PHY 171 Practice Test 3 Solutions Fall 2013

Size: px
Start display at page:

Download "PHY 171 Practice Test 3 Solutions Fall 2013"

Transcription

1 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford, Ohio, Wherea hing wo toat in Key Wet, Florida, Which hing ove with a larger angular peed errily adorned in hi crion thneed? a) hing One. b) hing wo. c) Both hing have the ae angular peed. d) Inufficient inforation. Solution: c he angular peed i the ae for any point in the rotating rigid body. he two hing are at different ditance fro the axi of rotation of the Earth (larger in Key Wet than in Oxford), but their linear peed are alo different (alo larger in Key Wet by a proportional aount) o, fro ω = v/r, their angular peed are equal. arry he next four quetion refer to the following ituation: arry pin a arry-goround of a = 100 kg and radiu = 1.5. he yte tart fro ret a the child applie a force of contant agnitude F = 15 N but changing direction, alway tangent to the edge of the erry-go round. he friction i negligible. Q: [4] Conidering the erry-go-round a a thin cylinder, what i the agnitude of it angular acceleration? a) rad/ b) 0.15 rad/ c) 0.0 rad/ d) None of the above. Solution: c he angular acceleration reult fro Newton nd law applied to the rotation under the torque correponding to the force F: F F I 0.0 I 1 rad Q3: [4] Conidering that arry ove cloe to the edge of the erry-go-round, what i the angular velocity in rotation per inute, rp of the erry-go-round after arry run 15 eter in a circle? a).4 rp b) 4.0 rp c) 9.5 rp d) 19 rp Solution: d Becaue arry ove a the point on the edge of the erry-go-round, the correponding angular diplaceent i given by the arc L = 15 that he travel, by Δθ = L/ = 10 rad. Furtherore, the tangent force i contant in agnitude and it ake a contant angle with repect to it ar (that i, the radiu), o it torque i contant. Hence, we can ue the kineatic of uniforly accelerated rotation: 0 rad rad 1 rot 60 ec ec π rad 1 in rp. Criven! arry ain t no dizzy bairn! 1

2 PHY 171 Practice et 3 Solution Fall 013 Q4: [4] What i ary centripetal acceleration after he travel 15 eter in a circle? a) arry i a lady, ir! She ain t got no darn centerpeetal aeleration! b) 6.0 / c) 0.15 / d) Inufficient inforation, becaue arry peed cannot be found. Becaue arry ove like the point on the edge of the erry-go-round, her acceleration i the ae a that of the repective point. hence, uing the calculation fro the previou quetion, ac rad Q5: [4] What i the iniu aount of energy that arry pent a he traveled 15 eter in a circle? a) 5 J b) 150 J c) 15 J d) Zero, ince the force i centripetal force i perpendicular on the travelled path. Solution: a he quetion can be anwered uing either of variou equivalent calculation; for intance, 1. Note that arry applie a force that i tangent to the path that he travel and the iniu energy i the work done by thi force. For any hort enough egent of her path, the force i parallel with the egent, o the net correponding work i W FL 5 J.. Alternately, one can calculate the work done by the torque of the force F, in which cae the diplaceent i angular: W F L FL 5 J. 3. oreover, one ay note that by the Work Energy heore the work i ued to increae the rotational kinetic energy of the erry-go-round, o the energy i KE I 4 5 J 1 1 rot. Q6: [4] A particle ove in a circle of radiu r with a uniforly varying angular peed ω = ct, where c i a contant and t i the tie. herefore, the tie dependent agnitude of it total linear acceleration i given by 4 a) a rc t b) 6 a rct 4 c t c) a rc d) a rc c t 4 1 Solution: d In general, the acceleration of a point oving on a circular trajectory i pointing inide the circle. It can be conidered a having two coponent: a coponent a t tangent to the trajectory decribing how the agnitude of the velocity change, and a radial (centripetal) coponent a r decribing how the direction of the velocity i changing. herefore, the net linear acceleration i: r t a a a r r. In our cae the acceleration i contant, α = ω/t = c. Hence a r rc r c t r c rc c t

