Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6)

Size: px
Start display at page:

Download "Prof. Dr. Ibraheem Nasser Examples_6 October 13, Review (Chapter 6)"

Transcription

1 Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Review (Chapter 6) cceleration of a loc againt Friction (1) cceleration of a bloc on horizontal urface When body i moving under application of force P, then inetic friction oppoe it motion. Let a i the net acceleration of the body. From the figure long the upward direction: may R mg 0 R mg ma P F a P F / m Note: F K R mg K K 1

2 Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Note: The friction force f R ( W F in 60 ) ( mg F in 60 ) () cceleration of a bloc down a rough inclined plane When angle of inclined plane i more than angle of repoe, the body placed on the inclined plane lide down with an acceleration a. From the figure Note: 1- The friction force F R, R mg co. - For frictionle inclined plane 0 a gin (3) Retardation of a bloc up a rough inclined plane When angle of inclined plane i le than angle of repoe, then for the upward motion Note: For frictionle inclined plane 0 a gin

3 Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Problem: The angle of repoe i defined a the angle of the inclined plane with horizontal uch that a body jut begin to lide. y definition i called the angle of repoe. Find the friction coefficient. nwer: F we now tan R. Thu the coefficient of limiting friction i equal to the tangent of angle of repoe. well a i.e. angle of repoe = angle of friction Problem: horizontal force of 10 N i neceary to jut hold a bloc tationary againt a wall. The coefficient of friction between the bloc and the wall i 0.. The weight of the bloc i nwer: For equilibrium: Weight (W ) = force of friction (F) W R N Problem: fireman of ma 60 g lide down a pole. He i preing the pole with a force of 600 N. The coefficient of friction between the hand and the pole i 0.5, with what acceleration will the fireman lide down (g = 10 m/') nwer: Friction: F R N Weight = W 600 N W F m/ ma W F a m Problem: ma m 1, placed on a rough horizontal plane: nother ma, hung from the tring connected by pulley, the tenion (T ) m produced in tring will try to tart the motion of ma m 1. Find the minimum value of m to tart the motion. nwer: For the ma m 1, we have: T F, F R m g T m g (1) For the ma m, we have: T = m g () Fro (1) and (), we get the limiting condition: m g m g m / m 1 1 The condition m m1 i the minimum value of m to tart the motion. 3

4 Prof. Dr. Ibraheem Naer Example_6 October 13, Problem: When a ma, placed on a rough inclined plane: m m 1 nother ma hung from the tring connected by pulley, the tenion (T ) produced in tring will try to tart the motion of ma m 1. nwer: t limiting condition thi i the minimum value of m, to tart the motion m Note: In the above condition Coefficient of friction tan. m1 co Problem: bloc with ma 100 g i reting on another bloc of ma 00 g. hown in figure a horizontal rope tied to a wall hold it. The coefficient of friction between and i 0. while coefficient of friction between and the ground i 0.3. The minimum required force F to tart moving will be: nwer: From the free body diagram one find that two frictional force will wor on bloc. F f f m g m m g min G G (300) N (Thi i the required minimum force) Q: In the figure, a boy i dragging a box (ma =8.0 g) attached to a tring. The box i moving horizontally with an acceleration a =.0 m/. If the frictional force i 1 N, calculate the applied force F at an angle θ=60. nwer: On x-axi, one find ma F co60 f 8 F x 1 16 F 56 N Q15 worer drag a crate acro a factory floor by pulling on a rope tied to the crate a hown in the figure. The worer exert a force of T 500 N on the rope, which i inclined at 30 o to the horizontal, and the floor exert a frictional force of f 150 N. Calculate the magnitude of the acceleration of the crate if it weight i W Mg 310 N. nwer: On x-axi, one find 4

