Related Rates section 3.9

Size: px
Start display at page:

Download "Related Rates section 3.9"

Transcription

1 Related Rate ection 3.9 Iportant Note: In olving the related rate proble, the rate of change of a quantity i given and the rate of change of another quantity i aked for. You need to find a relationhip between the two quantitie to be able to olve the proble. Exaple : The area of a quare i decreaing at the rate 1 when it ide i 570 c. Find the rate of change of it perieter at that oent; decribe it in ter of. Solution. Let u denote the ide by x, the area by A, and the perieter by P. So: P = 4x A = x Along the path, we change all quantitie of length to eter and all quantitie of tie to ute. Then A = x da = x dx (1) For a particular oent we are given da = 1 = ( 1)(60) x = 570 c = 5.7 (1) 60 = (5.7) dx dx = Next Step: P = 4x dp = 4 dx dp = (4) ( ) 60 =

2 Exaple (fro the textbook): A an walk along a traight path at a peed of 1.5. A earchlight i located on the ground 6 fro the path and i kept focued on the an. At what rate i the earchlight rotating when the an i 8 fro the point on the path cloet to the earchlight?. Solution. According to the figure, we are given that dx = 1.5 dθ and we want to find. x 6 = tan θ x = 6 tan θ ( ) dx = (6 ec θ) dθ Subtitute the value dx = 1.5 : 1.5 = (6 ec θ) dθ dθ = ec θ = 1.5 co θ 6 = co θ 4 = ( ) adjacent hypotenue 4 = ( ) = = Page

3 Exaple (fro the textbook): Air i being puped into a phere balloon o that it volue increae at a rate of 100 c3. How fat i the radiu of the balloon i increaing when the diaeter i 50 c?. Solution. We are given that : = 100 c3 We want to find : when r = 5 c So, here i what we do for it : V = 4 3 πr3 = = 4πr ubtitute 100 = 4π(5) = 100 4π(5) = 1 5 π c and thi value i poitive, eaning that the radiu i increaing, a expected. Page 3

4 Exaple : Air i being puped out of a phere balloon o that it volue decreae at a rate of 50 c3. How fat i the radiu of the balloon i decreaing when the diaeter i 10 c?. Solution: Solution. We are given that : = 50 c3 be careful about the negative ign We want to find : when r = 5 c So, here i what we do for it : V = 4 3 πr3 = = 4πr ubtitute 50 = 4π(5) = 50 4π(5) = 1 π c and thi value i negative, eaning that the radiu i decreaing, a expected. Page 4

5 Exaple : The area of a quare i decreaing at the rate 1 when it ide i 570 c. Find the rate of change of it perieter at that oent; decribe it in ter of. Solution: Let u denote the ide by x, the area by A, and the perieter by P. So: P = 4x A = x Along the path, we change all quantitie of length to eter and all quantitie of tie to ute. Then A = x da For a particular oent we are given = x dx (1) da = 1 = ( 1)(60) x = 570 c = 5.7 (1) 60 = (5.7) dx dx = Next Step: P = 4x dp = 4 dx dp = (4) ( ) 60 = Page 5

6 Iportant note 1. Suppoe that f(t) i a function of tie t. When we ay f in decreaing at the rate of 0.3 per econd at tie t = t 0 we ean that the derivative of f with repect to t at tie t 0 i 0.3, i.e. f (t 0 ) = 0.3. and, when we ay that f i increaing at the rate of 1.7 at tie t = t 0, we ean that f (t 0 ) = 1.7. Iportant note. Suppoe that f(t) i a function of tie t and that the unit of eaureent for the value f(t) i eter. Suppoe that the unit of eaureent for t i econd. Then the value f(t) f(t 0 ) are alo eaured in eter, and the value t t 0 are eaured in econd, therefore the unit of eaureent for the quotient f(t) f(t 0 ) t t 0 i eter econd f (t 0 ) = li t t0 f(t) f(t 0 ), and then the unit of eaureent for the liit t t 0 i eter econd. And o on,... Iportant note 3. Ue negative nuber to denote decreaing rate of change. See the following exaple for thi note. Page 6

