Section Induction motor drives

Size: px
Start display at page:

Download "Section Induction motor drives"

Transcription

1 Section nduction motor drive Electric Drive Sytem ntroduction he AC induction motor i by far the mot widely ued motor in the indutry. raditionally, it ha been ued in contant and lowly variable-peed (or adjutable-peed) drive application which do not cater for fat dynamic procee. Procee with fat dynamic repone of medium power range (a few hundred kw) have traditionally been driven by bruhed DC motor drive. At the low power end, bruhle PM DC and AC motor drive have become attractive alternative to bruhed DC motor drive. Due to recent elopment of everal new control technologie, uch a vector (indirect rotor flux oriented) and direct torque control, induction machine are now-a-day alo applied in highly dynamic application. he underlying reaon for thi i the fact that the cage induction motor i much cheaper and more rugged than DC or the PM AC motor. For thee reaon, the adjutable-peed induction motor drive till i the main workhore in indutry. hi ection tart with induction motor drive which fall into the adjutable-peed drive category. he control of thee drive i baed on the teady-tate equivalent circuit of the induction motor. t may be noted here that the dynamic performance (uch a acceleration and deceleration) of thi motor can not be addreed by thee teady-tate repreentation ecap uing the teady-tate equivalent circuit he underlying principle behind the operation of an induction motor i the concept of rotating magnetic field produced by the three-phae AC current in the pace ditributed tator winding. n the teady-tate, with inuoidal upply at a fixed frequency f 1, the peed of thi rotating field i given by N f p 1 yn1 rev/ec (5.1.1) f p p 1 1 yn1 mechanical rad/ec (5.1.) where f 1 i the upply frequency and p i the number of pole pair. For balanced three-phae upply and ditributed tator winding the air-gap field i ditributed inuoidally along the periphery of the rotor and will caue inuoidal voltage to be induced in the rotor winding when the rotor rotate at a contant peed N rot1. he conequent current that flow in the rotor circuit elop the torque that drive the rotor uch that it trie to follow the revolving field. n doing o it tend to minimie the voltage that are induced in it a well known effect potulated by Lenz. f the magnetic flux linkage with a tationary winding i repreented by mco f1t, it Nd induce a voltage e f1nmin1t where N i the number of turn of the dt winding, and f 1 i the frequency of the flux linkage with the tationary winding. n term of MS value, E 4.44N f1. m 1 July 011

2 Electric Drive Sytem n the cae of the induction motor, the rotor follow the air-gap flux with a peed which i lightly lower than the peed of the revolving field. he difference between the two peed i the lip peed. he effective rate of flux linkage of the rotor circuit i reduced due to the lip. hi lip i defined by Nyn1 Nrot1 yn1 rot1 (5.1.3) N yn1 yn1 where N rot1 and rot1 are rotor peed in mechanical rev/ec and rad/ec, repectively. Jut a the air-gap field peed rev/ec i expreed by Nyn1 f 1 / p, imilarly, the rotor peed may alo be given by Nrot1 f / p rev/ec, where f i rotor peed in Hz. t can be eaily hown that f1 f1 f fr (5.1.4) t hould be obviou that f 1, not f, i the frequency f r of the induced voltage and current in the rotor circuit. he magnitude of the voltage induced in the rotor i alo dependent on lip it being of zero amplitude and frequency when the rotor rotate exactly at ynchronou peed and of maximum amplitude and frequency (f 1 ) when the rotor i at tandtill. hu E E (5.1.5) tan dtill he teady-tate equivalent circuit he rotor circuit per-phae in the teady-tate (at contant frequency) can be repreented a X X E X E E 1 (a) (b) (c) Figure otor equivalent circuit he rotor repreentation when combined with the tator give the total per-phae equivalent circuit of figure Note that all rotor parameter have now been referred to the tator, taking into account the turn ratio between the tator and rotor. hu, a, X a X, 1 tan dtill E ae E and a tan dtill where a i the tator-rotor turn ratio. he ubcript tandtill ha been dropped in the equivalent circuit of figure 5.1., and henceforth, for the ake of brevity. July 011

