics Box 2.1 Interpreting Position-versus-Tie

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis.

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis. Anwer key EAS 1600 Lab 1 (Clicker) Math and Science Tune-up Note: Student can receive partial credit for the graph/dienional analyi. For quetion 1-7, atch the correct forula (fro the lit A-I below) to

More information

Work and Energy Problems

Work and Energy Problems 06-08- orce F o trength 0N act on an object o a 3kg a it ove a ditance o 4. I F i perpendicular to the 4 diplaceent, the work done i equal to: Work and Energy Proble a) 0J b) 60J c) 80J d) 600J e) 400J

More information

TAP 518-7: Fields in nature and in particle accelerators

TAP 518-7: Fields in nature and in particle accelerators TAP - : Field in nature and in particle accelerator Intruction and inforation Write your anwer in the pace proided The following data will be needed when anwering thee quetion: electronic charge 9 C a

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011 NCAAPMT Calculu Challenge 011 01 Challenge #3 Due: October 6, 011 A Model of Traffic Flow Everyone ha at ome time been on a multi-lane highway and encountered road contruction that required the traffic

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. Erwan, whoe ma i 65 kg, goe Bungee jumping. He ha been in free-fall for 0 m when the bungee rope begin to tretch. hat will the maximum tretching of the rope be if the rope act like a pring with a 100 N/m

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

Newton s Laws & Inclined Planes

Newton s Laws & Inclined Planes GP: ewton Law & Inclined Plane Phyic Mcutt Date: Period: ewton Law & Inclined Plane The ormal orce, Static and Kinetic rictional orce The normal orce i the perpendicular orce that a urace exert on an object.

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

FORCES IN ONE DIMENSION

FORCES IN ONE DIMENSION Suppleental Proble ORCES I OE DIMESIO 1. You and your bike have a cobined a of 80 k. How uch brakin force ha to be applied to low you fro a velocity of 5 / to a coplete top in? vf vi 0.0 / 5.0 / a t t.0

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn 2007 R. C. Hibbeler. Publihed by Pearon Education, Inc., Upper Saddle River, J. All right reerved. Thi aterial i protected under all copyright law a they currently exit. o portion of thi aterial ay be

More information

Linear Momentum. calculate the momentum of an object solve problems involving the conservation of momentum. Labs, Activities & Demonstrations:

Linear Momentum. calculate the momentum of an object solve problems involving the conservation of momentum. Labs, Activities & Demonstrations: Add Important Linear Momentum Page: 369 Note/Cue Here NGSS Standard: HS-PS2-2 Linear Momentum MA Curriculum Framework (2006): 2.5 AP Phyic 1 Learning Objective: 3.D.1.1, 3.D.2.1, 3.D.2.2, 3.D.2.3, 3.D.2.4,

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

2 Motion. Contents. Overview

2 Motion. Contents. Overview Phyical Science 11th Edition Tillery Solution Manual Full Download: http://tetbanklive.co/download/phyical-cience-11th-edition-tillery-olution-anual/ Motion Content.1 Decribing Motion. Meauring Motion

More information

SAPTARSHI JEE/NEET-2014

SAPTARSHI JEE/NEET-2014 SAPTARSHI JEE/NEET-4 : Phyic Mark Time: Hour Note: For each wrong anwer, /4 th mark will be eucte. ) Two particle are releae from the ame height at an interval of. How long after the firt particle being

More information

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1 AP CHEM WKST KEY: Atoic Structure Unit Review p. 1 1) a) ΔE = 2.178 x 10 18 J 1 2 nf 1 n 2i = 2.178 x 10 18 1 1 J 2 2 6 2 = 4.840 x 10 19 J b) E = λ hc λ = E hc = (6.626 x 10 34 J )(2.9979 x 10 4.840 x

More information

SOLUTIONS FOR TUTORIAL QUESTIONS COURSE TEP Ideal motor speed = 1450rev/min x 12/120 = 145 rev/min

