- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics

Size: px
Start display at page:

Download "- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics"

Transcription

1 Chapter 4 Optical Source - Outline 4.1 Semiconductor physics - Energy band - Intrinsic and Extrinsic Material - pn Junctions - Direct and Indirect Band Gaps 4. Light Emitting Diodes (LED) - LED structure - Light source materials -Quantum Efficiency and power - Modulation of LED 4.3 Laser Diodes - Laser diodes modes and thershold - Rate Equations - External Quantum Efficiency - Resonant Frequencies - Single mode lasers - Laser modulation

2 4.1 Semiconductor physics - Energy band Semiconductor: Conduction properties lies somewhere between those of conductor (metal) and insulator Intrinsic Semiconductor: Pure crystal (such as Si, Ge) group IV I II IIIb IVb Vb VIb VIIb VIIIb Ib IIb III IV V VI VII H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La* Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac** Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq Uuh Uuo Lanthanides * Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Actinides ** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

3 4.1 Semiconductor physics - Energy band Energy-band diagram: - conduction band E C - valence band E V - band gap Eg= E C -E V Carrier: electrons / holes Concentration : - free electron concentration n - hole concentration p - intrinsic carrier concentration n i Eg n = p = n = i Kexp( ) (4.1) K = ( πk / ) 3/ ( ) 3/4 BT h mm e h kt B

4 4.1 Semiconductor physics - Energy band Doping: Conduction can be greatly increased by adding traces of impurities from Group V or Group III Doping Group V donor impurity (P, As, Sb; 5 electrons) free-electrons n-type material Doping Group III acceptor impurity ( Al, Ga, In, Boron ) free-holes p-type material

5 Semiconductor physics - Intrinsic and Extrinsic Material Intrinsic material : A perfect material containing no impurities is called ~. Extrinsic material : Doped semiconductor is called ~. Thermal generation produce electron-hole pairs ( for intrinsic material: equal concentration n = p = n i ) Recombination : a free electron releases its energy and drops into a free hole in the valence band. For extrinsic material: concentration of p and n is different, and follow the mass-action law: pn = n i n i : intrinsic carrier concentration Majority carriers : refers to electrons in n-type material, and holes in p-type material. Minority carriers: refers to holes in n-type material, and electrons in p-type material

6 Semiconductor physics - Intrinsic and Extrinsic Material Example 4- Consider an n-type semiconductor which has been doped with a net concentration of N D donor impurities. Find electron and hole concentrations (n N, p N ). Let n N and p N be the electron and hole concentrations, respectively, where the subscript N is used to denote n-type semiconductor characteristics. Total hole concentration p N (only from thermal excitation): Total electron concentration n N (from doped and thermal excitation): p N nn = ND + pn Mass-action law: n p = n N N i ( n + p ) p = n D N N i ND + ND 4ni N D pn = = ( ni / ND ) ni nd p n n n N i / D N n D

7 Semiconductor physics - pn Junction Doped n- or p-type semiconductor material by itself serves only as a conductor. Only pn junction is responsible for the useful electrical characteristics of a semiconductor device Barrier potential : prevents further movement of charges Depletion region : External battery can be connected to the pn junction, by reverse-bias or forward bias. Reverse biased for application in photodiode Forward biased for application in laser diode

8 Semiconductor physics - pn Junction Forward-biased pn junction: Creates barrier potential, which prevent holes and electrons to move to junction region, but when pn junction is applied forward voltage, if ev >= W g, the electrons and holes will move into junction region, and recombine, which will create Photons. Reverse-biased pn junction: The width of the depletion region will increase on both the n side and p side. (will talk in next chapter for photodiode) Operating Wavelength: hf = W, λ = hc/ W g Note: for direct bandgap material g

9 Semiconductor physics - Direct and Indirect Band Gaps Direct band gap material: no change of wavevector efficient For example: GaAs Indirect band gap material with change of wavevector

