AP Physics Momentum AP Wrapup

Size: px
Start display at page:

Download "AP Physics Momentum AP Wrapup"

Transcription

1 AP Phyic Moentu AP Wrapup There are two, and only two, equation that you get to play with: p Thi i the equation or oentu. J Ft p Thi i the equation or ipule. The equation heet ue, or oe reaon, the ybol J or ipule (Mr. Swanon ha neer een thi anywhere ele. Oh well.) Here i what you are uppoed to be able to do. A. Syte o Particle, Linear Moentu 1. Ipule and Moentu: You hould undertand ipule and linear oentu o you can: a. Relate a, elocity, and linear oentu or a oing body, and calculate the total linear oentu o a yte o bodie. Jut ue the good old oentu equation. b. Relate ipule to the change in linear oentu and the aerage orce acting on a body. Jut ue the ipule equation. We did eeral o thee proble. I you hae a colliion, tie, and a orce in a proble, think ipule.. Coneration o Linear Moentu, Colliion a. You hould undertand linear oentu coneration o you can: (1) Identiy ituation in which linear oentu, or a coponent o the linear oentu, i conered. The oentu o an iolated yte (no outide orce) i conered in any interaction. Period. () Apply linear oentu coneration to deterine the inal elocity when two bodie that are oing along the ae line, or at right angle, collide and tick together, and calculate how uch kinetic energy i lot in uch a ituation. Thi i the good old inelatic colliion proble. We e done a bunch. I the colliion happen at right angle, then you are going to hae to look at coponent o 147

2 oentu (which you can do ince oentu i a ector, right?) Anyway, the idea i that ater the colliion both bodie hae the ae elocity. Thereore: 11 1 I the two bodie are oing at right angle, then it a bit ore coplicated. The ertical oentu i conered and the horizontal oentu i conered, o you can write equation or the coneration o oentu in the x and y direction. Then ue thee to ole or whateer unknown you e been preented with. (3) Analyze colliion o particle in one or two dienion to deterine unknown ae or elocitie, and calculate how uch kinetic energy i lot in a colliion. Pretty uch all the proble that you will ee will inole inding one unknown elocity. Body A oing at elocity ha an eleatic colliion with body A which i at ret. Body B end up with a elocity o, &tc. That ort o thing. Let look at a ew tet proble. The irt one we ll look at i o 001 tet. An incident ball A o a 0.10 kg i liding at 1.4 / on the horizontal tabletop o negligible riction hown aboe. It ake a head-on colliion with a target ball B o a 0.50 kg at ret at the edge o the table. A a reult o the colliion, the incident ball rebound, liding backward at 0.70 / iediately ater the colliion. (a) Calculate the peed o the 0.50 kg target ball iediately ater the colliion. We ue coneration o oentu to ole thi one. ' ' ' ' ' kg ' kg ' The tabletop i 1.0 aboe a leel, horizontal loor. The target ball i projected horizontally and initially trike the loor at a horizontal diplaceent d ro the point o colliion. 148

3 (b) Calculate the horizontal diplaceent d. Thi i a projectile otion proble. We know the ball horizontal elocity and the height o the table, o we can eaily ind the horizontal ditance it trael a it all. 1 y 1. Tie to all: y at t a 9.8 The ball ha a horizontal elocity o 0.4 / (which we jut igured out), o the ditance d i iply: xt In another experient on the ae table, the target ball B i replaced by target ball C o a 0.10 kg. The incident ball A again lide at 1.4 /, a hown aboe let, but thi tie ake a glancing colliion with the target ball C that i at ret at the edge o the table. The target ball C trike the loor at point P, which i at a horizontal diplaceent o 0.15 ro the point o the colliion, and at a horizontal angle o 30 ro the + x-axi, a hown aboe right. (c) Calculate the peed o the target ball C iediately ater the colliion. Thi ound ery hard, angle and all that tu, right? Except we know the ditance it traeled (1.5 ) and we know how long it i in the air beore it hit ae a the preiou proble tie. So thi i a ridiculouly iple proble. Uing the horizontal ditance and the tie to all we can ind the horizontal elocity, which i the elocity it began with, which i the elocity right ater the collion. Find : 0.15 x 0.30 t (d) Calculate the y-coponent o incident ball A' oentu iediately ater the colliion. 149

