EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc.

Size: px
Start display at page:

Download "EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc."

Transcription

1 EF 5 Final Exam, Spring, 9 Page of EF 5 Final Exam, Spring, 9 Page of Name: Section: Guideline: Aume 3 ignificant figure for all given number unle otherwie tated Show all of your work no work, no credit Write your final anwer in the box provided Include unit for all anwer Include direction for all vector Geometry/Trig a c Ueful Converion gallon = 3 cubic inche gallon = 4 quart gallon = 8 fluid ounce m 3 = L acre = 43,56 ft mile = 8 furlong mile = 58 ft fathom = 6 ft rod = 6.5 ft chain = yard inch = 5.4 mm watt = N m/ec hp = watt (approx.) hp = 55 ft lb / ec lb = 4.45 N (approx.) m = mm g = 3. ft/ec = 9.8 m/ec C Circular Motion arc length v peed an centripetal acceleration at tangential acceleration radiu of curvature φ angle angular peed -- angular acceleration T period f frequency = ρ φ v = ρω = ρα Conervation of Energy mgh + k x + Win = mgh f f + k xf + E b A Area of a circle = πr Volume of a cylinder = πr h Law of Sine ina in inc = = a b c Law of Coine c = a + b ab coc Rocket Propulion m v = uex ln gt m t thrut = uex(dm/dt) m : initial ma mt : final ma = m (dm/dt)t dm/dt : rate of fuel burn uex : exhaut peed of gae relative to the rocket. Contant Acceleration v = v + a t v + v = + t = + v t + a t v v = + a a t a =v ρ = ρω n π T = ω f T ω = πf lo Projectile Motion g y y ( ) ( )( ) = x x tan + tan x x v launch angle v launch velocity x, y launch poition, poitive up Relative Motion v = va + v G G A v = v va A G G v = va A Force and Acceleration F net =ma Friction Fmax = µ N Fkinetic = µ kn Work W = F r = F r co Power P = F v dw P = dt Spring force F = k x Impule / Momentum / Retitution t mv = mv + Fdt t v = mv ( v v ) = (line of impact) m e v v Contant Angular Acceleration ω = ω + α t ω + ω = + t = + ω t + α t ω ω = + α Center of Ma mr + mr + + mr n n R = m + m + + mn Parallel Axi Theorem I = I + cm Mh Torque τ = Fr in τ = r F Torque and Acceleration τ Iα net = Angular Impule / Momentum Iω + I ω = Iω + I ω t Iω = Iω + τdt o L = r p L = angular momentum p = linear momentum

2 EF 5 Final Exam, Spring, 9 Page 3 of EF 5 Final Exam, Spring, 9 Page 4 of 3 numeric problem - 7 pt each 9 concept quetion - pt each 3. How fat i Zach going if he i moving around a 48 ft radiu curve with a total acceleration of 5 ft/ and he i lowing down at a rate of ft/?. The poition of a car driving in the African afari i decribed by the following equation: 3 S ( t) = [( 4 ˆ) jt + (5ˆ i + ˆ) jt + 3] meter. What i the magnitude of the velocity of the car at t = 3ec? 4. Shane it in a wagon (total weight 85 lb) and roll down a incline. He drag hi feet to prov ide a force of 4 lb in an attempt to low the wagon. What i the acceleration of the wagon? (FD = KD required, ue poitive parallel to and down the hill). An elevator i moving upward at a contant peed of 7.5 m/. At 3 m above the level ground, a tenni ball i hot from the elevator at a peed of 34 m/ and angle of above horizontal, relative to the elevator. How long (time) doe it take for the ball to hit the ground? (Neglect air reitance) 5. How hard mut Nate puh to keep the box moving at a contant peed? (FD required) P kg =.7 k=.6