3 PHY 171 Practice et 3 Solution Fall 013 Q7: [4] A particle of a i connected to one end of a pring of force contant k, and relaxed length L 0. he particle i rotated horizontally uch that the pring tretche to a length L, a in the figure. Which of the expreion below ot likely repreent the peed v of the particle? a) v kl k L k v b) v LL L0 Lg in F e θ c) k v LL L0 k d) v LL L0 Solution: c he role of centripetal force i played by the elatic force in the pring, o v k k L L v L L L L 0 0 Q8: [4] Earth a planet of a = kg ake one revolution per day. What hould be the radiu of the Earth in order for object to be apparently weightle (zero noral) at the equator? a) b) c) d) N g he period of rotation of the Earth i 1 day 4 h 60 in 1 h 60 1 in he object are kept on the circular trajectory of Earth radiu by a centripetal force g N v g N 4 4. ecall that the gravitational acceleration depend on the radiu of the planet: g = G/. herefore, ince apparent weightlene ean that N = 0, the correponding radiu i given by g G G G ω Q9: [4] What i the gravitational acceleration at a ditance fro the Earth urface equal to half the radiu of the Earth? a) 9.8 / b) 4.4 / c) 0.18 / d) 4.9 / r At a ditance r fro the urface of the Earth, the gravitational acceleration i g g G G r r / 4.4 / r 1 r 1 r 3

4 PHY 171 Practice et 3 Solution Fall 013 Q10: [4] ecall that a black hole a a tartup idea i an object collaped until light cannot ecape fro it. Suppoe that planet Earth were to be queezed into a black hole. How any tie aller would be the axiu radiu of thi black hole (called Schwarzchild radiu, r S ) copared to the noral radiu r E of the planet? You ay need the peed of light in vacuu of about /, and the noral ecape peed of planet Earth of about /. a) Nonene: Earth cannot be ade into a black hole, no atter how uch it i collaped. It jut doen t have enough a. b) tie aller c) tie aller d) tie aller Solution: d Indeed, Earth doen t have enough a to collape pontaneouly; thi happen only i uperaive tar. However, the quetion doen t ak about a pontaneou collape: it ugget a cenario where the planet i forced to hrink by oe echani. o copare the radii, one can divide the forula for the ecape peed c for the black hole to that for the noral planet. Becaue the a of the black hole tay the ae a the a E of Earth (it i jut collaped into a uch aller volue), we ee that the radiu of noral earth i larger than the radiu of the reulting black hole a given by the iple calculation: c G r r r c v r r v E S E E tie. G E re S S hat i, Earth ha to be hrunk to about 8.8- radiu to becoe a black hole. Q11: [4] A DVD with oent of inertia of about kg rotate with unifor angular acceleration 00 rad/. Starting fro ret it reache it noinal angular peed in about.4 econd. What i the iniu energy pent in order to bring the dik to it noinal angular peed? a).7 J b) J c) J d) 3.1 J Solution: d Since the dik tart fro ret, the noinal angular peed i given by t 480 rad. Hence, ince the energy it need i at leat equal to it rotational kinetic energy, the iniu energy i 1 K I 3.1 J. Q1: [4] A 70-c tick with a 1.4 kg i ounted on a pivot a in the figure. What i the agnitude of the net torque acting on the tick with repect to the pivot? a) 1.6 N r b) 3.6 N c) 0.69 N d) 0 g Solution: c he weight of the tick act in it center of a at a ditance r = 5 c fro the pivot. herefore gr 0.69 N Q13: [4] wo ae, 1 = 1.0 kg and =.5 kg, are held together by a ale rod with length L = 1.5. he yte rotate about it center of a. What i it oent of inertia? a) 1.1 kg b) 1.6 kg 1 c).1 kg d) Inufficient inforation ince it depend on the angular velocity. x c 4

5 PHY 171 Practice et 3 Solution Fall 013 In order to calculate the poition of the center of a, chooe an x-axi with origin in the poition of a 1. In thi cae, the poition i given by 1 0 L L xc Subequently, we can calculate the total oent of inertia with repect to the center of a uing: I I1 I 1 xc L xc 1.6 kg Q14: [4] A heavy phere and a light phere have the ae radiu and the ae kinetic energy. Which ha the greatet angular oentu? a) he light phere b) he heavy phere c) he angular oenta are equal d) It depend on the angular potential energy he rotational kinetic energy i related to the angular oentu by KE L I L KE I. rot rot he oent of inertia i a eaure of rotational inertia. If the a i ditributed the ae, the heavier i the object the greater i the repective oent of inertia. Hence, ince the kinetic energy i the ae, the heavier phere ha a larger L. Q15: [4] Scrat it on top of hi acorn which i tuck in the center of an ice dik with radiu =.0 and a = 0 kg, rotating with angular peed ω = 11 rad/. Scrat a i 1 = 1.0 kg and acorn a i = 30 g. Scrat leave hi acorn in the center, and walk radially to the edge of the dik. Conidering Scrat and hi acorn a pointlike ae, what i the angular peed of the yte when Scrat reache the edge? a) 11 rad/ b) 10 rad/ c) 9.97 rad/ d).7 rad/ he angular oentu of the yte bug-dik i conerved. Since the acorn i left in the center it doen t have a oent of inertia, o we get I L L I I 10 rad 1 dik i f dik 1 dik Idik ω 5