4 We know that oentu i conered in the x and y direction. So we can u oentu in the y direction. We know that thi oentu ha to add up to be zero a the ball A had no initial oentu in the y direction. 0 in a ay c cy a ay c c ay c c in a ay o 0.10 kg 0.30 in kg 0.15 Fro 1996: Two identical object A and B o a M oe on a one-dienional, horizontal air track. Object B initially oe to the right with peed o. Object A initially oe to the right with peed 3 o, o that it collide with object B. Friction i negligible. Expre your anwer to the ollowing in ter o M and o. a. Deterine the total oentu o the yte o the two object. We iply add up the oentu o each object to get the total oentu. p M 3 M 4M tot A A B B b. A tudent predict that the colliion will be totally inelatic (the object tick together on colliion). Auing thi i true, deterine the ollowing or the two object iediately ater the colliion. i. The peed. Thi i an inelatic colliion. It i a iple thing to ole: A A B B A B A A A B B B M 3 0 M0 4M0 M M M 0 150

5 ii. The direction o otion (let or right). The cobined object oe right. All alue are poitie. When the experient i perored, the tudent i urpried to obere that the object eparate ater the colliion and that object B ubequently oe to the right with a peed.5 0. c. Deterine the ollowing or object A iediately ater the colliion. i. The peed o object A ater the colliion. ' ' ' ' A A B B A A B B A A B B B B A A A A B B B A ' B' A 3.5 M M M M A ' ii. The direction o otion (let or right). Object A oe right. All alue are poitie. d. Deterine the kinetic energy diipated in the actual experient. The kinetic energy diipated i the change in kinetic energy. So we ole thi quetion by inding the kinetic energy beore the colliion and the kinetic energy ater the colliion. The dierence in the two i the energy diipated K K ' ' i A B A B K M M K M M i o o o o i 5 o 4.5 o K M K M diipated i 5 o 4.5 o 0.75 o K K K M M M Fro 199: 151

6 A 30-kilogra child oing at 4.0 eter per econd jup onto a 50-kilogra led that i initially at ret on a long, rictionle, horizontal heet o ice. a. Deterine the peed o the child-led yte ater the child jup onto the led. You iediately recognize that thi i an inelatic colliion. 30 kg kg 50 kg 1 b. Deterine the kinetic energy o the child-led yte ater the child jup onto the led K 1 80 kg J Ater coating at contant peed or a hort tie, the child jup o the led in uch a way that he i at ret with repect to the ice. c. Deterine the peed o the led ater the child jup o it kg 50 kg kg d. Deterine the kinetic energy o the child-led yte when the child i at ret on the ice. 1 1 Ktotal 50 kg J e. Copare the kinetic energie that were deterined in part (b) and (d). I the energy i greater in (d) than it i in (b), where did the increae coe ro? I the energy i le in (d) than it i in (b), where did the energy go? The child ut decelerate in order to top. So a orce negatie to the otion o the led i applied. Thi orce i applied through a ditance reulting in negatie work. The led receie an equal and oppoite (poitie) orce through a ditance reulting in poitie work. Work i added to the led, and work i a change in energy (Work energy theore). So the energy o the led i increaed. Fro 1995: 15