3 Electric Drive Sytem 1 1 X 1 a A X 1 c c m X m E ae E 1 1 A Figure he exact per-phae equivalent circuit he c /X m branch of an induction motor repreentation can not be moved to the input terminal of the circuit, a can be done for a tranformer, without ignificant lo of accuracy. hi i due the air gap of the M which caue much larger magnetiing current than in a tranformer. he tator impedance voltage drop in an induction motor, a a reult, i much larger than in a tranformer. he approximate equivalent circuit of figure i however widely ued. Note that c appear to have been neglected, but thi i not entirely true. he iron lo repreented by c i now included in the no-load lo which i the power eloped in motor rotate with no-load lip nl. 1 when the 1 1 X 1 a A X m 1 X m E ae E 1 1 A Figure he approximate per-phae, teady-tate equivalent circuit of an induction motor Developed torque and - characteritic From the repreentation of figure , the following relationhip in term of motor parameter referred to the tator and the rotor lip can be found. Power in the rotor circuit, 3 E1 + 1L P = 3 = (5.1.6) Developed output power, 3 July 011

4 Electric Drive Sytem o Slip power, P P P l o (5.1.7) P P P P 3 (5.1.8) Developed output torque, P o rot1 3 1 / N rot1 Nm (5.1.9) 3 1 / N 1 rot1 3 / 3 / P N (5.1.10) yn1 yn1 yn1 From (5.1.) and (5.1.4) 1 3p 3p f f f 1 1 (5.1.11) For given motor parameter and input voltage 1, can be calculated uing hevenin repreentation, a hown in figure 5.1.4, of the equivalent circuit of figure h X h A X h A 1 Figure he hevenin equivalent circuit hu h h h X X (5.1.1) 4 July 011

5 3p h 1 h Xh X Electric Drive Sytem (5.1.13) where f h 1 1 ; f 1 being the tator upply frequency. X m 1 X X 1 1 m (5.1.14) jx jx Z jx m 1 1 h h h 1 j X1 Xm (5.1.15) Note that for X m >> ( 1 and X 1 ), h 1, X h X 1, and h 1. - characteritic of figure for variou input voltage can be obtained from equation (5.1.13). hee characteritic of an M for 1 in the range from 0.5pu to 1pu are a hown in figure Note the operating mode of the motor in motoring, generating and plugging mode of operation. n motoring mode, i.e, in quadrant 1 (Q1), the machine operate a a motor with poitive torque and peed, normally operating with a mall poitive lip (0.05 < < 0.1). n the regenerative mode in quadrant (Q), the machine peed i higher than the ynchronou peed 1, and the eloped torque i negative, hence the machine run a a generator becaue i now negative. n quadrant 4 (Q4), the machine operate in the braking mode. t terminal are interchanged, o that the ynchronou peed become negative. he operating lip exceed 1 and P o become negative even though P remain poitive (ee equation 5.1.3, & ). he negative P o implie that thi power mut be upplied by the mechanical load to the rotor, thu leading to ome braking. t may be noted that the regenerative mode of operation give more efficient and effective braking than plugging. Generating yn1 1 = 0.5 pu 1 = 0.7 pu 1 = 1 pu < 0 = 0 1 = 1 pu 1 = 0.7 pu 1 = 0.5 pu Motoring = 1 0 orque, Nm > 1 Plugging yn1 = Figure characteritic with variable voltage and contant input frequency 5 July 011

6 Electric Drive Sytem Operation with mall lip. From efficiency and motor heating conideration, it i not practical to operate induction machine with a high lip. For mall lip, H Xh X and From (5.1.13),. (5.1.16) h 3p h 1 h Xh X (5.1.17) hu, with mall lip, the eloped torque approximately given by p Nm (5.1.18) 3 h 1 Normally, the operating lip i mall and in the range: Normally alo, h Operation with high lip. Operation with high lip implie high rotor current (ee Eq ). hi alo implie high rotor power lo, compared to the output power P o or the total rotor power P (ee Eqn and 5.1.8). n other word, with high lip operation, efficiency of the motor fall and rotor temperature rie due to high rotor power lo. hu, high-lip operation hould be avoided. Fan and impeller type load require low torque at low peed and thu may be uitable for high-lip operation. Note that when operation i with high lip, ay at tarting, equation cannot be ued for calculating the eloped torque. Equation ha to be ued intead Condition for maximum eloped torque. he condition for the maximum mechanical (eloped) torque can be found by differentiating (5.1.17) and by equating d / d 0. Alternatively, the condition for maximum eloped torque hould be ame a the condition for maximum power tranfer into the rotor. hi condition i found to be m X X h h (5.1.19) m X X h h (5.1.0) From (5.1.13) or (5.1.17) 6 July 011