3 EF 5 Final Exam, Spring, 9 Page 5 of EF 5 Final Exam, Spring, 9 Page 6 of 6. A 4 hp crane lift a 35 lb load at a contant peed to a height of 6 ft in 5 econd. How efficient i the crane in thi ituation? 8. A grocery tore paid a monthly power bill of $475. Electricity cot 9 cent per kw hr. How many Joule of energy were ued in that month? 7. A varying magnitude force i applied to a 6.5 kg object that ha an initial peed of 5. m/. The force i applied parallel to the direction of motion and i depicted a a half of a circle with a radiu of 8. What i the object' peed after 8 econd? Force (N) 3 9. (A) A very light pring hang vertically in equilibrium with no ma at it end. () A. kg ma hang from the pring in equilibrium. (C) The ma i pulled down a ditance c and releaed. (D) The ma i at the reference height moving with a peed of v=4. m/. How far down (c) wa the ma pulled before it wa releaed? (Hint you can calculate the pring contant with the given information) A C D 5. cm 5 c v 8 Time (ec)

4 EF 5 Final Exam, Spring, 9 Page 7 of EF 5 Final Exam, Spring, 9 Page 8 of. Two identical car collide and their bumper interlock. Each car wa moving with peed of 5 mph, one coming from the outh and the other from the eat. What i the peed of the car after the colliion?. A horizontal dik (I = 6.5 kg-m ) pin at 6 rad/ec. A. kg glob of clay i dropped vertically onto the dik and tick, reulting in a new angular peed of 3 rad/ec. How far i the clay from the center of the dik?. A baketball hit a wall with the velocity hown. The coefficient of retitution between the ball and the wall i.85. What i the peed of the ball when it leave the wall?.3 ft/ A dik (I = 6.5 kg-m ) tart from ret and rotate freely about it center. Two contant force are applied a hown. What i the angular acceleration of the dik? (ue CCW a the poitive direction) Top View =44N r=.5 m 5 A=33N

5 EF 5 Final Exam, Spring, 9 Page 9 of EF 5 Final Exam, Spring, 9 Page of Concept Quetion point each circle the correct anwer. C. What i the dot product of the following vector: ( 3ˆ i + 4 ˆ) jlb,( ˆ i + ˆj + 5kˆ ) ft? A. ( 6ˆ i + 4 ˆj ) lb ft. (ˆ i + 5 ˆj + 5kˆ ) lb ft C. ( )lb ft D. (7.)lb ft E. None of the above C. If A and are vector, which of the following i NOT poible? A. A + = A +. A + < A + C. A + > A + C3. Two object are dropped from the roof of a foot tall building. oth tart from ret. Object A i lb and object i lb. Neglecting air reitance, which of the following i true? A. Object A will reach the ground firt. Object will reach the ground firt C. They will reach the ground at the ame time D. Not enough information C4. Which of the following i NOT a poible unit for momentum? A.. kg m ec N ec C. N ec D. lug ft ec C5. A particle i initially at ret when it uddenly explode into eparate, equal ma halve. After the exploion one half ha a velocity of ( 5ˆ i 3 ˆ) j m /. What i the velocity of the econd half? A. ( 5ˆ i 3 ˆ) j m /. ( 5ˆ i + 3 ˆ) j m/ C. ( 3ˆ i 5 ˆ) j m / D. ( 3ˆ i + 5 ˆ) j m/ E. Not enough information C6. A projectile ha a peed of 5 ft/ at it highet point. If it wa launched at an angle of 3 abo ve horizontal, what wa it launch peed? A. ft/`..5 ft/ C. 4.3 ft/ D. 5 ft/ E. 5.8 ft/ F. ft/ C7. A block i puhed a hown. The block doe not lide. What i N the magnitude of the friction force between the block and the floor? 6 N =.6 k =.5 A. N. N C. N D. N E. 3 N F. 36 N C8. A mall train ( engine and coal car) i accelerating at.6 ft/ on level ground with a tractive force of, lb. How doe the tractive force (T) of the engine compare to the coupling force (C) between the engine and firt coal car? A. T < C. T = C C. T > C C9. Initially, a -kg ma i whirling at the end of a tring (in a circular path with a radiu of.75 m) on a horizontal frictionle urface with a tangential peed of 5 m/. A the ma rotate the tring wrap around a vertical rod, and a few econd later the length of the tring ha hortened to.5 m. How doe the intantaneou peed at r=.5m compare to the original peed at r=.75? A. New peed < Original peed. New peed = Original peed C. New peed > Original peed