10 Light-Emitting Diodes - LED Structure To achieve high radiance, high quantum efficiency, carrier confinement and optical confinement are necessary. Structure: - homojunctions: same material (W g ) - single and double heterojunctions : difference bandgap materials Put fig. 4-8 here The most effective structure: Double heterojunction (it could provide carrier and optical confinements.) Carrier (electron or hole ) confinement - bandgap difference of adjacent layer Optical confinement - index difference of adjacent layer Two basic LED configuration - Surface emitters - Edge emitters

11 Surface emitters /lambertian pattern Edge emitters unsymmetric radiation Parallel plane: Lambertian pattern Perpendicular plane: there is beam confinement (better coupling)

12 Light-Emitting Diodes - Laser Source Materials III-V materials (Al, Ga, In III group; P, As, Sb V group Ternary and quaternary combinations - Ternary alloy Ga 1-x Al x As, spectrum at nm - Quaternary alloy In 1-x Ga x As y P 1-y, spectrum at μm -x, y Lattice constant Spectrum, full-width-half-maximum (FWHM)

13 Light-Emitting Diodes - Laser Source Materials Relationship between energy E and frequency ν : hc E = hν = λ 1.40 λ( μm) = E ( ev ) g Relationship between lattice constant (x, y) and band-gap - For Ga 1-x Al x As : E = + x+ x g (4 4) - For In 1-x Ga x As y P 1-y : E = y + y g (4 5) Example 4-3 Consider a Ga 1-x Al x As laser with x=0.07. Find the diode emission wavelength. Example 4-4 Consider the alloy In 1-x Ga x As y P 1-y (i.e., x = 0.6 and y =0.57), find diode emission wavelength.

14 η int r Light-Emitting Diodes When carrier injection stops, carrier density t /τ decays: n = n0e For constant current flow into LED, an equilibrium condition will be established. Internal Quantum efficiency η int : = r R r τ = n / R Rr + R = + τ τ τ r nr nr τ 1 = 1+ τ / τ nr r = n / R nr nr = τ τ r R r : radiative recombination rate - Internal quantum efficiency τ r : radiative recombination lifetime R nr : nonradiative recombination rate τ nr nonradiative recombination lifetime dn dt = rate equation J qd Current injection n τ Thermal generation J current density in A/cm q electron charge d thickness of recombination region equilibrium condition n = Jτ qd P int : internal optical power I Pint = ηint hν = η q int hci qλ

15 Light-Emitting Diodes - Internal quantum efficiency Example 4-5 A double-heterojunction InGaAsP LED emitting at a peak wavelength of 1310 nm has radiative and nonradiative recombination times of 30 and 100 ns, respectively. The drive current is 40 ma. Compute internal quantum efficiency and internal optical power.

16 Light-Emitting Diodes n - External quantum efficiency External quantum efficiency 1 φc η ext = T( φ)(π sin φ) dφ 4π 0 Incidental angle φ critical angle c Fresnel transmissivity for normal incidence T (0) = 4n1n ( n + n 1 1 φ = π / θ = sin ( n / n ) c ) 1 Example 4-6 Assuming a typical value of n=3.5 for refractive index of an LED material, calculate the η ext. Emitted power For n 1 =n, n =1 1 η ext nn ( + 1) Pint Pext = η ext Pint = n( n + 1)

17 Light-Emitting Diodes - Modulation Modulated output power P 0 ( ) = (4.18) 1 + ( ωτ i ) P ω P 0 ω τ i power emitted at DC modulation frequency carrier lifetime Optical 3-dB modulation bandwidth : P( ω3 db ) = P(0) Detected current is linearly proportional to optical power : Detected electric power : p( ω) = I ( ω) R 1 P( ω) I( ω) = P(0) I(0) Therefore, 3-dB electrical loss corresponds to 1.5-dB optical loss; in other words, 3-dB optical loss corresponds to 6-dB electrical loss. 1 f3 db ( electrical) = f3 db ( optical) = f3 db ( optical)

18 Laser Diodes - Principles Types of Laser : lasing medium gas, liquid, solid state (crystal), semiconductor. Laser action is the result of 3 key process: photon absorption, spontaneous emission, and stimulated emission. Photon absorption: When a photon of energy hν 1 impinges on the system, an electron in ground state E 1 can absorb the photon energy and be excited to state E. Spontaneous emission : The electron in state E falls down to state E 1 by itself quite spontaneously, and emits a photon of energy hν 1 in random direction. Stimulated emission : The electron in state E falls down to state E 1, induced by a coming photon of energy of hν 1, and emits a photon of energy hν 1 in the same direction.