SOLUTIONS FOR TUTORIAL QUESTIONS COURSE TEP Ideal motor speed = 1450rev/min x 12/120 = 145 rev/min SOLUTIONS FOR TUTORIL QUESTIONS COURSE TE 49 ) Maxiu pup diplaceent i c /rev. Motor diplaceent i c /rev. a) t full pup diplaceent: Ideal otor peed 4rev/in x / 4 rev/in The lo in otor peed due to the voluetric

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

2. What two units of measurement are necessary for describing speed? Ans. Distance and time.

2. What two units of measurement are necessary for describing speed? Ans. Distance and time. Conceptual Physics-9 th edition Answers by R. E. Treblay Ch. 3 Pg.51 Review questions. What two units of easureent are necessary for describing speed? Ans. Distance and tie. 3. What kind of speed is registered

More information

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4.

2015 PhysicsBowl Solutions Ans Ans Ans Ans Ans B 2. C METHOD #1: METHOD #2: 3. A 4. 05 PhyicBowl Solution # An # An # An # An # An B B B 3 D 4 A C D A 3 D 4 C 3 A 3 C 3 A 33 C 43 B 4 B 4 D 4 C 34 A 44 E 5 E 5 E 5 E 35 E 45 B 6 D 6 A 6 A 36 B 46 E 7 A 7 D 7 D 37 A 47 C 8 E 8 C 8 B 38 D

More information

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension Phyic 30 Leon 1 Moentu and Conervation of Moentu in One Dienion I. Phyic rincile Student often ak e if Phyic 30 i harder than Phyic 0. Thi, of coure, deend on the atitude, attitude and work ethic of the

More information

24P 2, where W (measuring tape weight per meter) = 0.32 N m

24P 2, where W (measuring tape weight per meter) = 0.32 N m Ue of a 1W Laer to Verify the Speed of Light David M Verillion PHYS 375 North Carolina Agricultural and Technical State Univerity February 3, 2018 Abtract The lab wa et up to verify the accepted value

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 111, INTRODUCTORY PHYSICS I Saturday, 14 December 013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. Thi exam booklet ha 14 page. Make ure none are miing. There i an equation

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Matheatic Reviion Guide Introduction to Differential Equation Page of Author: Mark Kudlowki MK HOME TUITION Matheatic Reviion Guide Level: A-Level Year DIFFERENTIAL EQUATIONS Verion : Date: 3-4-3 Matheatic

More information

Velocity or 60 km/h. a labelled vector arrow, v 1

Velocity or 60 km/h. a labelled vector arrow, v 1 11.7 Velocity en you are outide and notice a brik wind blowing, or you are riding in a car at 60 km/, you are imply conidering te peed of motion a calar quantity. ometime, owever, direction i alo important

More information

* Physics is concerned with the measurements of the physical quantities which help to understand & relate the natural phenomena.

* Physics is concerned with the measurements of the physical quantities which help to understand & relate the natural phenomena. Unit Chapter Phyical eaureent - Phyic: I the cience concerned with the tudy of the univeral phenoena by etting up atheatical law & relation to explain the logically. * Phyic i concerned with the eaureent

More information

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum Mechanic Ocillation Torion pendulum LD Phyic Leaflet P.5.. Free rotational ocillation Meauring with a hand-held top-clock Object of the experiment g Meauring the amplitude of rotational ocillation a function

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam.

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam. Phyic 218: Exam 1 Cla of 2:20pm February 14th, 2012. Rule of the exam: 1. You have the full cla period to complete the exam. 2. Formulae are provided on the lat page. You may NOT ue any other formula heet.

More information

PHYSICS LAB Experiment 5 Fall 2004 FRICTION

PHYSICS LAB Experiment 5 Fall 2004 FRICTION FRICTION In thi experiment we will meaure the effect of friction on the motion of a body in contact with a particular urface. When a body lide or roll over another, it motion i oppoed by the force of friction

More information

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. De Broglie Wavelength Uncertainty Principle. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pyic 6C De Broglie Wavelengt Uncertainty Principle De Broglie Wavelengt Bot ligt and atter ave bot particle and wavelike propertie. We can calculate te wavelengt of eiter wit te ae forula: p v For large

More information