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

EF 151 Final Exam, Fall, 2010 Page 1 of 9. EF 151 Final Exam, Fall, 2010 Page 2 of 9

EF 151 Final Exam, Fall, 2010 Page 1 of 9. EF 151 Final Exam, Fall, 2010 Page 2 of 9 EF 151 Final Exam, Fall, 2010 Page 1 of 9 EF 151 Final Exam, Fall, 2010 Page 2 of 9 Instructions Do not open the exam until instructed to do so. Name, section, and netid will be written on the 1 st page

More information

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1 PART III Problem Problem1 A computer dik tart rotating from ret at contant angular acceleration. If it take 0.750 to complete it econd revolution: a) How long doe it take to complete the firt complete

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1 EF 151 Final Exam - Spring, 016 Page 1 Copy 1 Name: Section: Instructions: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 111, INTRODUCTORY PHYSICS I Saturday, 14 December 013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. Thi exam booklet ha 14 page. Make ure none are miing. There i an equation

More information

Displacement vs. Distance Suppose that an object starts at rest and that the object is subject to the acceleration function t

Displacement vs. Distance Suppose that an object starts at rest and that the object is subject to the acceleration function t MTH 54 Mr. Simond cla Diplacement v. Ditance Suppoe that an object tart at ret and that the object i ubject to the acceleration function t a() t = 4, t te over the time interval [,1 ]. Find both the diplacement

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

Assessment Schedule 2017 Scholarship Physics (93103)

Assessment Schedule 2017 Scholarship Physics (93103) Scholarhip Phyic (93103) 201 page 1 of 5 Aement Schedule 201 Scholarhip Phyic (93103) Evidence Statement Q Evidence 1-4 mark 5-6 mark -8 mark ONE (a)(i) Due to the motion of the ource, there are compreion

More information

PROBLEMS ON WORK AND ENERGY PRINCIPLE

PROBLEMS ON WORK AND ENERGY PRINCIPLE PROLEMS ON WORK ND ENERGY PRINCIPLE PROLEMS. he.8 kg collar lide with negligible friction on the fixed rod in the vertical plane. If the collar tart from ret at under the action of the contant 8-N horizontal

More information

EF 151 Exam #1, Spring, 2009 Page 1 of 6

EF 151 Exam #1, Spring, 2009 Page 1 of 6 EF 5 Exam #, Spring, 009 Page of 6 Name: Guideline: Aume 3 ignifican figure for all given number unle oherwie aed Show all of your work no work, no credi Wrie your final anwer in he box provided Include

More information

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh?

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh? 9. Solution Work & Energy Homework - KINETIC ENERGY. A 500-kilogram car i driing at 5 meter/econd. What' it kinetic energy? How much doe the car weigh? m= 500 kg 5 m/ Write Equation: Kinetic Energy = ½

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

Momentum. Momentum and Energy. Momentum and Impulse. Momentum. Impulse. Impulse Increasing Momentum

Momentum. Momentum and Energy. Momentum and Impulse. Momentum. Impulse. Impulse Increasing Momentum Momentum and Energy Chapter 3, page 59-80 Review quetion: 1,3,4,7, 8, 11, 1, 14-17, 0, 1 Momentum Momentum i inertia in motion Ma x velocity Ha both magnitude and direction Large ma or high peed can give

More information

Remove this sheet AFTER the exam starts and place your name and section on the next page.

Remove this sheet AFTER the exam starts and place your name and section on the next page. EF 151 Final Exam, Spring, 2014 Page 1 of 10 Remove this sheet AFTER the exam starts and place your name and section on the next page. Instructions: Guidelines: Do not open the test until you are told

More information

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6)

Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6) Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Review (Chapter 6) cceleration of a loc againt Friction (1) cceleration of a bloc on horizontal urface When body i moving under application of force P,

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

Conservation of Energy

Conservation of Energy Conervative Force Conervation of Energ force i conervative if the work done b the force from r to r, but depend on initial and final poition onl Conervative Non-conervative Section #4.5 #4.6 Conervation

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

Important: This test consists of 16 multiple choice problems, each worth 6.25 points.