5 Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Ma T co30 f N x 83 ax g 9.13 g Q: 5.0 g bloc i moving with contant velocity down a rough incline plane. The coefficient of tatic and inetic friction between the bloc and the incline are 0.5 and 0.0, repectively. What i the inclination angle of the incline plane? nwer: Note that:, 1 tan ; tan tan ; tan Since the bloc i moving with contant velocity down a rough incline plane, we have to calculate Q: 3.5 g bloc i puhed along a horizontal floor by a force F of magnitude 15 N at an angle θ = 40º below the horizon a hown in the Figure. The coefficient of inetic friction between the bloc and the floor i 0.5. Calculate the magnitude of (a) the frictional force on the bloc from the floor and (b) the bloc acceleration. Solution: H. W. Draw the free body diagram We chooe +x horizontally rightward and +y upward and oberve that the 15 N force ha component F Fco and F Fin. x y (a) We apply Newton econd law to the y axi: R F in mg 0 R (15 N) in 40 (3.5 g)(9.8 m/ ) 44 N. With 0.5 and f R f = 11 N. (b) We apply Newton econd law to the x axi: 15 Nco 4011N F co f ma a 0.14 m/. 3.5 g Since the reult i poitive-valued, then the bloc i accelerating in the +x (rightward) direction. 5

6 Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Extra problem Q: ody in the Figure weigh 10 N, and body weigh 3 N. The coefficient of friction between and the incline are μ = 0.56, μ = 0.5, and the angle θ = 40º. Let the poitive direction of an x-axi be up the incline. In unit- vector notation, what i the acceleration of if i initially (a) at ret (b) moving up the incline, and (c) moving down the incline? Solution Firt, we chec to ee if the bodie tart to move. We aume they remain at ret and compute the force of (tatic) friction which hold them there, and compare it magnitude with the maximum value The free-body diagram are hown below. T i the magnitude of the tenion force of the tring, f i the magnitude of the force of friction on body, FN i the F N magnitude of the normal force of the plane on body, i the force of gravity on body (with magnitude W = 10 N), and m g i the force of gravity on body (with magnitude W = 3 N). θ = 40 i the angle of incline. We are told the direction of but we aume it i downhill. If we obtain a negative reult for f, then we now the force i actually up the plane. (a) For we tae the +x to be uphill and +y to be in the direction of the normal force. The x and y component of Newton econd law become T f W in 0 F W co 0. N Taing the poitive direction to be downward for body, Newton econd law lead to W T three equation lead to 0. Solving thee f W W in 3 N (10 N)in N (indicating that the force of friction i uphill) and to F W co (10 N) co 40 78N N m g which mean that f,max = μfn = (0.56) (78 N) = 44 N. Since the magnitude f of the force of friction that hold the bodie motionle i le than f,max the bodie remain at ret. The acceleration i zero. (b) Since i moving up the incline, the force of friction i downhill with magnitude f FN. Newton econd law, uing the ame coordinate a in part (a), lead to T f W in m a FN W co 0 W T m a for the two bodie. We olve for the acceleration: f 6

7 Prof. Dr. Ibraheem Naer Example_6 October 13, 017 a W W in W co m m 3N 10N in N co 40 3N+10N 9.8 m 3.9 m. The acceleration i down the plane, i.e., a ( 3.9 m/ )i, which i to ay (ince the initial velocity wa uphill) that the object are lowing down. We note that m = W/g ha been ued to calculate the mae in the calculation above. (c) Now body i initially moving down the plane, o the force of friction i uphill with f F N 3N+10N 9.8 m ˆ magnitude. The force equation become T f W in m a FN W co 0 W T m a which we olve to obtain W W in W co a m m 3N 10N in N co 40 The acceleration i again downhill the plane, i.e., object are peeding up. 1.0 m. a ( 1.0 m/ )i ˆ. In thi cae, the 61- bloc of ma m b m t = 4.0 g i put on top of a bloc of ma = 5.0 g. To caue the top bloc to lip on the bottom one while the bottom one i held fixed, a horizontal force of at leat 1 N mut be applied to the top bloc. The aembly of bloc i now placed on a horizontal, frictionle table (Fig. 6-47). Find the magnitude of (a) the maximum horizontal force that can be applied to the lower bloc o that the bloc will move together and (b) the reulting acceleration of the bloc. nwer: (a) Firt we have to calculate the coefficient of tatic friction uing the equation F mg, for the urface between the two bloc. F 1/ mg t 0.31, where mt g = (4.0 g)(9.8 m/ )=39. N i the weight of the top bloc. Second apply the Newton eq, Let M m m 9.0 g be the total ytem ma, then the maximum horizontal force ha a magnitude Ma = M g = 7 N. t b (b) The acceleration (in the maximal cae) i a = g =3.0 m/. 7