7 A hown, a 0.0-kilogra a i liding on a horizontal, rictionle air track with a peed o 3.0 eter per econd when it intantaneouly hit and tick to a 1.3-kilogra a initially at ret on the track. The 1.3-kilogra a i connected to one end o a ale pring, which ha a pring contant o 100 Newton per eter. The other end o the pring i ixed. a. Deterine the ollowing or the 0.0-kilogra a iediately beore the ipact. i. It linear oentu. p kg p kg ii. It kinetic energy. 1 K K kg J b. Deterine the ollowing or the cobined ae iediately ater the ipact. i. The linear oentu p ii. kg pi p 0.60 The kinetic energy p 1 p 0.60 kg kg 1.3 kg K kg 1.3 kg J Ater the colliion, the two ae undergo iple haronic otion about their poition at ipact. c. Deterine the aplitude o the haronic otion. 153

8 T 1 U K kx K 0.1 N x k N 100 d. Deterine the period o the haronic otion. 0.0 kg 1.3 kg 0.77 k kg Fro 1994: A track conit o a rictionle arc XY, which i a quarter-circle o radiu R, and a rough horizontal ection YZ. Block A o a M i releaed ro ret at point X, lide down the cured ection o the track, and collide intantaneouly and inelatically with identical block B at point Y. The two block oe together to the right, liding pat point P, which i a ditance l ro point Y. The coeicient o kinetic riction between the block and the horizontal part o the track i. Expre your anwer in ter o M, l,, R, and g. a. Deterine the peed o block A jut beore it hit block B. 1 Ui K gh gh gr b. Deterine the peed o the cobined block iediately ater the colliion. M gr 1 pi p 111 gr M M c. Deterine the aount o kinetic energy lot due to the colliion. 1 1 gr K KBeore KAter M gr M 1 gr MgR K M gr M MgR 1 MgR 4 154

9 d. The peciic heat o the aterial ued to ake the block i c. Deterine the teperature rie that reult ro the colliion in ter o c and the other gien quantitie. (Aue that no energy i tranerred to the track or to the air urrounding the block.) Q 1 1 gr QcT T MgR c Mc 4c e. Deterine the additional theral energy that i generated a the block oe ro Y to P Work done by riction = heat generated W N W N Mg l Mgl 155

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

Practice Midterm #1 Solutions. Physics 6A

Practice Midterm #1 Solutions. Physics 6A Practice Midter # Solution Phyic 6A . You drie your car at a peed of 4 k/ for hour, then low down to k/ for the next k. How far did you drie, and what wa your aerage peed? We can draw a iple diagra with

More information

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation

5.5. Collisions in Two Dimensions: Glancing Collisions. Components of momentum. Mini Investigation Colliion in Two Dienion: Glancing Colliion So ar, you have read aout colliion in one dienion. In thi ection, you will exaine colliion in two dienion. In Figure, the player i lining up the hot o that the

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

4 Conservation of Momentum

4 Conservation of Momentum hapter 4 oneration of oentu 4 oneration of oentu A coon itake inoling coneration of oentu crop up in the cae of totally inelatic colliion of two object, the kind of colliion in which the two colliding

More information

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t Moentu and Iule Moentu Moentu i what Newton called the quantity of otion of an object. lo called Ma in otion The unit for oentu are: = oentu = a = elocity kg Moentu Moentu i affected by a and elocity eeding

More information

1.1 Speed and Velocity in One and Two Dimensions

1.1 Speed and Velocity in One and Two Dimensions 1.1 Speed and Velocity in One and Two Dienion The tudy of otion i called kineatic. Phyic Tool box Scalar quantity ha agnitude but no direction,. Vector ha both agnitude and direction,. Aerage peed i total

More information

Conservation of Energy

Conservation of Energy Add Iportant Conervation of Energy Page: 340 Note/Cue Here NGSS Standard: HS-PS3- Conervation of Energy MA Curriculu Fraework (006):.,.,.3 AP Phyic Learning Objective: 3.E.., 3.E.., 3.E..3, 3.E..4, 4.C..,

More information

5.4 Conservation of Momentum in Two Dimensions

5.4 Conservation of Momentum in Two Dimensions Phyic Tool bo 5.4 Coneration of Moentu in Two Dienion Law of coneration of Moentu The total oentu before a colliion i equal to the total oentu after a colliion. Thi i written a Tinitial Tfinal If the net