Important: This test consists of 16 multiple choice problems, each worth 6.25 points. Physics 214 Practice Exam 1_A Fill in on the OPSCAN sheet: 1) Name 2) Student identification number 3) Exam number as 01 4) Sign the OPSCAN sheet Important: This test consists of 16 multiple choice problems,

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam.

Physics 218: Exam 1. Class of 2:20pm. February 14th, You have the full class period to complete the exam. Phyic 218: Exam 1 Cla of 2:20pm February 14th, 2012. Rule of the exam: 1. You have the full cla period to complete the exam. 2. Formulae are provided on the lat page. You may NOT ue any other formula heet.

More information

EF 151 Final Exam, Fall, 2015 Page 3 of 10

EF 151 Final Exam, Fall, 2015 Page 3 of 10 EF 151 Final Exam, Fall, 2015 Page 3 of 10 Name: Multiple choice questions: 1 point each 1. The acceleration of gravity in mile/min 2 is: a. 1.69x10-6 mile/min 2 b. 21.9 mile/min 2 c. 47.2 mile/min 2 d.

More information

EF 151 Exam #2 - Fall, 2017 Page 1 Copy 1

EF 151 Exam #2 - Fall, 2017 Page 1 Copy 1 EF 151 Exam #2 - Fall, 2017 Page 1 Copy 1 Name: Section: Before the Exam Starts: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes Final Comprehenive Exam Phyical Mechanic Friday December 15, 000 Total 100 Point Time to complete the tet: 10 minute Pleae Read the Quetion Carefully and Be Sure to Anwer All Part! In cae that you have

More information

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

More information

. d. v A v B. e. none of these.

. d. v A v B. e. none of these. General Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibrium Oct. 28, 2009 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show the formulas you use, the essential

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

Important: This test consists of 15 multiple choice problems, each worth points.

Important: This test consists of 15 multiple choice problems, each worth points. Physics 214 Practice Exam 1 C Fill in on the OPSCAN sheet: 1) Name 2) Student identification number 3) Exam number as 01 4) Sign the OPSCAN sheet Important: This test consists of 15 multiple choice problems,

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 113 Engineering Mechanic TOPIC 8 KINEMATIC OF PARTICLES Lecturer: Roli Anang Dr. Mohd Yunu Ihak Dr. Tan Cher Siang Outline Introduction Rectilinear Motion Curilinear Motion Problem Introduction General

More information

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98)

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98) Coordinator: Dr. Kunwar S. Wednesday, May 24, 207 Page: Q. A hot-air balloon is ascending (going up) at the rate of 4 m/s and when the balloon is 98 m above the ground a package is dropped from it, vertically

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

Sample Problems. Lecture Notes Related Rates page 1

Sample Problems. Lecture Notes Related Rates page 1 Lecture Note Related Rate page 1 Sample Problem 1. A city i of a circular hape. The area of the city i growing at a contant rate of mi y year). How fat i the radiu growing when it i exactly 15 mi? (quare

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Department of Physics

Department of Physics Department of Physics PHYS101-051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. Erwan, whoe ma i 65 kg, goe Bungee jumping. He ha been in free-fall for 0 m when the bungee rope begin to tretch. hat will the maximum tretching of the rope be if the rope act like a pring with a 100 N/m

More information

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

EF 151 Exam 4 Fall, 2017 Page 1 Copy 223

EF 151 Exam 4 Fall, 2017 Page 1 Copy 223 EF 151 Exam 4 Fall, 017 Page 1 Copy 3 Name: Section: Before the Exam Starts: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 )

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 ) 016 PhyicBowl Solution # An # An # An # An # An 1 C 11 C 1 B 31 E 41 D A 1 B E 3 D 4 B 3 D 13 A 3 C 33 B 43 C 4 D 14 E 4 B 34 C 44 E 5 B 15 B 5 A 35 A 45 D 6 D 16 C 6 C 36 B 46 A 7 E 17 A 7 D 37 E 47 C

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

Topic 1: Newtonian Mechanics Energy & Momentum

Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

More information

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet IB Questionbank Physics NAME IB Physics 2 HL Summer Packet Summer 2017 About 2 hours 77 marks Please complete this and hand it in on the first day of school. - Mr. Quinn 1. This question is about collisions.