7 Electric Drive Sytem max 3p h 1 X X h h h Nm (5.1.1) Note that the maximum eloped torque, max, i independent of the rotor reitance. 7 July 011

Induction Motor Drive

Induction Motor Drive Induction Motor Drive 1. Brief review of IM theory.. IM drive characteritic with: Variable input voltage Variable rotor reitance Variable rotor power Variable voltage and variable frequency, VVVF drive

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed Overview: nduction Motor Motor operation & Slip Speed-torque relationhip Equivalent circuit model Tranformer Motor efficiency Starting induction motor Smith College, EGR 35 ovember 5, 04 Review Quetion

More information

No-load And Blocked Rotor Test On An Induction Machine

No-load And Blocked Rotor Test On An Induction Machine No-load And Blocked Rotor Tet On An Induction Machine Aim To etimate magnetization and leakage impedance parameter of induction machine uing no-load and blocked rotor tet Theory An induction machine in

More information

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical INDUCTION MOTO 1 CONSTUCTION Baic part of an AC motor : rotor, tator, encloure The tator and the rotor are electrical circuit that perform a electromagnet. CONSTUCTION (tator) The tator - tationary part

More information

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 6- Three-Phase Induction Motors. Instructor: Kai Sun Fall 2015 ECE 35 Electric Energy Sytem Component 6- Three-Phae Induction Motor Intructor: Kai Sun Fall 015 1 Content (Material are from Chapter 13-15) Component and baic principle Selection and application Equivalent

More information

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116 IJESR INERNAIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH ECHNOLOGY DIREC ORQUE CONROLLED INDUCION MOOR DRIVE FOR ORQUE RIPPLE REDUCION Bigyan Banet Department of Electrical Engineering, ribhuvan Univerity,

More information

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor The Influence of the Load Condition upon the Radial Ditribution of Electromagnetic Vibration and Noie in a Three-Phae Squirrel-Cage Induction Motor Yuta Sato 1, Iao Hirotuka 1, Kazuo Tuboi 1, Maanori Nakamura

More information

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine?

15 Problem 1. 3 a Draw the equivalent circuit diagram of the synchronous machine. 2 b What is the expected synchronous speed of the machine? Exam Electrical Machine and Drive (ET4117) 6 November 009 from 9.00 to 1.00. Thi exam conit of 4 problem on 4 page. Page 5 can be ued to anwer problem quetion b. The number before a quetion indicate how

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

Synchronous Machines - Structure

Synchronous Machines - Structure Synchronou Machine - Structure Synchronou Machine - Structure rotate at contant peed. primary energy converion device of the word electric power ytem. both generator and motor operation can draw either

More information

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronou Motor Drive by Conidering Magnetic Saturation Behrooz Majidi * Jafar Milimonfared * Kaveh Malekian * *Amirkabir

More information

Three Phase Induction Motors

Three Phase Induction Motors Chapter (8) hree Phae Induction Motor Introduction he three-phae induction otor are the ot widely ued electric otor in indutry. hey run at eentially contant peed fro no-load to full-load. However, the

More information

Dynamic Simulation of a Three-Phase Induction Motor Using Matlab Simulink

Dynamic Simulation of a Three-Phase Induction Motor Using Matlab Simulink Dynamic Simulation of a ThreePhae Induction Motor Uing Matlab Simulink Adel Aktaibi & Daw Ghanim, graduate tudent member, IEEE, M. A. Rahman, life fellow, IEEE, Faculty of Engineering and Applied Science,

More information

FUNDAMENTALS OF POWER SYSTEMS

FUNDAMENTALS OF POWER SYSTEMS 1 FUNDAMENTALS OF POWER SYSTEMS 1 Chapter FUNDAMENTALS OF POWER SYSTEMS INTRODUCTION The three baic element of electrical engineering are reitor, inductor and capacitor. The reitor conume ohmic or diipative

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overview Electrical Machine and Drive 7-9 1: Introduction, Maxwell equation, magnetic circuit 11-9 1.-3: Magnetic circuit, Princile 14-9 3-4.: Princile, DC machine 18-9 4.3-4.7: DC machine and drive 1-9