19 Laser Diodes - Principles In thermal equilibrium : The density of exited electron is very small Population inversion : Population of excited states > that of the ground state stimulated emission will exceed absorption Pumping techniques : obtain population inversion For a semiconductor laser, population inversion can be achieved by injecting electrons, or another pumping laser for solid state laser (crystal)

20 Laser Diodes - Modes Laser cavity : to convert the device into an oscillator and provide optical feedback to compensate the optical loss in the cavity - Fabry-Perot (FP) laser: mirrors, cleaved facets - Distributed feedback (DFB) laser : Bragg reflector Modes: Longitudinal mode; Lateral mode; Transverse mode - spectral characteristics (resonant frequencies) / longitudinal modes - spatial characterisitics depend on / lateral and transverse modes

21 Laser Diodes - Threshold conditions -1 Optical field intensity in longitudinal direction I( z, t) = I( z) e j ωt β z ( ) I(z) optical field intensity ω optical radian frequency β propagation constant with I( z) = I(0) e [ Γg( hν) α( hν)] z Γ optical confinement factor g gain coefficient depended on optical frequency α effective material absorption coefficient R a Γg Amplitude condition I (L) = R th b e cavity threshold gain I (0) L( Γg ( hν ) α ( hν )) = α + = ln( L R R a b ) = α + α cavity Material loss end cavi mirr loss Fabry-Perot laser cavity Reflecting mirror Phase condition e jβ L = 1 Decided by laser cavity dimension! Amplitude condition Phase condition R a R b n Gain medium 1 n z 0 L Amplitude during one round trip I (L) = I (0) R a R R a R b mirror Fresnel reflection coefficients n n R = ( n 1 b e 1 ) + n L( Γg ( hν ) α ( hν )) Laser condition: Laser occurs when the gain is sufficient to exceed the optical loss during one round trip

22 I ( L) = I (0) Laser Diodes - Threshold conditions - Example 4-7 For GaAs, R 1 =R =0.3 for uncoated facets (i.e. 3% of the radiation is 1 1 reflected at a facet) and α 10cm. This yields Γ g th = 33cm for a laser diode of length L = 500μm. Optical power vs. drive current Threshold current density J th g th g = β th J th Threshold current density Threshold gain β constant depended on device construction - spontaneous radiation below threshold - threshold current J = I / A th th I th Threshold current A Area

23 Laser Diodes - Rate equation -1 Relationship between optical power and drive current can be determined by two rate equations: For photon density Φ ; For electron density n rate equation for photon density dφ Φ = CnΦ+ Rsp dt τ stimulated emission ph spontaneous emission photon loss Φ : photon density C coefficient for optical absorption and emission interactions R sp rate of spontaneous emission into lasing mode τ ph photon lifetime dφ 0 dt with R sp 0 Cn 1 0 τ ph Photon density should be in increasing mode towards lasing with negligible spontaneous emission n n th = C 1 τ ph Electron density must exceed a threshold value in order for photon density to increase rate equation for electron density dn J n = CnΦ dt qd τ sp dn = 0 dt with Φ = 0 n = n th n τ th = sp J th qd injection spontaneous recombination stimulated emission J injection current density τ sp spontaneous recombination lifetime If electron density is at threshold level, injected electrons are just fully consumed by spontaneous recombination without light emission

24 Laser Diodes - Rate equation - Steady-state solution for rate equations d Φ Φ = s Cn Φ + th s R = sp 0 dt τ ph dn J n = th Cn thφ s = 0 dt qd τ Φ s sp steady-state photon density + n τ th = sp J th qd τ ph Φ s = ( J J th ) + τ qd Photons resulting from stimulated emission ph R sp Spontaneously generated photons