More information

( ) Physics 1401 Homework Solutions - Walker, Chapter 9

( ) Physics 1401 Homework Solutions - Walker, Chapter 9 Phyic 40 Conceptual Quetion CQ No Fo exaple, ey likely thee will be oe peanent deoation o the ca In thi cae, oe o the kinetic enegy that the two ca had beoe the colliion goe into wok that each ca doe on

More information

Work and Energy Problems

Work and Energy Problems 09//00 Multiple hoice orce o strength 0N acts on an object o ass 3kg as it oes a distance o 4. I is perpendicular to the 4 displaceent, the work done is equal to: Work and Energy Probles a) 0J b) 60J c)

More information

Work and Energy Problems

Work and Energy Problems 06-08- orce F o trength 0N act on an object o a 3kg a it ove a ditance o 4. I F i perpendicular to the 4 diplaceent, the work done i equal to: Work and Energy Proble a) 0J b) 60J c) 80J d) 600J e) 400J

More information

Conditions for equilibrium (both translational and rotational): 0 and 0

Conditions for equilibrium (both translational and rotational): 0 and 0 Leon : Equilibriu, Newton econd law, Rolling, Angular Moentu (Section 8.3- Lat tie we began dicuing rotational dynaic. We howed that the rotational inertia depend on the hape o the object and the location

More information

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s

v 24 m a = 5.33 Δd = 100 m[e] m[e] m[e] Δd = 550 m[e] BLM 2-6: Chapter 2 Test/Assessment Δd = + 10 s [E] uuv a = (10 0) s uuv a = (20 0)s BLM -6: Chapter Tet/Aeent. (a) D (b) Δd (0 ) ( 0 [E]) + 0 ( 0 [E]) ( 30 + 0) + 0 [E] Δd 00 [E] + 00 [E] + 50 [E] Δd 550 [E] (c) Refer to the calculation below. A) B) uu (0 0) [E] a [E] (0 0) uu (0 0) [E]

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 113 Engineering Mechanic TOPIC 8 KINEMATIC OF PARTICLES Lecturer: Roli Anang Dr. Mohd Yunu Ihak Dr. Tan Cher Siang Outline Introduction Rectilinear Motion Curilinear Motion Problem Introduction General

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

Physics 20 Lesson 16 Friction

Physics 20 Lesson 16 Friction Phyic 0 Leon 16 riction In the previou leon we learned that a rictional orce i any orce that reit, retard or ipede the otion o an object. In thi leon we will dicu how riction reult ro the contact between

More information

Linear Momentum. calculate the momentum of an object solve problems involving the conservation of momentum. Labs, Activities & Demonstrations:

Linear Momentum. calculate the momentum of an object solve problems involving the conservation of momentum. Labs, Activities & Demonstrations: Add Important Linear Momentum Page: 369 Note/Cue Here NGSS Standard: HS-PS2-2 Linear Momentum MA Curriculum Framework (2006): 2.5 AP Phyic 1 Learning Objective: 3.D.1.1, 3.D.2.1, 3.D.2.2, 3.D.2.3, 3.D.2.4,

More information

TP A.30 The effect of cue tip offset, cue weight, and cue speed on cue ball speed and spin

TP A.30 The effect of cue tip offset, cue weight, and cue speed on cue ball speed and spin technical proof TP A.30 The effect of cue tip offet, cue weight, and cue peed on cue all peed and pin technical proof upporting: The Illutrated Principle of Pool and Billiard http://illiard.colotate.edu

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda

Page 1. t F t m v. N s kg s. J F t SPH4U. From Newton Two New Concepts Impulse & Momentum. Agenda SPH4U Agenda Fro Newton Two New Concepts Ipulse & oentu Ipulse Collisions: you gotta consere oentu! elastic or inelastic (energy consering or not) Inelastic collisions in one diension and in two diensions

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Final (Fall 2009) solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice inal (all 009) olution or Capu Learning Aitance Service at UCSB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train

