Homework 1. Property LASER Incandescent Bulb


 Kenneth York
 1 years ago
 Views:
Transcription
1 Homework 1 Solution: a) LASER light is spectrally pure, single wavelength, and they are coherent, i.e. all the photons are in phase. As a result, the beam of a laser light tends to stay as beam, and not diverge due to scattering. It works on the principle of stimulated transitions between the electron energy levels and is also highly amplified. Incandescent bulb works by black body radiation. A tiny filament is heated up to extremely high temperatures and as heated elements radiate light, the bulb glows. The light emitted in this process has a whole range of energies (and wavelengths) and has no preferential direction of travel or polarization or phase. This light is not amplified. The differences can be summarized as follows: Property LASER Incandescent Bulb Nature of emission Stimulated emission Spontaneous Emission Coherence Coherent Incoherent Directionality Highly directional (focused to a very small point) Divergent (cannot be focused to a small point) Monochromatic Polychromatic Amplified Not amplified b) The following ingredients must be present to make a laser to work: (i) Lasing / Active / Gain medium (ii) Optical Cavity (iii) Resonator (iv) External energy source (Pump) Lasing medium is excited by the external energy source (pump) to produce population inversion. Spontaneous and stimulated emission of photons takes place, leading to the phenomenon of optical gain (amplification). Common medium include Ruby, He Ne, YAG, etc. Pump provides energy required for the population inversion and stimulated emission to the entire system. Either electrical discharge or optical discharge can be used as pumping sources. Resonator guides the light about the simulated emission process induced by highspeed photons. There is also a fully reflective and a partially reflective mirror. Both are set up on optical axis, parallel to each other. The gain medium is located in the optical cavity between the two mirrors. This setup makes sure that only those photons which came along the axis, pass and others are reflected by the mirrors back into the medium, where it may be amplified by stimulated emission. 1
2 Solution: Sketch From the sketch, D is the diameter of the optical beam; L and R is the length and the radius of the resultant cone, respectively. θ is the angle of divergence of the beam. R = D + x = D + L tan θ D + Lθ (1) (small angles tan x = x) From Uncertainty relationships and spread of the Gaussian beam, we know that: θ = k y k z = λ π( D ) = λ πd () From (), (1) becomes, Volume of the resultant cone becomes, R = D + Lλ πd V = 1 3 πr L = 1 3 πl [(D ) + ( RD ) + R ] (3)
3 Function to be minimized is V ( D ). Putting value of R in (3) and differentiating gives, L [ D L ] 4 = 4 3 [λ πl ] 4 D = m 633nm { } π θ = λ πd = rad Resultant cone diameter = R = ( D + Lθ ) = m = m 4 Answer: Minimum beam diameter Expression is D = 4 3 { L λ π } and the value for the given values is D = m Solution: (a) From the equations above, For TEM 0,0 case, x = x E(x) dx E(x) dx (1) k x = k x E(k x ) dk x E(k x ) dk x () E(x) = E 0 exp [ ( x ) ] (4) 3
4 Putting this is in equation (1), and integrating by method of substitution, we get, Let t = x x (E 0 exp [ ( x x w ) ]) dx = 0 (E 0 exp [ ( x w ) ]) dx 0 dt dx =. Then (3) becomes, x = x x exp [ ] d ( x w ) w 3 0 /( 3 ) 0 exp [ x ] d ( x ) / Evaluating the above expression on Wolfram Alpha, we get, x = = (1 ) x = Expression for E(x)  (4) above in kspace can be written as, (3) ( t exp( t ) dt) exp( t ) dt E(k x ) = E 0 exp [ ( x ] w ) exp( jk x x) dx = π E 0 exp ( ( k x 0 ) ) Putting this expression in Eq (), we get, k x = k x [ π E 0 exp ( ( k x ) )] dk x [ π E 0 exp ( ( k x ) )] dk x (5) Let k t = k x k x = d(k t ) =. Then (5) becomes, dk x { w 0k x } exp [ k x ] d (k x ) (3 3 )/ exp [ k x ] d (k x ) / Evaluating the above expression on Wolfram Alpha, we get, k x = (1 ) k x = 1 = w {( k t exp( k t ) dk t 0 exp( k t ) dk t ) } (b) The given field is, E 10 = ( x ) exp [ x + y ] (6) 4