6 PHY 171 Practice et 3 Solution Fall 013 P1: A light cable i wrapped around a cylinder of a = 1.5 kg and radiu = A box of a = 10 kg i connected to the free end of the cable and releaed at level A fro ret. he a ove vertically a ditance y 0 = 0.0 to the level B. Notice that the oent of inertia of a cylinder rotating about it axle i provided on the forula heet. ω α a) [4] Chooe the ground at level B, and write out ybolical expreion in ter of known quantitie and the peed v of the box for: A. echanical energy E A of the yte at level A: E gy A 0 B. echanical energy E B of the yte at level B: E v I v I v B A B y 0 g b) [4] Ue conervation of energy to calculate the peed v of the box at level B. E BEA 0 0 v I gy v gy v y g c) [4] Calculate the intantaneou angular velocity ω of the cylinder when the box i at level B, and indicate it direction on the figure (ue ybol and for direction out and into the page). v 13 rad. Uing the right hand rule for the counterclockwie rotation, we ee that the direction i out of the page:. d) [4] Calculate the angular acceleration of the pulley when the box i at level B and indicate it direction on the figure. he torque acting on the pulley i contant uch that we can calculate the acceleration fro the kineatic of the pulley (or of the a ). While the a travel a ditance y 0 downward, the cable ove together with the ri of the pulley, o the correponding angular diplaceent of the pulley i y (poitive ince the rotation i counterclockwie). 0 herefore, ince the yte tart at ret, we can ue v g 0 1 y 0 61 rad. he angular velocity increae, o the angular acceleration ha the ae direction: out of the page. e) [4] Ue the angular acceleration to calculate the torque rotating the pulley, and then ue the torque to calculate the tenion in the cable. By Newton nd law applied to the rotation of the pulley, the torque i given by 1 I 1.0 N he torque i due to the tenion force acting perpendicular on the radiu. herefore 6.8 N 6

7 PHY 171 Practice et 3 Solution Fall 013 P: A block of a and a all ball of a =.5 kg, are connected to each other by a light tring paed through a hole in a horizontal table. he block i at all tie at ret on the rough urface of the table with coefficient of tatic friction μ = he ball hang under the table and rotate uniforly in a horizontal circle of radiu = 0.5 with the tring aking an angle θ = 35 with the vertical, a hown on the figure. (We ay that a ove a a conical pendulu.) a) [4] On the figure below, ketch the free body force diagra for ae and. Conider the portion of the tring between the a and the hole parallel with the tabletop, a repreented. Label the force eaningfully. θ rough table N f y x θ g g b) [5] Write Newton nd law ybolically for ae and along the direction indicated for each object. he expreion for the a hould contain the angle θ fro the coponent of the tenion. a : F x f 0 a : F y co g 0 F N g 0 F in v y c) [4] Ue one of the equation for a in part (b) to calculate the tenion in the tring. hen ubtitute the tenion in the other equation to calculate the peed v of the ball. he tenion can be calculated fro co g g co 30 N. he peed coe fro the other equation: in v v in 1.3. d) [4] Ue the reult of part (b) and (c) to calculate the friction keeping the a fro oving. What i the iniu a that will prevent the block fro liding on the table? he friction i tatic and i equal to the tenion: f 30 N. coθ On the other hand, the friction cannot be larger than μ n. Hence one can derive the iniu a : f N g in g g 8.0 kg. inθ y e) [3] If the tring i cut at the oent hown in the figure fro part (a), how will the ball ove? Circle one: out of the page to the left downward (freely falling) r r 7