More information

Physics 30 Lesson 3 Impulse and Change in Momentum

Physics 30 Lesson 3 Impulse and Change in Momentum Phyic 30 Leon 3 Ipule and Change in Moentu I. Ipule and change in oentu According to Newton nd Law of Motion (Phyic Principle 1 on the Data Sheet), to change the otion (i.e. oentu) of an object an unbalanced

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

Physics 11 HW #9 Solutions

Physics 11 HW #9 Solutions Phyic HW #9 Solution Chapter 6: ocu On Concept: 3, 8 Problem: 3,, 5, 86, 9 Chapter 7: ocu On Concept: 8, Problem:,, 33, 53, 6 ocu On Concept 6-3 (d) The amplitude peciie the maximum excurion o the pot

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

Phy 212: General Physics II 1/31/2008 Chapter 17 Worksheet: Waves II 1

Phy 212: General Physics II 1/31/2008 Chapter 17 Worksheet: Waves II 1 Phy : General Phyic /3/008 Chapter 7 orkheet: ae. Ethanol ha a denity o 659 kg/ 3. the peed o in ethanol i 6 /, what i it adiabatic bulk odulu? 9 N B = ρ = 8.90x0 ethanol ethanol. A phyic tudent eaure

More information

TAP 518-7: Fields in nature and in particle accelerators

TAP 518-7: Fields in nature and in particle accelerators TAP - : Field in nature and in particle accelerator Intruction and inforation Write your anwer in the pace proided The following data will be needed when anwering thee quetion: electronic charge 9 C a

More information

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f

2. REASONING According to the impulse-momentum theorem, the rocket s final momentum mv f CHAPTER 7 IMPULSE AND MOMENTUM PROLEMS. REASONING According to the ipulse-oentu theore, the rocket s inal oentu diers ro its initial oentu by an aount equal to the ipulse ( ΣF ) o the net orce eerted on

More information

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr

s s 1 s = m s 2 = 0; Δt = 1.75s; a =? mi hr Flipping Phyic Lecture Note: Introduction to Acceleration with Priu Brake Slaing Exaple Proble a Δv a Δv v f v i & a t f t i Acceleration: & flip the guy and ultiply! Acceleration, jut like Diplaceent

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn

Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms (b) μkm (c) ks/mg (d) km μn 2007 R. C. Hibbeler. Publihed by Pearon Education, Inc., Upper Saddle River, J. All right reerved. Thi aterial i protected under all copyright law a they currently exit. o portion of thi aterial ay be

More information

CHAPTER 7 IMPULSE AND MOMENTUM

CHAPTER 7 IMPULSE AND MOMENTUM CHAPTER 7 IMPULSE AND MOMENTUM CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The linear oentu p o an object is the product o its ass and its elocity. Since the autoobiles are identical, they hae the sae

More information

PHY 171 Practice Test 3 Solutions Fall 2013

PHY 171 Practice Test 3 Solutions Fall 2013 PHY 171 Practice et 3 Solution Fall 013 Q1: [4] In a rare eparatene, And a peculiar quietne, hing One and hing wo Lie at ret, relative to the ground And their wacky hairdo. If hing One freeze in Oxford,

More information

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh?

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh? 9. Solution Work & Energy Homework - KINETIC ENERGY. A 500-kilogram car i driing at 5 meter/econd. What' it kinetic energy? How much doe the car weigh? m= 500 kg 5 m/ Write Equation: Kinetic Energy = ½

More information

CHAPTER 7 IMPULSE AND MOMENTUM

CHAPTER 7 IMPULSE AND MOMENTUM CHAPTER 7 IMPULSE AND MOMENTUM PROBLEMS 1. SSM REASONING The ipulse that the olleyball player applies to the ball can be ound ro the ipulse-oentu theore, Equation 7.4. Two orces act on the olleyball while