25 Laser Diodes - External quantum efficiency External quantum efficiency η ext is defined as the number of photons emitted per radiative electron-hole pair recombination above threshold. External quantum efficiency η ext α = η (1 ) (4.37) i g th Achieved experimentally q dp η ext = = E di g λ( μm) dp( mw ) di ( ma) η i internal quantum efficiency ~ at room temperature Ε g band-gap energy λ emitted wavlength g th gain coefficient at threshold

26 Laser Diodes - Resonant frequencies e jβ L Phase condition for lasing = 1 ν = m c nl 1 πν βl = nl 1 = mπ c Optical resonant frequencies (or longitudinal modes) c λ Δ ν = or Δ λ = nl nl 1 1 Frequency or wavelength spacing between modes (or free spectral range FSR) These modes describe the possible resonant optical frequency, if lasing really happen at these frequencies or not, still depends on the laser gain profile. If many modes are allowed for lasing under the gain spectral profile, it is a multi-mode laser e.g. Fabry-Perot laser

27 Laser Diodes - Resonant frequencies Laser spectral gain profile g ( λ λ0 ) σ ( λ) = g(0) e g(0) maximum gain proportional to population inversion λ 0 wavelength at the spectrum center σ spectral width of the gain Example, 4-1 A GaAs laser operating at 850 nm has a 500 μ m length and a refractive index n=3.7. What are the frequency and wavelength spacings. If, at the half-power point, λ λ 0 = nm, what is the spectral width σ of the gain?

28 Laser Diodes - Single mode lasers - reduce cavity length L to increase frequency interval (FSR) between modes until there is only one mode falls within the laser gain bandwidth (not practical due to its dimension and low optical power) - distributed-feedback (DFB) laser - two 0-order modes will be degenerated to single mode due to imperfect AR coating DFB laser cavity λb λ = λb ± ( m + n L e e 1 ) λ B n e Λ = k n 1 n Anti-reflection coating k order of the grating n e effective refrative index of the mode Λ period of corrugation

29 Laser Diodes - Modulation Internal (direct, current) modulation ; External modulation Modulate the laser above the threshold - Spontaneous radiative lifetime τ sp ~ 1 ns - Stimulated carrier lifetime τ st ~ 10 ps - photon lifetime τ ph ~ ps sets the upper limit to the direct modulation capacity Modulation frequency also can not be larger than the frequency of the relaxation of laser field f P Laser injection current f = 1 1 I 1 π τ τ I sp ph th Laser output power I B I p +I B I t d Laser carrier density Fig Example of the relaxationoscillation peak o a laser diode

30 P195, 4-9 a) A GaAlAs laser diode has a 500 μ m cavity length which has an effective absorption coefficient of 10 cm -1. For uncoated facets the reflectivities are 0.3 at each end. What is the optical gain at the lasing threshold? b) If one end of the laser is coated with a dielectric reflector so that its reflectivity is now 90 percent, what is the optical gain at the lasing threshold? c) If the internal quantum efficiency is 0.65, what is the external quantum efficiency in cases of (a) and (b)? P196, 4-1 A GaAs laser emitting at 800 nm has a 400 μ m cavity length with a refractive index n=3.6. If the gain g exceeds the total loss α throughout t the range 750 nm < λ < 850 nm, how many modes will exist in the laser?

31 P195, 4-15 For laser structures that have strong carrier confinement, the threshold current density of stimulated emission J th can to a good approximation be related to the lasing-threshold optical gain g th by g th = β J th, where β is a constant that depends on the specific device construction. Consider a GaAs laser with an optical cavity of length 50 μ m and width 100 μ m. At the normal operating temperature, the gain factor β = 1x10-3 cm/a and the effective absorption coefficient α =10 cm 1. a) If the refractive index is 3.6, find the threshold current density and the threshold current I th. Assume the laser end facets are uncoated and the current is restricted to the optical cavity. b) What is the threshold current if the laser cavity width is reduced to 10 μ m?