7 Exaple (FALL ier exa). Sand i poured into a conical pile at a rate of 0 3 per ute. The diaeter of the cone i alway equal to it height. How fat i the height of the conical pile increaing when the pile i 10 high?. Solution: Given: = 0 and r = h dh? when h = 10 V = 1 3 πr h V = 1π ( ) h 3 h = π 1 h3 = π 1 (3h ) dh = π dh h 4 0 = π dh (10) dh = 4 4 5π Page 7

8 Exaple (FALL ier exa). The altitude of a triangle i increaing at a rate of 1 c, while the area i increaing at a rate of c (ee figure below). At what rate i the bae of the triangle changing when the altitude i 10 c and the area i 100 c Solution: Given: dh = 1 and da = db? when h = 10 and A = 100 Step 1. We find the value of all variable at that oent: At that oent we have h = 10 and A = 100 o then: A = 1 b h 100 = 1 (b)(10) b = 0 Step. We differentiate the equation with repect to the tie; we u the prie to refer to the derivative with repect to the tie: A = 1 bh A = 1 {b h + b h } = 1 (b )(10) + 1 (0) (1) b = 1.6 (at that oent) db = 1.6 c Page 8

9 Exaple : A particle i oving along the curve y = + x + 1. At the intant that the oving particle pae through the point (3, 4), it x-coordinate i increaing at a rate of 8 c. How fat i the y-coordinate changing at that oent?. Solution: Step 1. We find the value of all variable at that oent: At that oent we have x = 3 and y = 4. Step. We differentiate the equation with repect to the tie; we u the prie to refer to the derivative with repect to the tie: y = + (x + 1) 1 y = { 1 (x + 1) 1 } (x + 1) = { 1 (x + 1) 1 } (x + 0) = x x + 1 = = So, at that oent we have: dy = Page 9

10 Exaple (Winter Quiz 6). The length of a rectangle i increaing at a rate of 8 c and it wih i increaing at a rate of 3 c. How fat i the area of the rectangle increaing, when the length i 0 c and the wih i 10 c. Solution: Step 1. We find the value of all variable at that oent: At that oent we have x = 10 and y = 0. Step. Let the area be denoted by A. Then A = xy We differentiate the equation with repect to the tie; we u the prie to refer to the derivative with repect to the tie: A = x y + xy A = (3)(0) + (10)(8) = 140 So, at that oent we have: da = 140 c Page 10

Sample Problems. Lecture Notes Related Rates page 1

Sample Problems. Lecture Notes Related Rates page 1 Lecture Note Related Rate page 1 Sample Problem 1. A city i of a circular hape. The area of the city i growing at a contant rate of mi y year). How fat i the radiu growing when it i exactly 15 mi? (quare

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

MCB4UW Handout 4.11 Related Rates of Change

MCB4UW Handout 4.11 Related Rates of Change MCB4UW Handout 4. Related Rate of Change. Water flow into a rectangular pool whoe dimenion are m long, 8 m wide, and 0 m deep. If water i entering the pool at the rate of cubic metre per econd (hint: thi

More information

Handout 4.11 Solutions. Let x represent the depth of the water at any time Let V represent the volume of the pool at any time

Handout 4.11 Solutions. Let x represent the depth of the water at any time Let V represent the volume of the pool at any time MCBUW Handout 4. Solution. Label 0m m 8m Let repreent the depth of the water at any time Let V repreent the volume of the pool at any time V 96 96 96 The level of the water i riing at the rate of m. a).

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn 2007 R. C. Hibbeler. Publihed by Pearon Education, Inc., Upper Saddle River, J. All right reerved. Thi aterial i protected under all copyright law a they currently exit. o portion of thi aterial ay be

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Matheatic Reviion Guide Introduction to Differential Equation Page of Author: Mark Kudlowki MK HOME TUITION Matheatic Reviion Guide Level: A-Level Year DIFFERENTIAL EQUATIONS Verion : Date: 3-4-3 Matheatic

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration.