8 PHY 171 Practice et 3 Solution Fall 013 P3: A helicopter rotor blade can be conidered a a long thin rod, a hown in the figure. Each of the three rotor helicopter blade ha length L = 3.75 and ha a a = 160 kg. he rotor i initially at ret, ω 0 = 0, and it tart to rotate and accelerate about a point in the center until it reache an angular peed ω = 0 rad/, after a tie t = 10. a) [3] Calculate the net oent of inertia of the yte conidering the blade a rod, each rotating about one extreity. he net oent of inertia i the u of the individual oent of inertia of the rigid body part. Hence, uing the oent of inertia of rod rotating about an end fro the forula heet, we get 1 I 3I 3 L L 50 kg rod 3 b) [5] Calculate the angular acceleration of the yte. Since the yte rotate with contant angular acceleration and i initially at ret, ω 0 = 0, we get 0 t t.0 rad/ c) [5] Calculate the total angular diplaceent of the yte after a tie t = 10. One way to calculate the angular diplaceent i by uing rad hi i equivalent with about 3 rotation. Alternatively, ince the tie i given one can alo ue the equation 1 1 0t t t 100 rad. d) [3] Calculate the net torque applied to the yte by the engine. By Newton nd law,. I 4500 N e) [4] How uch work wa done on the rotor in tie t? he work i done by whatever force F rotate the rotor uch that it pin through an angular diplaceent Δθ. If the force i applied in a point at a ditance r fro the center of rotation, the point travel an arc Δl = rδθ. Since the force doing the work i contant in agnitude and i tangent to the traveled circle in every point, it work can be derived in ter of the torque aociated with the force: W Fl Fr 450 kj. 8

PHYS 154 Practice Final Test Spring 2018

PHYS 154 Practice Final Test Spring 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise and enjoyent, this practice test includes18 questions and 4 probles. Questions: N.. ake sure that you justify

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

PHYS 107 Practice Final Test Fall 2018

PHYS 107 Practice Final Test Fall 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise, this practice test includes 20 questions and 5 probles. Questions: N.B. Make sure that you justify your

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1 PART III Problem Problem1 A computer dik tart rotating from ret at contant angular acceleration. If it take 0.750 to complete it econd revolution: a) How long doe it take to complete the firt complete

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice inal (all 009) olution or Capu Learning Aitance Service at UCSB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

AP Physics Momentum AP Wrapup

AP Physics Momentum AP Wrapup AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1.

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1. Exaple 1: 60 kg, v 1 100 N (wet), v 2 220 N (eat), a? Exaple 1: wo force parallel to the ground act upon a box with a a of 60 kg. One force i directed wet and ha a trength of 100 N. he other force i directed

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Work and Energy Problems

Work and Energy Problems 06-08- orce F o trength 0N act on an object o a 3kg a it ove a ditance o 4. I F i perpendicular to the 4 diplaceent, the work done i equal to: Work and Energy Proble a) 0J b) 60J c) 80J d) 600J e) 400J

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 111, INTRODUCTORY PHYSICS I Saturday, 14 December 013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. Thi exam booklet ha 14 page. Make ure none are miing. There i an equation

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 )

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 ) 016 PhyicBowl Solution # An # An # An # An # An 1 C 11 C 1 B 31 E 41 D A 1 B E 3 D 4 B 3 D 13 A 3 C 33 B 43 C 4 D 14 E 4 B 34 C 44 E 5 B 15 B 5 A 35 A 45 D 6 D 16 C 6 C 36 B 46 A 7 E 17 A 7 D 37 E 47 C

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

Engineering Mechanics - Dynamics Chapter 12

Engineering Mechanics - Dynamics Chapter 12 Engineering Mechanic - Dynaic Chapter 1 ρ 50 ft t 4 3 ft c 3 ft 3 t 1 3 v t + ct a t + ct At t 1 v 1 t 1 + ct 1 v 1 a t1 + ct 1 a n1 ρ a 1 a t1 + a n1 a 1 1.63 ft Ditance traveled d 1 t 1 c + 3 t 1 3 d

More information

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration.

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration. Chapter 3 Motion in a Plane Practice Proble Solution Student Textbook page 80 1. Frae the Proble - Sketch and label a diagra of the otion. 40 v(/) 30 0 10 0 4 t () - The equation of otion apply to the

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6)

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6) Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Review (Chapter 6) cceleration of a loc againt Friction (1) cceleration of a bloc on horizontal urface When body i moving under application of force P,

More information

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc.