CHEM 10113, Quiz 5 October 26, 2011

CHEM 10113, Quiz 5 October 26, 2011 CHEM 10113, Quiz 5 October 26, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17) CHEM 10113, Quiz 3 September 28, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates UMBC, CMSC313, Richard Chang Last Time Overview of second half of this course Logic gates &

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

8. Relax and do well.

8. Relax and do well. CHEM 1215 Exam III John III. Gelder November 11, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

(C) Pavel Sedach and Prep101 1

(C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach

More information

Chapter 12 The Atom & Periodic Table- part 2

Chapter 12 The Atom & Periodic Table- part 2 Chapter 12 The Atom & Periodic Table- part 2 Electrons found outside the nucleus; negatively charged Protons found in the nucleus; positive charge equal in magnitude to the electron s negative charge Neutrons

More information

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you. DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg, answer questions. Use the section. to help you. Chapter test is FRIDAY. The Periodic Table of Elements 8 Uuo Uus Uuh

More information

HANDOUT SET GENERAL CHEMISTRY II

HANDOUT SET GENERAL CHEMISTRY II HANDOUT SET GENERAL CHEMISTRY II Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

If anything confuses you or is not clear, raise your hand and ask!

If anything confuses you or is not clear, raise your hand and ask! CHM 1045 Dr. Light s Section December 10, 2002 FINAL EXAM Name (please print) Recitation Section Meeting Time This exam consists of six pages. Make sure you have one of each. Print your name at the top

More information

CHEM 10123/10125, Exam 2

CHEM 10123/10125, Exam 2 CHEM 10123/10125, Exam 2 March 7, 2012 (50 minutes) Name (please print) Please box your answers, and remember that significant figures, phases (for chemical equations), and units do count! 1. (13 points)

More information

8. Relax and do well.

8. Relax and do well. CHEM 1515 Exam II John II. Gelder October 14, 1993 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last two pages include a periodic table, a

More information

The Periodic Table of the Elements

The Periodic Table of the Elements The Periodic Table of the Elements All matter is composed of elements. All of the elements are composed of atoms. An atom is the smallest part of an element which still retains the properties of that element.

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam III John III. Gelder April 8, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last two pages includes a periodic table and

More information

Chemistry 431 Practice Final Exam Fall Hours

Chemistry 431 Practice Final Exam Fall Hours Chemistry 431 Practice Final Exam Fall 2018 3 Hours R =8.3144 J mol 1 K 1 R=.0821 L atm mol 1 K 1 R=.08314 L bar mol 1 K 1 k=1.381 10 23 J molecule 1 K 1 h=6.626 10 34 Js N A = 6.022 10 23 molecules mol

More information

Circle the letters only. NO ANSWERS in the Columns!

Circle the letters only. NO ANSWERS in the Columns! Chemistry 1304.001 Name (please print) Exam 5 (100 points) April 18, 2018 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

8. Relax and do well.

8. Relax and do well. CHEM 1014 Exam I John I. Gelder September 16, 1999 Name TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do not

More information

610B Final Exam Cover Page

610B Final Exam Cover Page 1 st Letter of Last Name NAME: 610B Final Exam Cover Page No notes or calculators of any sort allowed. You have 3 hours to complete the exam. CHEM 610B, 50995 Final Exam Fall 2003 Instructor: Dr. Brian

More information

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt. 1 IA 1 ydrogen 1.01 Atomic number Element symbol Element name Atomic mass VIIIA 1 1.01 IIA IIIA IVA VA VIA VIIA 2 e 4.00 Metalloids 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F 19.00

More information

single-layer transition metal dichalcogenides MC2

single-layer transition metal dichalcogenides MC2 single-layer transition metal dichalcogenides MC2 Period 1 1 H 18 He 2 Group 1 2 Li Be Group 13 14 15 16 17 18 B C N O F Ne 3 4 Na K Mg Ca Group 3 4 5 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu Zn Al Ga

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Chemistry 05 B First Letter of PLEASE PRINT YOUR NAME IN BLOCK LETTERS Exam last Name Name: 02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Lab TA s Name: Question Points Score Grader 2 2 9 3 9 4 2

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314.03 Exam I John I. Gelder September 25, 1997 Name TA's Name Lab Section Please sign your name below to give permission to post, by the last 4 digits of your student I.D. number, your course scores