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration. Chapter 3 Motion in a Plane Practice Proble Solution Student Textbook page 80 1. Frae the Proble - Sketch and label a diagra of the otion. 40 v(/) 30 0 10 0 4 t () - The equation of otion apply to the

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

Scale Efficiency in DEA and DEA-R with Weight Restrictions

Scale Efficiency in DEA and DEA-R with Weight Restrictions Available online at http://ijdea.rbiau.ac.ir Int. J. Data Envelopent Analyi (ISSN 2345-458X) Vol.2, No.2, Year 2014 Article ID IJDEA-00226, 5 page Reearch Article International Journal of Data Envelopent

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

Find a related rate. Use related rates to solve real-life problems. Finding Related Rates

Find a related rate. Use related rates to solve real-life problems. Finding Related Rates 8 Chapter Differentiation.6 Related Rate r Find a related rate. Ue related rate to olve real-life problem. r r h h Finding Related Rate You have een how the Chain Rule can be ued to find d implicitl. Another

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Calculus I - Lecture 14 - Related Rates

Calculus I - Lecture 14 - Related Rates Calculus I - Lecture 14 - Related Rates Lecture Notes: http://www.math.ksu.edu/ gerald/math220d/ Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html Gerald Hoehn (based on notes

More information

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis.

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis. Anwer key EAS 1600 Lab 1 (Clicker) Math and Science Tune-up Note: Student can receive partial credit for the graph/dienional analyi. For quetion 1-7, atch the correct forula (fro the lit A-I below) to

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Dimensions and Units

Dimensions and Units Civil Engineering Hydraulics Mechanics of Fluids and Modeling Diensions and Units You already know how iportant using the correct diensions can be in the analysis of a proble in fluid echanics If you don

More information

Unit 2 Linear Motion

Unit 2 Linear Motion Unit Linear Motion Linear Motion Key Term - How to calculate Speed & Ditance 1) Motion Term: a. Symbol for time = (t) b. Diplacement (X) How far omething travel in a given direction. c. Rate How much omething

More information

Engineering Mechanics - Dynamics Chapter 12

Engineering Mechanics - Dynamics Chapter 12 Engineering Mechanic - Dynaic Chapter 1 ρ 50 ft t 4 3 ft c 3 ft 3 t 1 3 v t + ct a t + ct At t 1 v 1 t 1 + ct 1 v 1 a t1 + ct 1 a n1 ρ a 1 a t1 + a n1 a 1 1.63 ft Ditance traveled d 1 t 1 c + 3 t 1 3 d

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other. However,

More information

Optics. Measuring the velocity of light Geometrical Optics. What you need:

Optics. Measuring the velocity of light Geometrical Optics. What you need: Geoetrical Optic Optic Meauring the velocity of light -01 What you can learn about Refractive index Wavelength Frequency Phae Modulation Electric field contant Magnetic field contant Principle: The intenity

More information

PHY 171 Practice Test 3 Solutions Fall 2013

PHY 171 Practice Test 3 Solutions Fall 2013 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford,

More information

AP Calculus AB Chapter 2 Test Review #1

AP Calculus AB Chapter 2 Test Review #1 AP Calculus AB Chapter Test Review # Open-Ended Practice Problems:. Nicole just loves drinking chocolate milk out of her special cone cup which has a radius of inches and a height of 8 inches. Nicole pours

More information

3.3. The Derivative as a Rate of Change. Instantaneous Rates of Change. DEFINITION Instantaneous Rate of Change

3.3. The Derivative as a Rate of Change. Instantaneous Rates of Change. DEFINITION Instantaneous Rate of Change 3.3 The Derivative a a Rate of Change 171 3.3 The Derivative a a Rate of Change In Section 2.1, we initiated the tudy of average and intantaneou rate of change. In thi ection, we continue our invetigation

More information

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector 34 C HAPTER 1 KINEMATICS OF A PARTICLE 1 1.5 Curvilinear Motion: Rectangular Component Occaionall the motion of a particle can bet be decribed along a path that can be epreed in term of it,, coordinate.

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or =

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or = Name Date Chapter 7 Fair Game Review Complete the number entence with , or =. 1. 3.4 3.45 2. 6.01 6.1 3. 3.50 3.5 4. 0.84 0.91 Find three decimal that make the number entence true. 5. 5.2 6. 2.65 >

More information

Days 3 & 4 Notes: Related Rates

Days 3 & 4 Notes: Related Rates AP Calculus Unit 4 Applications of the Derivative Part 1 Days 3 & 4 Notes: Related Rates Implicitly differentiate the following formulas with respect to time. State what each rate in the differential equation

More information

Chapter K - Problems

Chapter K - Problems Chapter K - Problem Blinn College - Phyic 2426 - Terry Honan Problem K. A He-Ne (helium-neon) laer ha a wavelength of 632.8 nm. If thi i hot at an incident angle of 55 into a gla block with index n =.52

More information

Fair Game Review. Chapter 6. Evaluate the expression. 3. ( ) 7. Find ± Find Find Find the side length s of the square.