8 Prof. Dr. Ibraheem Naer Example_6 October 13, 017 Example: In the figure bloc of ma M = 3.0 g lide along a floor while a force F of magnitude 1.0 N i applied to it at an upward angle θ. The coefficient of inetic friction = We can vary θ from 0 to 90 o (the bloc remain on the floor). What give the maximum value of θ the bloc acceleration magnitude a? nwer: On y-axi, one find Ma F in N Mg On x-axi, one find y a 0 N Mg F in y F F Max F co f F co N ax co g in M M To maximize a, differentiate the lat equation with repect to θ dax F F in co 0 tan. d M M For, we find the maximum a will be at the angle: tan

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Application of Newton s Laws. F fr

Application of Newton s Laws. F fr Application of ewton Law. A hocey puc on a frozen pond i given an initial peed of 0.0/. It lide 5 before coing to ret. Deterine the coefficient of inetic friction ( μ between the puc and ice. The total

More information

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f

SPH3UW/SPH4UI Unit 2.4 Friction Force Page 1 of 8. Notes. : The kind of friction that acts when a body slides over a surface. Static Friction Force, f SPH3UW/SPH4UI Unit 2.4 Friction Force Page o 8 ote Phyic Tool Box Kinetic Friction Force, : The ind o riction that act when a body lide over a urace. Static Friction Force, : Friction orce when there i

More information

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1.

Example 1: Example 1: Example 2: a.) the elevator is at rest. Example 2: Example 2: c.) the elevator accelerates downward at 1. Exaple 1: 60 kg, v 1 100 N (wet), v 2 220 N (eat), a? Exaple 1: wo force parallel to the ground act upon a box with a a of 60 kg. One force i directed wet and ha a trength of 100 N. he other force i directed

More information

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Practice Midterm #2 solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Practice Midter # olution or apu Learning Aitance Service at USB . A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward

More information

PHYSICS LAB Experiment 5 Fall 2004 FRICTION

PHYSICS LAB Experiment 5 Fall 2004 FRICTION FRICTION In thi experiment we will meaure the effect of friction on the motion of a body in contact with a particular urface. When a body lide or roll over another, it motion i oppoed by the force of friction

More information

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1

t α z t sin60 0, where you should be able to deduce that the angle between! r and! F 1 PART III Problem Problem1 A computer dik tart rotating from ret at contant angular acceleration. If it take 0.750 to complete it econd revolution: a) How long doe it take to complete the firt complete

More information

In-Class Problem 5: Newton s Laws of Motion

In-Class Problem 5: Newton s Laws of Motion In-Cla Problem 5: Neton La of Motion Conider a trac ith a pulley located at the end. The force enor and cart have total ma m 1. They are connected by a inextenible rope of length l (paing over the pulley)

More information

Physics 6A. Practice Midterm #2 solutions

Physics 6A. Practice Midterm #2 solutions Phyic 6A Practice Midter # olution 1. A locootive engine of a M i attached to 5 train car, each of a M. The engine produce a contant force that ove the train forward at acceleration a. If 3 of the car

More information

Newton s Laws & Inclined Planes

Newton s Laws & Inclined Planes GP: ewton Law & Inclined Plane Phyic Mcutt Date: Period: ewton Law & Inclined Plane The ormal orce, Static and Kinetic rictional orce The normal orce i the perpendicular orce that a urace exert on an object.

More information

PHYSICS 211 MIDTERM II 12 May 2004

PHYSICS 211 MIDTERM II 12 May 2004 PHYSIS IDTER II ay 004 Exa i cloed boo, cloed note. Ue only your forula heet. Write all wor and anwer in exa boolet. The bac of page will not be graded unle you o requet on the front of the page. Show

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

What Are Newton's Laws of Motion?