More information

The exam must be written in ink. No calculators of any sort allowed. You have 2 hours to complete the exam. Periodic table 7 0

The exam must be written in ink. No calculators of any sort allowed. You have 2 hours to complete the exam. Periodic table 7 0 Email: The exam must be written in ink. No calculators of any sort allowed. You have 2 hours to complete the exam. CEM 610B Exam 3 Spring 2002 Instructor: Dr. Brian Pagenkopf Page Points 2 6 3 7 4 9 5

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 7, 1998 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

Circle the letters only. NO ANSWERS in the Columns! (3 points each) Chemistry 1304.001 Name (please print) Exam 4 (100 points) April 12, 2017 On my honor, I have neither given nor received unauthorized aid on this exam. Signed Date Circle the letters only. NO ANSWERS in

More information

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV) 1 Genesis 1:1 Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV) 1 Vocabulary Saturated having all the solute that can be dissolved at that temperature Neutron a particle with no

More information

HANDOUT SET GENERAL CHEMISTRY I

HANDOUT SET GENERAL CHEMISTRY I HANDOUT SET GENERAL CHEMISTRY I Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

7. Relax and do well.

7. Relax and do well. CHEM 1215 Exam II John II. Gelder October 13, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 5 different pages. The last page includes a periodic table and a solubility

More information

Fall 2011 CHEM Test 4, Form A

Fall 2011 CHEM Test 4, Form A Fall 2011 CHEM 1110.40413 Test 4, Form A Part I. Multiple Choice: Clearly circle the best answer. (60 pts) Name: 1. The common constituent in all acid solutions is A) H 2 SO 4 B) H 2 C) H + D) OH 2. Which

More information

CHM 101 PRACTICE TEST 1 Page 1 of 4

CHM 101 PRACTICE TEST 1 Page 1 of 4 CHM 101 PRACTICE TEST 1 Page 1 of 4 Please show calculations (stuffed equations) on all mathematical problems!! On the actual test, "naked answers, with no work shown, will receive no credit even if correct.

More information

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hours. Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt. 1 IA 1 H Hydrogen 1.01 Atomic number Element symbol Element name Atomic mass VIIIA 1 H 1.01 IIA IIIA IVA VA VIA VIIA 2 He 4.00 Metalloids 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

CHEM 108 (Spring-2008) Exam. 3 (105 pts)

CHEM 108 (Spring-2008) Exam. 3 (105 pts) CHEM 08 (Spring-008) Exam. (05 pts) Name: --------------------------------------------------------------------------, CLID # -------------------------------- LAST NAME, First (Circle the alphabet segment

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Patterns What Patterns have you observed in your life? Where to Get Help If you don t understand concepts in chapter

More information

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017 SCIENCE 1206 UNIT 2 CHEMISTRY September 2017 November 2017 UNIT OUTLINE 1. Review of Grade 9 Terms & the Periodic Table Bohr diagrams Evidence for chemical reactions Chemical Tests 2. Naming & writing

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

Marks for each question are as indicated in [] brackets.

Marks for each question are as indicated in [] brackets. Name Student Number CHEMISTRY 140 FINAL EXAM December 10, 2002 Numerical answers must be given with appropriate units and significant figures. Please place all answers in the space provided for the question.

More information

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section CHEM 1314.05 Exam I John I. Gelder September 13, 1994 Name TA's Name Lab Section Please sign your name below to give permission to post, by the last 4 digits of your student I.D. number, your course scores

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

FINAL EXAM April 26, 2004

FINAL EXAM April 26, 2004 CM 1045 (11:15 am Lecture) Dr. Light FINAL EXAM April 26, 2004 Name (please print) Check your recitation section: Sec. 21 5:30-6:20 pm (Popovic) Sec. 24 3:30-4:20 pm (Giunta) Sec. 22 6:30-7:20 pm (Popovic)

More information

7. Relax and do well.

7. Relax and do well. CHEM 1014 Exam III John III. Gelder November 18, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

8. Relax and do well.

8. Relax and do well. CHEM 15 Exam II John II. Gelder March 4, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last two pages includes a periodic table, a solubility

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

INSTRUCTIONS: 7. Relax and do well.