Fair Game Review. Chapter 6. Evaluate the expression. 3. ( ) 7. Find ± Find Find Find the side length s of the square. Name Date Chapter 6 Evaluate the epreion. Fair Game Review 1. 5 1 6 3 + 8. 18 9 + 0 5 3 3 1 + +. 9 + 7( 8) + 5 0 + ( 6 8) 1 3 3 3. ( ) 5. Find 81. 6. Find 5. 7. Find ± 16. 8. Find the ide length of the

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

Math 131. Related Rates Larson Section 2.6

Math 131. Related Rates Larson Section 2.6 Math 131. Related Rates Larson Section 2.6 There are many natural situations when there are related variables that are changing with respect to time. For example, a spherical balloon is being inflated

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

Solving Radical Equations

Solving Radical Equations 10. Solving Radical Equation Eential Quetion How can you olve an equation that contain quare root? Analyzing a Free-Falling Object MODELING WITH MATHEMATICS To be proficient in math, you need to routinely

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions

3.185 Problem Set 6. Radiation, Intro to Fluid Flow. Solutions 3.85 Proble Set 6 Radiation, Intro to Fluid Flow Solution. Radiation in Zirconia Phyical Vapor Depoition (5 (a To calculate thi viewfactor, we ll let S be the liquid zicronia dic and S the inner urface

More information

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at MATH 100, EXAM SOLUTIONS 1. Find an equation for the tangent line to at the point ( π 4, 0). f(x) = sin x cos x f (x) = cos(x) + sin(x) Thus, f ( π 4 ) = which is the slope of the tangent line at ( π 4,

More information

represented in the table? How are they shown on the graph?

represented in the table? How are they shown on the graph? Application. The El Pao Middle School girl baketball team i going from El Pao to San Antonio for the Tea tate championhip game. The trip will be 0 mile. Their bu travel at an average peed of 0 mile per

More information

Chemistry I Unit 3 Review Guide: Energy and Electrons

Chemistry I Unit 3 Review Guide: Energy and Electrons Cheitry I Unit 3 Review Guide: Energy and Electron Practice Quetion and Proble 1. Energy i the capacity to do work. With reference to thi definition, decribe how you would deontrate that each of the following

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time?

time? How will changes in vertical drop of the course affect race time? How will changes in the distance between turns affect race time? Unit 1 Leon 1 Invetigation 1 Think About Thi Situation Name: Conider variou port that involve downhill racing. Think about the factor that decreae or increae the time it take to travel from top to bottom.

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

AP Calculus Related Rates Worksheet

AP Calculus Related Rates Worksheet AP Calculus Related Rates Worksheet 1. A small balloon is released at a point 150 feet from an observer, who is on level ground. If the balloon goes straight up at a rate of 8 feet per second, how fast

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

C4 "International A-level" (150 minute) papers: June 2014 and Specimen 1. C4 INTERNATIONAL A LEVEL PAPER JUNE 2014

C4 International A-level (150 minute) papers: June 2014 and Specimen 1. C4 INTERNATIONAL A LEVEL PAPER JUNE 2014 C4 "International A-level" (150 minute) papers: June 2014 and Specimen 1. C4 INTERNATIONAL A LEVEL PAPER JUNE 2014 1. f(x) = 2x 3 + x 10 (a) Show that the equation f(x) = 0 has a root in the interval [1.5,

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

Introduction to Differentials

Introduction to Differentials Introduction to Differentials David G Radcliffe 13 March 2007 1 Increments Let y be a function of x, say y = f(x). The symbol x denotes a change or increment in the value of x. Note that a change in the

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Modeling in the Frequency Domain

Modeling in the Frequency Domain T W O Modeling in the Frequency Domain SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Tranfer Function Finding each tranfer function: Pot: V i θ i 0 π ; Pre-Amp: V p V i K; Power Amp: E a V p 50

More information

The University of Akron Descriptive Astronomy Department of Physics. 3650: Exam #2 SVD 10/12/17

The University of Akron Descriptive Astronomy Department of Physics. 3650: Exam #2 SVD 10/12/17 The Univerity of Akron Decriptive Atronoy Departent of Phyic 3650:130-001 Exa # SVD 10/1/17 1. What phyical quantity i ued to deterine the aount of inertia an object ha? (a) force (b) a (c) weight (d)