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc. EF 5 Final Exam, Spring, 9 Page of EF 5 Final Exam, Spring, 9 Page of Name: Section: Guideline: Aume 3 ignificant figure for all given number unle otherwie tated Show all of your work no work, no credit

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

Related Rates section 3.9

Related Rates section 3.9 Related Rate ection 3.9 Iportant Note: In olving the related rate proble, the rate of change of a quantity i given and the rate of change of another quantity i aked for. You need to find a relationhip

More information

Part I: Multiple-Choice

Part I: Multiple-Choice Part I: Multiple-Choice Circle your anwer to each quetion. Any other ark will not be given credit. Each ultiple-choice quetion i worth point for a total of 0 point. 1. The dead-quiet caterpillar drive

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

UCM/CNF Worksheet 3: Universal Gravitation Adapted from AMTA 2013 Modeling Instruction Materials (U7 CNF Model WS4, V3.1)

UCM/CNF Worksheet 3: Universal Gravitation Adapted from AMTA 2013 Modeling Instruction Materials (U7 CNF Model WS4, V3.1) UCM/CNF Workheet 3: Univeral Gravitation Adapted from AMA 2013 Modeling Intruction Material (U7 CNF Model WS4, V3.1) CELESIAL EFEENCE ABLE Body Ma (kg) adiu (km) Ditance from Surface Gravitational Sun

More information

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis.

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis. Anwer key EAS 1600 Lab 1 (Clicker) Math and Science Tune-up Note: Student can receive partial credit for the graph/dienional analyi. For quetion 1-7, atch the correct forula (fro the lit A-I below) to

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s BLM -6: Chapter Tet/Aeent. (a) D (b) Δd (0 ) ( 0 [E]) + 0 ( 0 [E]) ( 30 + 0) + 0 [E] Δd 00 [E] + 00 [E] + 50 [E] Δd 550 [E] (c) Refer to the calculation below. A) B) uu (0 0) [E] a [E] (0 0) uu (0 0) [E]

More information

PROBLEMS ON WORK AND ENERGY PRINCIPLE

PROBLEMS ON WORK AND ENERGY PRINCIPLE PROLEMS ON WORK ND ENERGY PRINCIPLE PROLEMS. he.8 kg collar lide with negligible friction on the fixed rod in the vertical plane. If the collar tart from ret at under the action of the contant 8-N horizontal

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

Physics 30 Lesson 3 Impulse and Change in Momentum

Physics 30 Lesson 3 Impulse and Change in Momentum Phyic 30 Leon 3 Ipule and Change in Moentu I. Ipule and change in oentu According to Newton nd Law of Motion (Phyic Principle 1 on the Data Sheet), to change the otion (i.e. oentu) of an object an unbalanced

More information

( ) rad ( 2.0 s) = 168 rad

( ) rad ( 2.0 s) = 168 rad .) α 0.450 ω o 0 and ω 8.00 ω αt + ω o o t ω ω o α HO 9 Solution 8.00 0 0.450 7.8 b.) ω ω o + αδθ o Δθ ω 8.00 0 ω o α 0.450 7. o Δθ 7. ev.3 ev π.) ω o.50, α 0.300, Δθ 3.50 ev π 7π ev ω ω o + αδθ o ω ω

More information

Frictional Forces. Friction has its basis in surfaces that are not completely smooth: 1/29

Frictional Forces. Friction has its basis in surfaces that are not completely smooth: 1/29 Frictional Force Friction ha it bai in urface that are not completely mooth: 1/29 Microcopic Friction Surface Roughne Adheion Magnified ection of a polihed teel urface howing urface irregularitie about

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

EP225 Note No. 5 Mechanical Waves

EP225 Note No. 5 Mechanical Waves EP5 Note No. 5 Mechanical Wave 5. Introduction Cacade connection of many ma-pring unit conitute a medium for mechanical wave which require that medium tore both kinetic energy aociated with inertia (ma)

More information

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction.

Test 2 phy a) How is the velocity of a particle defined? b) What is an inertial reference frame? c) Describe friction. Tet phy 40 1. a) How i the velocity of a paticle defined? b) What i an inetial efeence fae? c) Decibe fiction. phyic dealt otly with falling bodie. d) Copae the acceleation of a paticle in efeence fae

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Exam 1 Solutions. +4q +2q. +2q +2q

Exam 1 Solutions. +4q +2q. +2q +2q PHY6 9-8-6 Exam Solution y 4 3 6 x. A central particle of charge 3 i urrounded by a hexagonal array of other charged particle (>). The length of a ide i, and charge are placed at each corner. (a) [6 point]

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t Moentu and Iule Moentu Moentu i what Newton called the quantity of otion of an object. lo called Ma in otion The unit for oentu are: = oentu = a = elocity kg Moentu Moentu i affected by a and elocity eeding

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information

PROBLEMS. (a) s cable length. mg = 10(9.81) =98.1 N. F spring

PROBLEMS. (a) s cable length. mg = 10(9.81) =98.1 N. F spring . he ytem i releaed from ret with no lack in the cable and with the prin tretched mm. Determine the ditance traveled by the -k cart before it come to ret (a) if m approache zero and (b) if m = k. ume no