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

1. Intensity of Periodic Sound Waves 2. The Doppler Effect

1. Intensity of Periodic Sound Waves 2. The Doppler Effect 1. Intenity o Periodic Sound Wae. The Doppler Eect 1-4-018 1 Objectie: The tudent will be able to Deine the intenity o the ound wae. Deine the Doppler Eect. Undertand ome application on ound 1-4-018 3.3

More information

HW9.2: SHM-Springs and Pendulums

HW9.2: SHM-Springs and Pendulums HW9.: SHM-Sprin and Pendulum T S m T P Show your wor clearly on a eparate pae. Mae a etch o the problem. Start each olution with a undamental concept equation written in ymbolic ariable. Sole or the unnown

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: KEY Block: Date: 1. A change in velocity occur when the peed o an object change, or it direction o motion change, or both. Thee change in velocity can either be poitive

More information

Chapter 9 Centre of Mass and Linear Momentum

Chapter 9 Centre of Mass and Linear Momentum Chater 9 Centre o Mass and Linear Moentu Centre o ass o a syste o articles / objects Linear oentu Linear oentu o a syste o articles Newton s nd law or a syste o articles Conseration o oentu Elastic and

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f SPH3UW/SPH4UI Unit 2.4 Friction Force Page o 8 ote Phyic Tool Box Kinetic Friction Force, : The ind o riction that act when a body lide over a urace. Static Friction Force, : Friction orce when there i

More information

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions

Pearson Physics Level 20 Unit III Circular Motion, Work, and Energy: Unit III Review Solutions Pearon Phyic Level 0 Unit III Circular Motion, Work, and Energy: Unit III Review Solution Student Book page 6 9 Vocabulary. artificial atellite: a huan-ade object in orbit around a celetial body axi of

More information

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation

PHY 211: General Physics I 1 CH 10 Worksheet: Rotation PHY : General Phyic CH 0 Workheet: Rotation Rotational Variable ) Write out the expreion for the average angular (ω avg ), in ter of the angular diplaceent (θ) and elaped tie ( t). ) Write out the expreion

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

Impulse. calculate the impulse given to an object calculate the change in momentum as the result of an impulse

Impulse. calculate the impulse given to an object calculate the change in momentum as the result of an impulse Add Important Impule Page: 386 Note/Cue Here NGSS Standard: N/A Impule MA Curriculum Framework (2006): 2.5 AP Phyic 1 Learning Objective: 3.D.2.1, 3.D.2.2, 3.D.2.3, 3.D.2.4, 4.B.2.1, 4.B.2.2 Knowledge/Undertanding

More information

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about!

Momentum, p. Crash! Collisions (L8) Momentum is conserved. Football provides many collision examples to think about! Collisions (L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details of the

More information

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1.

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1. Exaple 1: 60 kg, v 1 100 N (wet), v 2 220 N (eat), a? Exaple 1: wo force parallel to the ground act upon a box with a a of 60 kg. One force i directed wet and ha a trength of 100 N. he other force i directed

More information

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension

Physics 30 Lesson 1 Momentum and Conservation of Momentum in One Dimension Phyic 30 Leon 1 Moentu and Conervation of Moentu in One Dienion I. Phyic rincile Student often ak e if Phyic 30 i harder than Phyic 0. Thi, of coure, deend on the atitude, attitude and work ethic of the

More information

Conservation of Momentum

Conservation of Momentum Conseration of Moentu We left off last with the idea that when one object () exerts an ipulse onto another (), exerts an equal and opposite ipulse onto. This happens in the case of a classic collision,

More information

Tarzan s Dilemma for Elliptic and Cycloidal Motion

Tarzan s Dilemma for Elliptic and Cycloidal Motion Tarzan Dilemma or Elliptic and Cycloidal Motion Yuji Kajiyama National Intitute o Technology, Yuge College, Shimo-Yuge 000, Yuge, Kamijima, Ehime, 794-593, Japan kajiyama@gen.yuge.ac.jp btract-in thi paper,

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. At liftoff, a rocket initially at ret tart to eject ga with a peed of v ep = 000 /. The ga i ejected at a rate of 1000 kg/. The initial a of the rocket i 100 ton, including 60 ton of ga to be ejected.