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Notes on the geometry of curves, Math 210 John Wood

Notes on the geometry of curves, Math 210 John Wood Baic definition Note on the geometry of curve, Math 0 John Wood Let f(t be a vector-valued function of a calar We indicate thi by writing f : R R 3 and think of f(t a the poition in pace of a particle

More information

24P 2, where W (measuring tape weight per meter) = 0.32 N m

24P 2, where W (measuring tape weight per meter) = 0.32 N m Ue of a 1W Laer to Verify the Speed of Light David M Verillion PHYS 375 North Carolina Agricultural and Technical State Univerity February 3, 2018 Abtract The lab wa et up to verify the accepted value

More information

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice inal (all 009) olution or Capu Learning Aitance Service at UCSB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train

More information

Guidelines for implicit differentiation

Guidelines for implicit differentiation Guidelines for implicit differentiation Given an equation with x s and y s scattered, to differentiate we use implicit differentiation. Some informal guidelines to differentiate an equation containing

More information

Radicals and Rational Exponents

Radicals and Rational Exponents 6. Radical and Rational Exponent of a number? How can you write and evaluate an nth root Recall that you cube a number a follow. Symbol for cubing i rd power. = = 8 cubed i 8. To undo thi, take the cube

More information

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer Suppleental Material for Tranport Proce and Separation Proce Principle hapter 7 Principle of Unteady - State and onvective Ma Tranfer Thi chapter cover different ituation where a tranfer i taking place,

More information

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that Stochatic Calculu Example heet 4 - Lent 5 Michael Tehranchi Problem. Contruct a filtered probability pace on which a Brownian motion W and an adapted proce X are defined and uch that dx t = X t t dt +

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

Ocean currents II. Wind-water interaction and drag forces Ekman transport, circular and geostrophic flow General ocean flow pattern

Ocean currents II. Wind-water interaction and drag forces Ekman transport, circular and geostrophic flow General ocean flow pattern Ocean current II Wind-water interaction and drag orce Ekan tranport, circular and geotrophic low General ocean low pattern Wind-Water urace interaction Water otion at the urace o the ocean (ixed layer)

More information

Putnam 1997 (Problems and Solutions)

Putnam 1997 (Problems and Solutions) Putna 997 (Probles and Solutions) A. A rectangle, HOMF, has sides HO =and OM =5. A triangle ABC has H as the intersection of the altitudes, O the center of the circuscribed circle, M the idpoint of BC,

More information

Research Article An Extension of Cross Redundancy of Interval Scale Outputs and Inputs in DEA

Research Article An Extension of Cross Redundancy of Interval Scale Outputs and Inputs in DEA Hindawi Publihing Corporation pplied Matheatic Volue 2013, rticle ID 658635, 7 page http://dx.doi.org/10.1155/2013/658635 Reearch rticle n Extenion of Cro Redundancy of Interval Scale Output and Input

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

2 Motion. Contents. Overview

2 Motion. Contents. Overview Phyical Science 11th Edition Tillery Solution Manual Full Download: http://tetbanklive.co/download/phyical-cience-11th-edition-tillery-olution-anual/ Motion Content.1 Decribing Motion. Meauring Motion

More information

AP Calculus BC Chapter 4 AP Exam Problems. Answers

AP Calculus BC Chapter 4 AP Exam Problems. Answers AP Calculus BC Chapter 4 AP Exam Problems Answers. A 988 AB # 48%. D 998 AB #4 5%. E 998 BC # % 5. C 99 AB # % 6. B 998 AB #80 48% 7. C 99 AB #7 65% 8. C 998 AB # 69% 9. B 99 BC # 75% 0. C 998 BC # 80%.

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Lecture 3 Basic radiometric quantities.