What Are Newton's Laws of Motion? Phyic Review What Are Newton' Law of Motion? Intel Corporation or it ubidiarie in the U.S. and other countrie. orce Puh or Pull that act between two bodie Tenion Gravitational force rictional force Air

More information

FRICTION. k 9) For a body moving up a rough inclined plane under the action of a force F,

FRICTION. k 9) For a body moving up a rough inclined plane under the action of a force F, FRICTION POINTS TO REMEMBER ) The force that alway oppoe the relative motion between two urface in contact and parallel to the urface, oppoite to the direction of motion i called frictional force. ) The

More information

ME 141. Lecture 7: Friction

ME 141. Lecture 7: Friction ME 141 Engineering Mechanic Lecture 7: riction Ahmad Shahedi Shail Lecturer, Dept. of Mechanical Engg, BUET E-mail: hail@me.buet.ac.bd, hail6791@gmail.com Webite: teacher.buet.ac.bd/hail Courtey: Vector

More information

DYNAMICS OF ROTATIONAL MOTION

DYNAMICS OF ROTATIONAL MOTION DYNAMICS OF ROTATIONAL MOTION 10 10.9. IDENTIFY: Apply I. rad/rev SET UP: 0 0. (400 rev/min) 419 rad/ 60 /min EXECUTE: 0 419 rad/ I I (0 kg m ) 11 N m. t 800 EVALUATE: In I, mut be in rad/. 10.. IDENTIFY:

More information

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14.

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14. PROBLEM 8.6 Knowing that the coefficient of friction between the 25-kg block and the incline i μ =.25, determine (a) the mallet value of P required to tart the block moving up the incline, (b) the correponding

More information

PROBLEM = Knowing that P = 50 N, determine (a) the acceleration of block B, (b) the tension in the cord.

PROBLEM = Knowing that P = 50 N, determine (a) the acceleration of block B, (b) the tension in the cord. PROLEM 1.16 lock ha a ma of 40 k, and block ha a ma of 8 k. The coefficient of friction between all urface of contact are 0.0 m k = 0.15. Knowin that P = 50 N, determine (a) the acceleration of block,

More information

Frictional Forces. Friction has its basis in surfaces that are not completely smooth: 1/29

Frictional Forces. Friction has its basis in surfaces that are not completely smooth: 1/29 Frictional Force Friction ha it bai in urface that are not completely mooth: 1/29 Microcopic Friction Surface Roughne Adheion Magnified ection of a polihed teel urface howing urface irregularitie about

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy

Physics 20 Lesson 28 Simple Harmonic Motion Dynamics & Energy Phyic 0 Leon 8 Siple Haronic Motion Dynaic & Energy Now that we hae learned about work and the Law of Coneration of Energy, we are able to look at how thee can be applied to the ae phenoena. In general,

More information

Discover the answer to this question in this chapter.

Discover the answer to this question in this chapter. Erwan, whoe ma i 65 kg, goe Bungee jumping. He ha been in free-fall for 0 m when the bungee rope begin to tretch. hat will the maximum tretching of the rope be if the rope act like a pring with a 100 N/m

More information

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1)

Seat: PHYS 1500 (Fall 2006) Exam #2, V1. After : p y = m 1 v 1y + m 2 v 2y = 20 kg m/s + 2 kg v 2y. v 2x = 1 m/s v 2y = 9 m/s (V 1) Seat: PHYS 1500 (Fall 006) Exa #, V1 Nae: 5 pt 1. Two object are oving horizontally with no external force on the. The 1 kg object ove to the right with a peed of 1 /. The kg object ove to the left with

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction.

3. In an interaction between two objects, each object exerts a force on the other. These forces are equal in magnitude and opposite in direction. Lecture quiz toda. Small change to webite. Problem 4.30 the peed o the elevator i poitive even though it i decending. The WebAign anwer i wrong. ewton Law o Motion (page 9-99) 1. An object velocit vector

More information

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard

3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honors Physics Impulse-Momentum Theorem. Name: Answer Key Mr. Leonard 3pt3pt 3pt3pt0pt 1.5pt3pt3pt Honor Phyic Impule-Momentum Theorem Spring, 2017 Intruction: Complete the following workheet. Show all of you work. Name: Anwer Key Mr. Leonard 1. A 0.500 kg ball i dropped

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4.