More information

Lecture 12 - Non-isolated DC-DC Buck Converter

Lecture 12 - Non-isolated DC-DC Buck Converter ecture 12 - Non-iolated DC-DC Buck Converter Step-Down or Buck converter deliver DC power from a higher voltage DC level ( d ) to a lower load voltage o. d o ene ref + o v c Controller Figure 12.1 The

More information

Representation of a Group of Three-phase Induction Motors Using Per Unit Aggregation Model A.Kunakorn and T.Banyatnopparat

Representation of a Group of Three-phase Induction Motors Using Per Unit Aggregation Model A.Kunakorn and T.Banyatnopparat epreentation of a Group of Three-phae Induction Motor Uing Per Unit Aggregation Model A.Kunakorn and T.Banyatnopparat Abtract--Thi paper preent a per unit gregation model for repreenting a group of three-phae

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Lecture Set 8 Induction Machines

Lecture Set 8 Induction Machines Lecture Set 8 Induction Machine S.D. Sudhoff Spring 2018 Reading Chapter 6, Electromechanical Motion Device, Section 6.1-6.9, 6.12 2 Sample Application Low Power: Shaded pole machine (mall fan) Permanent

More information

Simulation and Analysis of Linear Permanent Magnet Vernier Motors for Direct Drive Systems

Simulation and Analysis of Linear Permanent Magnet Vernier Motors for Direct Drive Systems Available online at www.ijpe-online.com vol. 3, no. 8, December 07, pp. 304-3 DOI: 0.3940/ijpe.7.08.p.3043 Simulation and Analyi of Linear Permanent Magnet Vernier Motor for Direct Drive Sytem Mingjie

More information

MATHEMATICAL MODELING OF INDUCTION MOTORS

MATHEMATICAL MODELING OF INDUCTION MOTORS 37 CHAPTER 3 MATHEMATICAL MODELING OF INDUCTION MOTORS To tart with, a well-known technique called the SVPWM technique i dicued a thi form the bai of the mathematical modeling of IM. Furthermore, the d

More information

Sensorless PM Brushless Drives

Sensorless PM Brushless Drives IEEE UK Chapter Seminar 15 December 3 Senorle PM Bruhle Drive Prof. D. Howe and Prof. Z. Q. Zhu The Univerity of Sheffield Electrical Machine & Drive Reearch Group Outline Review of enorle technique Zero-croing

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48) Chapter 5 SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lecture 41-48) 5.1 Introduction Power ytem hould enure good quality of electric power upply, which mean voltage and current waveform hould

More information

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with : 376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD Therefore by applying the lead compenator with ome gain adjutment : D() =.12 4.5 +1 9 +1 we get the compenated ytem with : PM =65, ω c = 22 rad/ec, o

More information

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks.

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks. EE 004 Final Solution : Thi wa a hr exam. A 60 Hz 4 pole -phae induction motor rotate at 740rpm. a) What i the lip? mark b) What i the peed o rotation o the rotor magnetic ield (in rpm)? mark The motor

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

Estimation of Temperature Rise in Stator Winding and Rotor Magnet of PMSM Based on EKF

Estimation of Temperature Rise in Stator Winding and Rotor Magnet of PMSM Based on EKF 2010 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010) IPCSIT vol. 53 (2012) (2012) IACSIT Pre, Singapore DOI: 10.7763/IPCSIT.2012.V53.No.2.37 Etimation of Temperature Rie

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

A Novel Start-Up Scheme of Stator Flux Oriented Vector Controlled Induction Motor Drive Without Torque Jerk

A Novel Start-Up Scheme of Stator Flux Oriented Vector Controlled Induction Motor Drive Without Torque Jerk A Novel Start-Up Scheme of Stator Flux Oriented Vector Controlled nduction Motor Drive Without Torque Jerk Tae-Won Chun, Meong-Kyu Choi * Bimal K. Boe Dept. of Electrical Engineering, Univerity Mu-Gu-Dong,

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

The Measurement of DC Voltage Signal Using the UTI

The Measurement of DC Voltage Signal Using the UTI he Meaurement of DC Voltage Signal Uing the. INRODUCION can er an interface for many paive ening element, uch a, capacitor, reitor, reitive bridge and reitive potentiometer. By uing ome eternal component,