Lecture 3 Basic radiometric quantities. Lecture 3 Baic radiometric quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation.. Baic introduction to electromagnetic field: Definition,

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Nae: CIRCLE YOUR DIVISION: Div. 1 (9:30 a) Div. (11:30 a) Div. 3 (:30 p) Prof. Ruan Prof. Nai Mr. Singh School of Mechanical Engineering Purdue Univerity ME315 Heat and Ma Tranfer Exa # edneday, October

More information

4.1 Implicit Differentiation

4.1 Implicit Differentiation 4.1 Implicit Differentiation Learning Objectives A student will be able to: Find the derivative of variety of functions by using the technique of implicit differentiation. Consider the equation We want

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

Phy 212: General Physics II 1/31/2008 Chapter 17 Worksheet: Waves II 1

Phy 212: General Physics II 1/31/2008 Chapter 17 Worksheet: Waves II 1 Phy : General Phyic /3/008 Chapter 7 orkheet: ae. Ethanol ha a denity o 659 kg/ 3. the peed o in ethanol i 6 /, what i it adiabatic bulk odulu? 9 N B = ρ = 8.90x0 ethanol ethanol. A phyic tudent eaure

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 6 C) - 12 (6x - 7)3

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 6 C) - 12 (6x - 7)3 Part B- Pre-Test 2 for Cal (2.4, 2.5, 2.6) Test 2 will be on Oct 4th, chapter 2 (except 2.6) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

PROBABILITY AND STATISTICS. Least Squares Regression

PROBABILITY AND STATISTICS. Least Squares Regression PROBABILITY AND STATISTICS Leat Square Regreion LEAST-SQUARES REGRESSION What doe correlation give u? If a catterplot how a linear relationhip one wa to ummarize the overall pattern of the catterplot i

More information

Recall that when you multiply a number by itself, you square the number. = 16 4 squared is = 4 2 = 4 The square root of 16 is 4.

Recall that when you multiply a number by itself, you square the number. = 16 4 squared is = 4 2 = 4 The square root of 16 is 4. 6.1 Propertie of Square Root How can you multiply and divide quare root? Recall that when you multiply a number by itelf, you quare the number. Symbol for quaring i nd power. = To undo thi, take the quare

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Related Rates Example 1 Example 2 Example 3 Example 4 Example 5. Related Rates. Tamara Kucherenko

Related Rates Example 1 Example 2 Example 3 Example 4 Example 5. Related Rates. Tamara Kucherenko Eample 1 Eample 2 Eample 3 Eample 4 Eample 5 Eample 1 Eample 2 Eample 3 Eample 4 Eample 5 In related rates problems we compute the rate of change of one quantity in terms of the rate of change of the other.

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

SOLUTION If link AB is rotating at v AB = 6 rad>s, determine the angular velocities of links BC and CD at the instant u = 60.

SOLUTION If link AB is rotating at v AB = 6 rad>s, determine the angular velocities of links BC and CD at the instant u = 60. 16 88. If link i rotating at v = 6 rad>, determine the angular velocitie of link C and CD at the intant u = 6. 25 mm 3 3 mm ω = 6 rad/ C 4 mm r IC - =.3co 3 =.2598 m r IC - C =.3co 6 =.15 m θ D v C = 1.5

More information

Solve for an unknown rate of change using related rates of change.

Solve for an unknown rate of change using related rates of change. Objectives: Solve for an unknown rate of change using related rates of change. 1. Draw a diagram. 2. Label your diagram, including units. If a quantity in the diagram is not changing, label it with a number.

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da 1 Related Rates In most related rates problems, we have an equation that relates a bunch of quantities that are changing over time. For example, suppose we have a right triangle whose base and height are

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

* Physics is concerned with the measurements of the physical quantities which help to understand & relate the natural phenomena.

* Physics is concerned with the measurements of the physical quantities which help to understand & relate the natural phenomena. Unit Chapter Phyical eaureent - Phyic: I the cience concerned with the tudy of the univeral phenoena by etting up atheatical law & relation to explain the logically. * Phyic i concerned with the eaureent

More information

Chapter 3.4 Practice Problems

Chapter 3.4 Practice Problems EXPECTED SKILLS: Chapter.4 Practice Problems Be able to solve related rates problems. It may be helpful to remember the following strategy:. Read the problem carefully. 2. Draw a diagram, if possible,

More information

Right Circular Cylinders A right circular cylinder is like a right prism except that its bases are congruent circles instead of congruent polygons.

Right Circular Cylinders A right circular cylinder is like a right prism except that its bases are congruent circles instead of congruent polygons. Volume-Lateral Area-Total Area page #10 Right Circular Cylinders A right circular cylinder is like a right prism except that its bases are congruent circles instead of congruent polygons. base height base

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information