Practice Problem Solutions. Identify the Goal The acceleration of the object Variables and Constants Known Implied Unknown m = 4. Chapter 5 Newton Law Practice Proble Solution Student Textbook page 163 1. Frae the Proble - Draw a free body diagra of the proble. - The downward force of gravity i balanced by the upward noral force.

More information

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv

( kg) (410 m/s) 0 m/s J. W mv mv m v v. 4 mv PHYS : Solution to Chapter 6 Home ork. RASONING a. The work done by the gravitational orce i given by quation 6. a = (F co θ). The gravitational orce point downward, oppoite to the upward vertical diplacement

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Name: Answer Key Date: Regents Physics. Energy

Name: Answer Key Date: Regents Physics. Energy Nae: Anwer Key Date: Regent Phyic Tet # 9 Review Energy 1. Ue GUESS ethod and indicate all vector direction.. Ter to know: work, power, energy, conervation of energy, work-energy theore, elatic potential

More information

Physics Sp Exam #4 Name:

Physics Sp Exam #4 Name: Phyic 160-0 Sp. 017 Ea #4 Nae: 1) A coputer hard dik tart ro ret. It peed up with contant angular acceleration until it ha an angular peed o 700 rp. I it coplete 150 revolution while peeding up, what i

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 111, INTRODUCTORY PHYSICS I Saturday, 14 December 013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. Thi exam booklet ha 14 page. Make ure none are miing. There i an equation

More information

Time [seconds]

Time [seconds] .003 Fall 1999 Solution of Homework Aignment 4 1. Due to the application of a 1.0 Newton tep-force, the ytem ocillate at it damped natural frequency! d about the new equilibrium poition y k =. From the

More information

Physics Exam 3 Formulas

Physics Exam 3 Formulas Phyic 10411 Exam III November 20, 2009 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam i cloed book, and you may have only pen/pencil and a calculator (no tored equation or

More information

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so

Solution to Theoretical Question 1. A Swing with a Falling Weight. (A1) (b) Relative to O, Q moves on a circle of radius R with angular velocity θ, so Solution to Theoretical uetion art Swing with a Falling Weight (a Since the length of the tring Hence we have i contant, it rate of change ut be zero 0 ( (b elative to, ove on a circle of radiu with angular

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc.

EF 151 Final Exam, Spring, 2009 Page 2 of 10. EF 151 Final Exam, Spring, 2009 Page 1 of 10. Name: Section: sina ( ) ( )( ) 2. a b c = = cosc. EF 5 Final Exam, Spring, 9 Page of EF 5 Final Exam, Spring, 9 Page of Name: Section: Guideline: Aume 3 ignificant figure for all given number unle otherwie tated Show all of your work no work, no credit

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Examples Newton's Laws and Friction

Examples Newton's Laws and Friction Examples Newton's Laws and Friction 1. A 10.0 kg box is sitting on a table. (A) If a 49 N force is required to overcome friction and start the block moving, calculate the coefficient of static friction.

More information

CHAPTER 4 FORCES AND NEWTON'S LAWS OF MOTION

CHAPTER 4 FORCES AND NEWTON'S LAWS OF MOTION CHAPTER 4 ORCES AND NEWTON'S LAWS O MOTION CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION When the car come to a udden halt, the upper part of the bod continue forward (a predicted b Newton' firt law)

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time. P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the

More information

Physics 111: Mechanics Lecture 5

Physics 111: Mechanics Lecture 5 Physics 111: Mechanics Lecture 5 Bin Chen NJIT Physics Department Forces of Friction: f q When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion.