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

Sensorless speed control including zero speed of non salient PM synchronous drives

Sensorless speed control including zero speed of non salient PM synchronous drives BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Senorle peed control including zero peed of non alient PM ynchronou drive H. RASMUSSEN Aalborg Univerity, Fredrik Bajer

More information

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL POWE YEM MALL INAL ABILIY ANALYI BAE ON E INAL Zheng Xu, Wei hao, Changchun Zhou Zheang Univerity, Hangzhou, 37 PChina Email: hvdc@ceezueducn Abtract - In thi paper, a method baed on ome tet ignal (et

More information

A NEW EQUIVALENT CIRCUIT OF THE THREE-PHASE INDUCTION MOTOR (CASE STUDIES:CURRENT AND POWER FACTOR OF THE MOTOR)

A NEW EQUIVALENT CIRCUIT OF THE THREE-PHASE INDUCTION MOTOR (CASE STUDIES:CURRENT AND POWER FACTOR OF THE MOTOR) VO. 1, NO. 3, DECEBER 017 SSN 1819-6608 ARPN Journal of Engineering and Applied Science 006-017 Aian Reearch Publihing Network (ARPN. All right reerved. www.arpnjournal.com A NEW EQUVAENT CRCUT OF THE

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

Simulink Implementation of Induction Machine Model A Modular Approach

Simulink Implementation of Induction Machine Model A Modular Approach Simulink Implementation of Induction Machine Model A Modular Approach Burak Ozpineci burak@ieee.org Oak Ridge National Laboratory P.O. Box 9 Oak Ridge, TN 78-67 Abtract - In thi paper, a modular Simulink

More information

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC SPEED CONTROLLER FOR STEADY/DYNAMIC STATE RESPONSE

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC SPEED CONTROLLER FOR STEADY/DYNAMIC STATE RESPONSE DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC SPEED CONTROLLER FOR STEADY/DYNAMIC STATE RESPONSE 1 C. MOHAN RAJ, 2 K.KEERTHIVASAN, 3 RANJITH KUMAR DINAKARAN, 4 N.PUSHPALATHA 1

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

Lecture 23 Date:

Lecture 23 Date: Lecture 3 Date: 4.4.16 Plane Wave in Free Space and Good Conductor Power and Poynting Vector Wave Propagation in Loy Dielectric Wave propagating in z-direction and having only x-component i given by: E

More information

Per Unit Analysis. Single-Phase systems

Per Unit Analysis. Single-Phase systems Per Unit Analyi The per unit method of power ytem analyi eliminate the need for converion of voltae, current and impedance acro every tranformer in the circuit. n addition, the need to tranform from 3-

More information

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid Comparion of Hardware Tet with SIMULINK Model of UW Microgrid Introduction Thi report include a detailed dicuion of the microource available on the Univerity- of- Wiconin microgrid. Thi include detail

More information

Open Access Study of Direct Torque Control Scheme for Induction Motor Based on Torque Angle Closed-Loop Control. Xuande Ji *, Daqing He and Yunwang Ge

Open Access Study of Direct Torque Control Scheme for Induction Motor Based on Torque Angle Closed-Loop Control. Xuande Ji *, Daqing He and Yunwang Ge Send Order for Reprint to reprint@benthamcience.ae 6 The Open Electrical & Electronic Engineering Journal, 25, 9, 669 Open Acce Study of Direct Torque Control Scheme for Induction Motor Baed on Torque

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

Sampling and the Discrete Fourier Transform

Sampling and the Discrete Fourier Transform Sampling and the Dicrete Fourier Tranform Sampling Method Sampling i mot commonly done with two device, the ample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquire a CT ignal at

More information

18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation.

18 Problem 1. 7 d Sketch a cross section of a switched reluctance machine and explain the principle of operation. Exam Electrical Machine and Drive (ET4117) 9 November 01 from 14.00 to 17.00. Thi exam conit of 3 roblem on 3 age. Page 5 can be ued to anwer roblem 4 quetion a. The number before a quetion indicate how

More information

VARIABLE speed drive systems are essential in

VARIABLE speed drive systems are essential in 1 Senorle Field Orientation Control of Induction Motor Uing Reduced Order Oberver R. Mehram, S. Bahadure, S. Matani, G. Datkhile, T. Kumar, S. Wagh Electrical Engineering Department Veermata Jijabai Technological