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D)

All Division 01 students, START HERE. All Division 02 students skip the first 10 questions, begin on # (D) ATTENTION: All Diviion 01 tudent, START HERE. All Diviion 0 tudent kip the firt 10 quetion, begin on # 11. 1. Approxiately how any econd i it until the PhyicBowl take place in the year 109? 10 (B) 7 10

More information

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5.

= s = 3.33 s s. 0.3 π 4.6 m = rev = π 4.4 m. (3.69 m/s)2 = = s = π 4.8 m. (5.53 m/s)2 = 5. Seat: PHYS 500 (Fall 0) Exa #, V 5 pt. Fro book Mult Choice 8.6 A tudent lie on a very light, rigid board with a cale under each end. Her feet are directly over one cale and her body i poitioned a hown.

More information

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis.

Answer keys. EAS 1600 Lab 1 (Clicker) Math and Science Tune-up. Note: Students can receive partial credit for the graphs/dimensional analysis. Anwer key EAS 1600 Lab 1 (Clicker) Math and Science Tune-up Note: Student can receive partial credit for the graph/dienional analyi. For quetion 1-7, atch the correct forula (fro the lit A-I below) to

More information

1.3.3 Statistical (or precision) uncertainty Due to transient variations, spatial variations 100%

1.3.3 Statistical (or precision) uncertainty Due to transient variations, spatial variations 100% 1.1 Why eaure, and why tudy eaureent? 1. Introductory Exaple Exaple: Meauring your weight: The eaureent i not the thing. 1.3 Practical Source o Meaureent Uncertainty Exaple: Meauring T o roo. 1.3.1 Reading

More information

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases.

increases. In part (b) the impulse and initial momentum are in opposite directions and the velocity decreases. 8IDENTIFY and SET U: p = K = EXECUTE: (a) 5 p = (, kg)( /s) = kg /s 5 p kg /s (b) (i) = = = 6 /s (ii) kg =, so T T SUV SUV, kg ( /s) 68 /s T SUV = T = = SUV kg EVALUATE:The SUV ust hae less speed to hae

More information

One Dimensional Collisions

One Dimensional Collisions One Diensional Collisions These notes will discuss a few different cases of collisions in one diension, arying the relatie ass of the objects and considering particular cases of who s oing. Along the way,

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

PHYSICSBOWL APRIL 1 APRIL 15, 2010

PHYSICSBOWL APRIL 1 APRIL 15, 2010 PHYSICSBOWL APRIL 1 APRIL 15, 010 40 QUESTIONS 45 MINUTES The ponor of the 010 PhyicBowl, including the American Aociation of Phyic Teacher and Texa Intrument, are proiding ome of the prize to recognize

More information

Physics Momentum: Collisions

Physics Momentum: Collisions F A C U L T Y O F E D U C A T I O N Departent o Curriculu and Pedagogy Physics Moentu: Collisions Science and Matheatics Education Research Group Supported by UBC Teaching and Learning Enhanceent Fund

More information

Newton s Laws & Inclined Planes

Newton s Laws & Inclined Planes GP: ewton Law & Inclined Plane Phyic Mcutt Date: Period: ewton Law & Inclined Plane The ormal orce, Static and Kinetic rictional orce The normal orce i the perpendicular orce that a urace exert on an object.

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction.

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction. Lecture quiz toda. Small change to webite. Problem 4.30 the peed o the elevator i poitive even though it i decending. The WebAign anwer i wrong. ewton Law o Motion (page 9-99) 1. An object velocit vector

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

Lecture 17: Frequency Response of Amplifiers

Lecture 17: Frequency Response of Amplifiers ecture 7: Frequency epone of Aplifier Gu-Yeon Wei Diiion of Engineering and Applied Science Harard Unierity guyeon@eec.harard.edu Wei Oeriew eading S&S: Chapter 7 Ski ection ince otly decribed uing BJT

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

The Basics of the Special Theory of Relativity

The Basics of the Special Theory of Relativity 17.2 The aic of the Special Theory of Relatiity Eintein pecial theory of relatiity changed our fundaental undertanding of ditance, tie, and a. He ued hi faou thought experient to illutrate thee new concept.