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

Core Mathematics M1. Dynamics (Planes)

Core Mathematics M1. Dynamics (Planes) Edexcel GCE Core Mathematics M1 Dynamics (Planes) Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your

More information

Uniform Acceleration Problems Chapter 2: Linear Motion

Uniform Acceleration Problems Chapter 2: Linear Motion Name Date Period Uniform Acceleration Problem Chapter 2: Linear Motion INSTRUCTIONS: For thi homework, you will be drawing a coordinate axi (in math lingo: an x-y board ) to olve kinematic (motion) problem.

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes

SPH4U/SPH3UW Unit 2.3 Applying Newton s Law of Motion Page 1 of 7. Notes SPH4U/SPH3UW Unit.3 Appling Newton Law of Motion Page 1 of 7 Note Phic Tool Bo Solving Newton Law of Motion Proble o Read quetion to enure full undertanding o Draw and label a ree Bod Diagra o Separate

More information

CHAPTER VII FRICTION

CHAPTER VII FRICTION CHAPTER VII FRICTION 1- The block brake conit of a pin-connected lever and friction block at B. The coefficient of tatic friction between the wheel and the lever i and a torque of i applied to the wheel.

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1 Fig. 5 shows a block of mass 10 kg at rest on a rough horizontal floor. A light string, at an angle of 30 to the vertical, is attached to the block. The tension in the string is 50 N. The block is in

More information

Specify and determine the limiting conditions for sliding, toppling, Describe the mechanism and characteristics of dry friction,

Specify and determine the limiting conditions for sliding, toppling, Describe the mechanism and characteristics of dry friction, 5. Friction 4 Static, 0/ Department of Mechanical Engineering, Chulalongorn Univerit Objective Student mut be able to Coure Objective Include friction into equilibrium anale Chapter Objective For friction

More information

FORCES IN ONE DIMENSION

FORCES IN ONE DIMENSION Suppleental Proble ORCES I OE DIMESIO 1. You and your bike have a cobined a of 80 k. How uch brakin force ha to be applied to low you fro a velocity of 5 / to a coplete top in? vf vi 0.0 / 5.0 / a t t.0

More information

BA ĐỊNH LUẬT NEWTON VÀ BÀI TẬP ÁP DỤNG

BA ĐỊNH LUẬT NEWTON VÀ BÀI TẬP ÁP DỤNG BA ĐỊNH LUẬT NEWTON VÀ BÀI TẬP ÁP DỤNG Newton Law and Applying Newton' Law Newton Firt Law Every body continue in it tate of ret, orof uniform motion in a traight line, except when it i compelled to change

More information

PHYSICS 211 MIDTERM I 22 October 2003

PHYSICS 211 MIDTERM I 22 October 2003 PHYSICS MIDTERM I October 3 Exm i cloed book, cloed note. Ue onl our formul heet. Write ll work nd nwer in exm booklet. The bck of pge will not be grded unle ou o requet on the front of the pge. Show ll

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 )

= 16.7 m. Using constant acceleration kinematics then yields a = v v E The expression for the resistance of a resistor is given as R = ρl 4 ) 016 PhyicBowl Solution # An # An # An # An # An 1 C 11 C 1 B 31 E 41 D A 1 B E 3 D 4 B 3 D 13 A 3 C 33 B 43 C 4 D 14 E 4 B 34 C 44 E 5 B 15 B 5 A 35 A 45 D 6 D 16 C 6 C 36 B 46 A 7 E 17 A 7 D 37 E 47 C

More information

Midterm Review - Part 1

Midterm Review - Part 1 Honor Phyic Fall, 2016 Midterm Review - Part 1 Name: Mr. Leonard Intruction: Complete the following workheet. SHOW ALL OF YOUR WORK. 1. Determine whether each tatement i True or Fale. If the tatement i

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

Physics 20 Lesson 17 Elevators and Inclines

Physics 20 Lesson 17 Elevators and Inclines Phic 0 Leon 17 Elevator and Incline I. Vertical force Tenion Suppoe we attach a rope to a teel ball and hold the ball up b the rope. There are two force actin on the ball: the force due to ravit and the

More information

The box is pushed by a force of magnitude 100 N which acts at an angle of 30 with the floor, as shown in the diagram above.