More information

RECURSIVE LEAST SQUARES HARMONIC IDENTIFICATION IN ACTIVE POWER FILTERS. A. El Zawawi, K. H. Youssef, and O. A. Sebakhy

RECURSIVE LEAST SQUARES HARMONIC IDENTIFICATION IN ACTIVE POWER FILTERS. A. El Zawawi, K. H. Youssef, and O. A. Sebakhy RECURSIVE LEAST SQUARES HARMONIC IDENTIFICATION IN ACTIVE POWER FILTERS A. El Zawawi, K. H. Youef, and O. A. Sebakhy Department of Electrical Engineering, Alexandria Univerity, Alexandria 21544, Egypt.P.O.

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Determination of the local contrast of interference fringe patterns using continuous wavelet transform

Determination of the local contrast of interference fringe patterns using continuous wavelet transform Determination of the local contrat of interference fringe pattern uing continuou wavelet tranform Jong Kwang Hyok, Kim Chol Su Intitute of Optic, Department of Phyic, Kim Il Sung Univerity, Pyongyang,

More information

ECE Linear Circuit Analysis II

ECE Linear Circuit Analysis II ECE 202 - Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

Loss Minimization in an Induction Motor Driven by a Voltage-Source-Inverter

Loss Minimization in an Induction Motor Driven by a Voltage-Source-Inverter Aian J. Energy Environ., Vol. 3 Iue 1-, (00), pp. 53-78 Lo Minimization in an Induction Motor Driven by a Voltage-Source-Inverter S. Sujitjorn and K-L. Areerak School of Electrical Engineering, Suranaree

More information

Improving Power System Transient Stability with Static Synchronous Series Compensator

Improving Power System Transient Stability with Static Synchronous Series Compensator American Journal of Applied Science 8 (1): 77-81, 2011 ISSN 1546-9239 2010 Science Pulication Improving Power Sytem Tranient Staility with Static Synchronou Serie Compenator Prechanon Kumkratug Diviion

More information

Function and Impulse Response

Function and Impulse Response Tranfer Function and Impule Repone Solution of Selected Unolved Example. Tranfer Function Q.8 Solution : The -domain network i hown in the Fig... Applying VL to the two loop, R R R I () I () L I () L V()

More information

PI control system design for Electromagnetic Molding Machine based on Linear Programing

PI control system design for Electromagnetic Molding Machine based on Linear Programing PI control ytem deign for Electromagnetic Molding Machine baed on Linear Programing Takayuki Ihizaki, Kenji Kahima, Jun-ichi Imura*, Atuhi Katoh and Hirohi Morita** Abtract In thi paper, we deign a PI

More information

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

Feedback Control Systems (FCS)

Feedback Control Systems (FCS) Feedback Control Sytem (FCS) Lecture19-20 Routh-Herwitz Stability Criterion Dr. Imtiaz Huain email: imtiaz.huain@faculty.muet.edu.pk URL :http://imtiazhuainkalwar.weebly.com/ Stability of Higher Order

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Identification of Short-circuit and Induction Motor Starting Events on Power Systems Monitoring and Protection Using Instantaneous Space Vectors

Identification of Short-circuit and Induction Motor Starting Events on Power Systems Monitoring and Protection Using Instantaneous Space Vectors 1 dentification of Short-circuit and nduction Motor Starting Event on Power Sytem Monitoring and Protection Uing ntantaneou Space Vector D. L. Milanez Abtract hi document preent the application of recently

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

Axial Unbalanced Magnetic Force in a Permanent Magnet Motor Due to a Skewed Magnet and Rotor Eccentricities

Axial Unbalanced Magnetic Force in a Permanent Magnet Motor Due to a Skewed Magnet and Rotor Eccentricities IEEE TRANSACTIONS ON MAGNETICS, VOL. 53, NO. 11, NOVEMBER 217 82155 Axial Unbalanced Magnetic Force in a Permanent Magnet Motor Due to a Skewed Magnet and Rotor Eccentricitie Chi Ho Kang, Kyung Jin Kang,

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial :. PT_EE_A+C_Control Sytem_798 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar olkata Patna Web: E-mail: info@madeeay.in Ph: -4546 CLASS TEST 8-9 ELECTRICAL ENGINEERING Subject

More information

Copyright 1967, by the author(s). All rights reserved.