INSTRUCTIONS: 7. Relax and do well. EM 1314 Name Exam III TA Name John III. Gelder November 16, 1992 Lab Section INSTRUTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and some

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School Name (print neatly) School There are fifteen question on this exam. Each question is weighted equally. n the answer sheet, write your name in the space provided and your answers in the blanks provided.

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source Eric Gullikson Lawrence Berkeley National Laboratory 1 Reflectometry and Scattering Beamline (ALS 6.3.2) Commissioned Fall 1994

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Instructions. 1. Do not open the exam until you are told to start.

Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Element Cube Project (x2)

Element Cube Project (x2) Element Cube Project (x2) Background: As a class, we will construct a three dimensional periodic table by each student selecting two elements in which you will need to create an element cube. Helpful Links

More information

Using the Periodic Table

Using the Periodic Table MATH SKILLS TRANSPARENCY WORKSHEET Using the Periodic Table 6 Use with Chapter 6, Section 6.2 1. Identify the number of valence electrons in each of the following elements. a. Ne e. O b. K f. Cl c. B g.

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu.

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu. Enthalpy changes: experimentally it is much easier to measure heat flow at const pressure - this is enthalpy q p = )H : also nearly all chemical reactions are done at constant pressure. Enthalpy (heat)

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

8. Relax and do well.

8. Relax and do well. CHEM 34.02 and 34.03 Name Exam III John III. Gelder TA's Name November 5, 2000 Lab Section INSTRUCTIONS:. This examination consists of a total of 9 different pages. The last three pages include a periodic

More information

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase 2015 April 24 Exam 3 Physics 106 Circle the letter of the single best answer. Each question is worth 1 point Physical Constants: proton charge = e = 1.60 10 19 C proton mass = m p = 1.67 10 27 kg electron

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6 Faculty of Natural and Agricultural Sciences Chemistry Department Semester Test 1 Analytical Chemistry CMY 283 Date: 5 September 2016 Lecturers : Prof P Forbes, Dr Laurens, Mr SA Nsibande Time: 120 min

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. 59 Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt. 1 IA 1 ydrogen 1.01 Atomic number Element symbol Element name Atomic mass VIIIA 1 1.01 IIA IIIA IVA VA VIA VIIA 2 e 4.00 Metalloids 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 O 16.00 9 F 19.00

More information

POLYTECHNIC OF NAMIBIA

POLYTECHNIC OF NAMIBIA POLYTECHNIC OF NAMIBIA DEPARTMENT OF HEALTH SCIENCES BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES HEALTH SCIENCE CHEMISTRY (HSC 511S) NQF level 5 SECOND OPPORTUNITY EXAMINATION November 2014 TIME: MARKS:

More information

Grade 11 Science Practice Test

Grade 11 Science Practice Test Grade 11 Science Practice Test Nebraska Department of Education 2012 Directions: On the following pages of your test booklet are multiple-choice questions for Session 1 of the Grade 11 Nebraska State Accountability

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 175 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Chem 6A Michael J. Sailor, UC San Diego 1 Announcements: Thursday (Sep 29) quiz: Bring student ID or we cannot accept your quiz! No notes, no calculators Covers chapters 1 and

More information

CHEM 107 (Spring-2004) Exam 2 (100 pts)

CHEM 107 (Spring-2004) Exam 2 (100 pts) CHEM 107 (Spring-2004) Exam 2 (100 pts) Name: ------------------------------------------------------------------------, SSN -------------------------------- LAST NAME, First (Circle the alphabet segment

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

What is the periodic table?

What is the periodic table? The periodic table of the elements represents one of the greatest discoveries in the history of science that certain elements, the basic chemical substances from which all matter is made, resemble each

More information

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL PROF. JOHN VERKADE SPRING 2005 THIS EXAM CONSISTS OF 12 QUESTIONS ON 9 PAGES CHEM 167 HOUR EXAM IV APRIL 20, 2005 SEAT NO. NAME RECIT. INSTR. RECIT. SECT. GRADING PAGE Page 2 Page 3 Page 4 Page 5 Page

More information