More information

Sample Problems. Lecture Notes Related Rates page 1

Sample Problems. Lecture Notes Related Rates page 1 Lecture Note Related Rate page 1 Sample Problem 1. A city i of a circular hape. The area of the city i growing at a contant rate of mi y year). How fat i the radiu growing when it i exactly 15 mi? (quare

More information

Assessment Schedule 2017 Scholarship Physics (93103)

Assessment Schedule 2017 Scholarship Physics (93103) Scholarhip Phyic (93103) 201 page 1 of 5 Aement Schedule 201 Scholarhip Phyic (93103) Evidence Statement Q Evidence 1-4 mark 5-6 mark -8 mark ONE (a)(i) Due to the motion of the ource, there are compreion

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. Erwan, whoe ma i 65 kg, goe Bungee jumping. He ha been in free-fall for 0 m when the bungee rope begin to tretch. hat will the maximum tretching of the rope be if the rope act like a pring with a 100 N/m

More information

SOLUTION If link AB is rotating at v AB = 6 rad>s, determine the angular velocities of links BC and CD at the instant u = 60.

SOLUTION If link AB is rotating at v AB = 6 rad>s, determine the angular velocities of links BC and CD at the instant u = 60. 16 88. If link i rotating at v = 6 rad>, determine the angular velocitie of link C and CD at the intant u = 6. 25 mm 3 3 mm ω = 6 rad/ C 4 mm r IC - =.3co 3 =.2598 m r IC - C =.3co 6 =.15 m θ D v C = 1.5

More information

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions Pearon Phyic Level 0 Unit III Circular Motion, Work, and Energy: Unit III Review Solution Student Book page 6 9 Vocabulary. artificial atellite: a huan-ade object in orbit around a celetial body axi of

More information

Unit I Review Worksheet Key

Unit I Review Worksheet Key Unit I Review Workheet Key 1. Which of the following tatement about vector and calar are TRUE? Anwer: CD a. Fale - Thi would never be the cae. Vector imply are direction-conciou, path-independent quantitie

More information

Conservation of Energy

Conservation of Energy Conervative Force Conervation of Energ force i conervative if the work done b the force from r to r, but depend on initial and final poition onl Conervative Non-conervative Section #4.5 #4.6 Conervation

More information

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes Final Comprehenive Exam Phyical Mechanic Friday December 15, 000 Total 100 Point Time to complete the tet: 10 minute Pleae Read the Quetion Carefully and Be Sure to Anwer All Part! In cae that you have

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

0.5 rad r C 20 mm. 30 deg r s 50 mm. r A. 200 mm. Solution: v C 0.01 m s. v C. r s. 0.2 rad. v A v E s r A

0.5 rad r C 20 mm. 30 deg r s 50 mm. r A. 200 mm. Solution: v C 0.01 m s. v C. r s. 0.2 rad. v A v E s r A 16 29. The mechanim for a car window winder i hown in the figure. Here the handle turn the mall cog C, which rotate the pur gear S, thereby rotating the fixed-connected lever which raie track D in which

More information

Chapter 1 - Introduction: Numerical Answers 27

Chapter 1 - Introduction: Numerical Answers 27 Chapter 1 - Introduction: Nuerical Anwer 7 6 6 1 M He = 665 10 kg ; M O = 66 10 kg ; M N = 33 10 kg ; M P 6 = 514 10 kg Molecular ae a The total a of a carbon dioxide olecule i 739x10-6 kg b Thu the total

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Notes on the geometry of curves, Math 210 John Wood

Notes on the geometry of curves, Math 210 John Wood Baic definition Note on the geometry of curve, Math 0 John Wood Let f(t be a vector-valued function of a calar We indicate thi by writing f : R R 3 and think of f(t a the poition in pace of a particle

More information

TAP 518-7: Fields in nature and in particle accelerators

TAP 518-7: Fields in nature and in particle accelerators TAP - : Field in nature and in particle accelerator Intruction and inforation Write your anwer in the pace proided The following data will be needed when anwering thee quetion: electronic charge 9 C a

More information

Physics 4A Winter 2016 Final Exam

Physics 4A Winter 2016 Final Exam Physics 4A Winter 016 Final Exa Nae: Mar, 016 Please show your work! Answers are not coplete without clear reasoning. When asked for an expression, you ust give your answer in ters of the variables given

More information