Copyright 1967, by the author(s). All rights reserved. Copyright 1967, by the author(). All right reerved. Permiion to make digital or hard copie of all or part of thi work for peronal or claroom ue i granted without fee provided that copie are not made or

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

Liquid cooling

Liquid cooling SKiiPPACK no. 3 4 [ 1- exp (-t/ τ )] + [( P + P )/P ] R [ 1- exp (-t/ τ )] Z tha tot3 = R ν ν tot1 tot tot3 thaa-3 aa 3 ν= 1 3.3.6. Liquid cooling The following table contain the characteritic R ν and

More information

II. DYNAMIC MACHINE MODEL OF AN INDUCTION MOTOR

II. DYNAMIC MACHINE MODEL OF AN INDUCTION MOTOR Direct Torque Control Senorle nduction Motor Drive Uing Space Vector Modulation Manoj Bhaurao Deokate, D. N. Katole 2, R.V.Humane Reearch Scholar, Aitant Profeor, Department of Electrical Engineering,

More information

J. Electrical Systems 6-3 (2010): A COMPARATIVE STUDY ON PERFORMANCE IMPROVEMENT OF A PHOTOVOLTAIC PUMPING SYSTEM

J. Electrical Systems 6-3 (2010): A COMPARATIVE STUDY ON PERFORMANCE IMPROVEMENT OF A PHOTOVOLTAIC PUMPING SYSTEM A. Betka A.Moui J. Electrical Sytem 6- (00): 6-5 A COMPARATIE STUDY ON PERFORMANCE IMPROEMENT OF A PHOTOOLTAIC PUMPING SYSTEM Thi paper ugget how an optimal operation of a photovoltaic pumping ytem baed

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

µ-analysis OF INDIRECT SELF CONTROL OF AN INDUCTION MACHINE Henrik Mosskull

µ-analysis OF INDIRECT SELF CONTROL OF AN INDUCTION MACHINE Henrik Mosskull -ANALYSIS OF INDIRECT SELF CONTROL OF AN INDUCTION MACHINE Henrik Mokull Bombardier Tranportation, SE-7 7 Väterå, Sweden S, Automatic Control, KTH, SE- Stockholm, Sweden Abtract: Robut tability and performance

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Quantifying And Specifying The Dynamic Response Of Flowmeters

Quantifying And Specifying The Dynamic Response Of Flowmeters White Paper Quantifying And Specifying The Dynamic Repone Of Flowmeter DP Flow ABSTRACT The dynamic repone characteritic of flowmeter are often incompletely or incorrectly pecified. Thi i often the reult

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances ECE 350 Root Locu Deign Example Recall the imple crude ervo from lab G( ) 0 6.64 53.78 σ = = 3 23.473 PI To eliminate teady-tate error (for contant input) & perfect reection of contant diturbance Note:

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Analysis of Prevention of Induction Motors Stalling by Capacitor Switching

Analysis of Prevention of Induction Motors Stalling by Capacitor Switching 16th NTIONL POWER SYSTEMS CONFERENCE, 15th-17th DECEMER, 2010 260 nalyi of Prevention of Induction Motor Stalling by Capacitor Switching S.Maheh and P.S Nagendra rao Department of Electrical Engineering

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency epone hapter 7 A. Kruger Frequency epone- ee page 4-5 of the Prologue in the text Important eview co Thi lead to the concept of phaor we encountered in ircuit In Linear

More information

Experimental Direct Torque Control Induction Motor Drive with Modified Flux Estimation and Speed control Algorithm.

Experimental Direct Torque Control Induction Motor Drive with Modified Flux Estimation and Speed control Algorithm. Experimental Direct Torque Control Induction Motor Drive with Modified Flux Etimation and Speed control Algorithm. Bhoopendra ingh, Shailendra Jain 2, Sanjeet Dwivedi 3 (RGTU, Bhopal), 2 (MANIT Bhopal),

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Sensorless PMSM Field Oriented Control Solution Based on TI Cortex-M3

Sensorless PMSM Field Oriented Control Solution Based on TI Cortex-M3 Senorle PMSM Field Oriented Control Solution Baed on TI Cortex-M3 AEDS Team Technical Service Arrow Steven Wang Agenda Permanent Magnet Synchronou Motor Field Oriented Control Realization Senorle Control

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information