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes

Lecture 2 Phys 798S Spring 2016 Steven Anlage. The heart and soul of superconductivity is the Meissner Effect. This feature uniquely distinguishes ecture Phy 798S Spring 6 Steven Anlage The heart and oul of uperconductivity i the Meiner Effect. Thi feature uniquely ditinguihe uperconductivity fro any other tate of atter. Here we dicu oe iple phenoenological

More information

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion.

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion. 5. Cicula otion By Liew Sau oh Content 5.1 Angula diplaceent and angula elocity 5. Centipetal acceleation 5.3 Centipetal foce Objectie a) expe angula diplaceent in adian b) define angula elocity and peiod

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL LINEAR IMPULSE AND MOMENTUM On copletion of this ttorial yo shold be able to do the following. State Newton s laws of otion. Define linear

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30 9/3/009 nderanding Energy Proble Copare he work done on an objec o a.0 kg a) In liing an objec 0.0 b) Puhing i up a rap inclined a 30 0 o he ae inal heigh 30 0 puhing 0.0 liing nderanding Copare he work

More information

Lesson 27 Conservation of Energy

Lesson 27 Conservation of Energy Physics 0 Lesson 7 Conservation o nergy In this lesson we will learn about one o the ost powerul tools or solving physics probles utilizing the Law o Conservation o nergy. I. Law o Conservation o nergy

More information

Discussion: How accurate is Earth s gravity? (See handout, next page)

Discussion: How accurate is Earth s gravity? (See handout, next page) 1.1 Why eaure, and why tudy eaureent? 1. Introductory Exaple Exaple: Meauring your weight: The eaureent i not the thing. Dicuion: How accurate i Earth gravity? (See handout, next page) 1.3 Practical Source

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS GeneralPhysics I for the Life Sciences W O R K N D E N E R G Y D R. E N J M I N C H N S S O C I T E P R O F E S S O R P H Y S I C S D E P R T M E N T J N U R Y 0 4 Questions and Probles for Conteplation

More information

Part I: Multiple-Choice

Part I: Multiple-Choice Part I: Multiple-Choice Circle your anwer to each quetion. Any other ark will not be given credit. Each ultiple-choice quetion i worth point for a total of 0 point. 1. The dead-quiet caterpillar drive

More information

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration.

Practice Problems Solutions. 1. Frame the Problem - Sketch and label a diagram of the motion. Use the equation for acceleration. Chapter 3 Motion in a Plane Practice Proble Solution Student Textbook page 80 1. Frae the Proble - Sketch and label a diagra of the otion. 40 v(/) 30 0 10 0 4 t () - The equation of otion apply to the

More information

The product of force and perpendicular M Ncm. The point beyond which a spring does not

The product of force and perpendicular M Ncm. The point beyond which a spring does not FORM 3 Sybol Unit Equation Definition / Meaning Law/Principle Denity kg/ 3, Ma per unit volue g/c 3 V Weight W N Force of gravity acting on a a Ma W = g The aount of atter (particle) in an kg, g object.

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

Physics 11 HW #7 Solutions

Physics 11 HW #7 Solutions hysics HW #7 Solutions Chapter 7: Focus On Concepts: 2, 6, 0, 3 robles: 8, 7, 2, 22, 32, 53, 56, 57 Focus On Concepts 7-2 (d) Moentu is a ector quantity that has a agnitude and a direction. The agnitudes

More information

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1 PART III Problem Problem1 A computer dik tart rotating from ret at contant angular acceleration. If it take 0.750 to complete it econd revolution: a) How long doe it take to complete the firt complete

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information