More information

EF 151 Exam #4 - Spring, 2016 Page 1 Copy 205

EF 151 Exam #4 - Spring, 2016 Page 1 Copy 205 EF 151 Exam #4 - Spring, 016 Page 1 Copy 05 Name: Section: Instructions: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

0.5 rad r C 20 mm. 30 deg r s 50 mm. r A. 200 mm. Solution: v C 0.01 m s. v C. r s. 0.2 rad. v A v E s r A

0.5 rad r C 20 mm. 30 deg r s 50 mm. r A. 200 mm. Solution: v C 0.01 m s. v C. r s. 0.2 rad. v A v E s r A 16 29. The mechanim for a car window winder i hown in the figure. Here the handle turn the mall cog C, which rotate the pur gear S, thereby rotating the fixed-connected lever which raie track D in which

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C 1. Four identical 0.18 kg masses are placed at the corners of a 4.0 x 3.0 m rectangle, and are held there by very light connecting rods which form the sides of the rectangle. What is the moment of inertia

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

Physics I (Navitas) FINAL EXAM Fall 2015

Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

More information

r r Sample Final questions for PS 150

r r Sample Final questions for PS 150 Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

More information

Exam 1 Solutions. +4q +2q. +2q +2q

Exam 1 Solutions. +4q +2q. +2q +2q PHY6 9-8-6 Exam Solution y 4 3 6 x. A central particle of charge 3 i urrounded by a hexagonal array of other charged particle (>). The length of a ide i, and charge are placed at each corner. (a) [6 point]

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Write your name legibly on the top right hand corner of this paper

Write your name legibly on the top right hand corner of this paper NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Work. Kinetic and Potential Energy. Work. Transference of Energy Work = Force x distance. Supplemental Text Material Pages

Work. Kinetic and Potential Energy. Work. Transference of Energy Work = Force x distance. Supplemental Text Material Pages Kinetic and Potential Energy Supplemental Text Material Page 36-333 Tranference of Energy = Force x ditance Lifting load againt the force of the weight of the object Twice the ditance reult in twice the

More information

EF 151 Exam #3, Spring, 2014 Page 1 of 6

EF 151 Exam #3, Spring, 2014 Page 1 of 6 EF 151 Exam #3, Spring, 2014 Page 1 of 6 Name: Section: Instructions: Put name and section on exam and on equation sheet. Do not open the test until you are told to do so. Write your final answer in the

More information

Cumulative Review of Calculus

Cumulative Review of Calculus Cumulative Review of Calculu. Uing the limit definition of the lope of a tangent, determine the lope of the tangent to each curve at the given point. a. f 5,, 5 f,, f, f 5,,,. The poition, in metre, of

More information

Physics 2210 Fall 2011 David Ailion FINAL EXAM. December 14, 2011

Physics 2210 Fall 2011 David Ailion FINAL EXAM. December 14, 2011 Dd Physics 2210 Fall 2011 David Ailion FINAL EXAM December 14, 2011 PLEASE FILL IN THE INFORMATION BELOW: Name (printed): Name (signed): Student ID Number (unid): u Discussion Instructor: Marc Lindley

More information

PHY2053 General Physics I

PHY2053 General Physics I PHY2053 General Physics I Section 584771 Prof. Douglas H. Laurence Final Exam May 3, 2018 Name: 1 Instructions: This final exam is a take home exam. It will be posted online sometime around noon of the

More information

Physics 6A Winter 2006 FINAL

Physics 6A Winter 2006 FINAL Physics 6A Winter 2006 FINAL The test has 16 multiple choice questions and 3 problems. Scoring: Question 1-16 Problem 1 Problem 2 Problem 3 55 points total 20 points 15 points 10 points Enter the solution

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information