The box is pushed by a force of magnitude 100 N which acts at an angle of 30 with the floor, as shown in the diagram above. 1. A small box is pushed along a floor. The floor is modelled as a rough horizontal plane and the 1 box is modelled as a particle. The coefficient of friction between the box and the floor is. 2 The box

More information

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS)

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS) !! www.clutchprep.com FORCE, APPLIED FORCE, TENSION A force is either a push or a pull. Unit = ( ) - We ll represent all forces as a We ll refer to generic forces as forces. - Usually on an object by a

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Physics 30 Lesson 3 Impulse and Change in Momentum

Physics 30 Lesson 3 Impulse and Change in Momentum Phyic 30 Leon 3 Ipule and Change in Moentu I. Ipule and change in oentu According to Newton nd Law of Motion (Phyic Principle 1 on the Data Sheet), to change the otion (i.e. oentu) of an object an unbalanced

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement

1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement 1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement r = ( 3ˆ i + ˆ j )m. Find (a) the work done by the force on the particle and (b) the angle between F and r. 2- The force acting

More information

Phys 201A. Homework 8 Solutions

Phys 201A. Homework 8 Solutions Phys 01A Homewor 8 Solutions 15. (b) The static frictional force that blocs A and B eert on each other has a magnitude f. The force that B eerts on A is directed to the right (the positive direction),

More information

= M. L 2. T 3. = = cm 3

= M. L 2. T 3. = = cm 3 Phys101 First Major-1 Zero Version Sunday, March 03, 013 Page: 1 Q1. Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension

More information

s much time does it take for the dog to run a distance of 10.0m

s much time does it take for the dog to run a distance of 10.0m ATTENTION: All Diviion I tudent, START HERE. All Diviion II tudent kip the firt 0 quetion, begin on #.. Of the following, which quantity i a vector? Energy (B) Ma Average peed (D) Temperature (E) Linear

More information

Determine the gravitational attraction between two spheres which are just touching each other. Each sphere has a mass M and radius r.

Determine the gravitational attraction between two spheres which are just touching each other. Each sphere has a mass M and radius r. Problem 13-1 Determine the gravitational attraction between two phere which are jut touching each other. Each phere ha a ma M and radiu r. r 00 mm M 10 kg G 66.73 10 1 m 3 kg nn 1 10 9 N F GM ( r) F 41.7

More information

UIC PHYSICS 105 Fall st Midterm Exam

UIC PHYSICS 105 Fall st Midterm Exam UIC: Physics 105 1st Midterm Exam Fall 2014 Thursday, October 2 # LAST Name (print) FIRST Name (print) Signature: UIN #: Giving or receiving aid in any examination is cause for dismissal from the University.

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Physics 20 Lesson 16 Friction

Physics 20 Lesson 16 Friction Phyic 0 Leon 16 riction In the previou leon we learned that a rictional orce i any orce that reit, retard or ipede the otion o an object. In thi leon we will dicu how riction reult ro the contact between

More information

Problem Set III Solutions

Problem Set III Solutions Problem Set III Solutions. The bloc is at rest which means that F x = F y = 0. From Figure, it is clear that F x = ma x = 0 = T cos a = T cos b () F y = ma y = 0 = T sin a + T sin b = mg. () Solving Equation

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

OPEN ONLY WHEN INSTRUCTED

OPEN ONLY WHEN INSTRUCTED OPEN ONLY WHEN INSTRUCTED Name: Hr: AP Physics C Mechanics Final Semester Examination Instructions: Write your name on the exam as well as scantron before you begin This exam consists of Section 1) Multiple

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Physics Sp Exam #3 Name:

Physics Sp Exam #3 Name: Phyic 160-0 Sp. 017 Exa #3 Nae: 1) In electrodynaic, a agnetic field produce a force on a oving charged particle that i alway perpendicular to the direction the particle i oving. How doe thi force affect

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Stacked Blocks Problem Set 2 Consider two blocks that are resting one on top of the other. The lower block has mass m 2 = 4.8

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information