5 This can be written in kspace as, Let t = x + j k x z E 10 (k x ) = E 0 x = t j k x E 10 (k x ) = exp [ k x ] x exp ( [ x ] ) exp( jk w x x) dx 0 = j k k x x w o e ( π ) (7) Putting (6) in (1), and integrating by substitution, we get, ( exp( t ) t dt j k x exp( t ) x = t4 exp( t ) dt = t exp( t ) dt (3 ) x = 3 Putting (7) in (), and integrating by substitution, we get, k k w 4 t exp( k t ) dk t x = 0 = k t exp( k t ) dk t w (3 0 ) k x = 3 Uncertainty product is given by, (c) Sketch of intensity vs x: x k x = 3 3 = 3 dt) 5
6 Solution: (a) We are given that k H = ωd (1) Taking a dot product of that with k, we have, k (k H) = 0 () This is because cross product of vectors is normal to both the vectors. Now, putting () in (1), we get, k ( ωd) = 0 k D = 0 as required. (3) This is because, ω 0. (b) We are given that k H = ωd D = ( 1 ) (k H) (4) ω k E = ωb B = ( 1 ) (k E) (5) ω Using the following property of cross products, (A B) (C D) = C[A (B D)] D[A (B C)] From (4) & (5), we have D B = ( 1 ω ) {k[k (H E)] E[k (H k)]} (6) From (), the second term goes to 0 and k (H E) 0 and is a scalar Therefore, 6 becomes: 6
7 D B = ( 1 ω) [k (H E)] (k) (7) scalar equation (7) shows that wave vector, k and D B are in the same direction. (c) k (k E) = k (ωb) = ω(k (μ 0 H)) = ωμ 0 (k H) = ωμ 0 ( ωd) = ω μ 0 D (8) k (k E) = [k(k. E) k E] = ω μ 0 D (9) Taking dot product of both sides of (9) with D, we get D [k(k. E) k E] = ω μ 0 D. D D k(k. E) D k E = ω μ 0 D. D (10) D.k=0 (from a) k = ω μ 0 D. D D. E (d) In anisotropic medium, Poynting vector, S = ( 1 ) E H k E = ωb = ωμ 0 H S = ( 1 E k ) E ωμ 0 Let us take the case of a linear anisotropic medium. D is no longer parallel to E From the attached sketch it can be seen that D = 1 k (k E) = k [E (u E)u] μ 0 ω μ 0 ω D is the projection of E in the plane orthogonal to u (to within a mult. factor) Therefore the Poynting vector (direction of «light ray») is no longer parallel to the wave vector (direction of propagation of the phase). 7
8 Solution: Problem.1 gives us the following: Problem. gives us the following: Combining the two for the negative lens, we will have the following steps of propagation (from the sketch): (i) Propagation from medium of n 1 refractive index at spherical dielectric interface to a medium of index n (Result from problem.1) Ray part 1 (ii) Propagation in a dielectric(same medium) of refractive index n for a distance d  Ray part 8
9 (iii) Propagation from medium of n refractive index at plane dielectric interface to a medium of index n 1 ((Result from problem.) Ray part 3 Thus the ABCD matrix of the entire system can be written as: 1 0 A B [ C D ] = [ 0 n ] [ 1 d 1 0 n 0 1 ] [ (1 n 1 ) ( 1 1 d 1 n R ) n 1 ] = [ 0 n 1 0 ] [ (1 n 1 ) ( 1 n n 1 n R ) n 1 ] n ray part 3 = Verification: det(abcd) = 1 ray part ray part ( d R ) (1 n 1 dn 1 ) 1 + ( d n n R ) (1 n 1 ) dn 1 n n [ n 1 R (1 n = n 1 1 ) 1 n ] [ R (n 1) 1 n 1 ] The resultant ABCD matrix for the entire system is as follows: 1 + ( d A B [ C D ] = R ) (1 n 1 ) dn 1 n n 1 [ R (n 1) 1 n 1 ] Solution: (a) For a plane mirror, the ABCD matrix is A B [ C D ] = [ ] 9
10 We can see that this is similar to that of a spherical mirror with R. The plane mirrors can be considered just as directors of the optical axis and can be ignored in a unit cell for propagation as their ray matrix is just an identity matrix. The resultant equivalent lens arrangement is: (b) To obtain the ABCD matrix for the system, ( r 1 0 r ) = ( 1 d f 1) (1 ) ( 1 d d d ) ( ) (1 ) ( r r 1 ) = ( 1 3d 1) (1 0 1 ) ( r 1 r f 1 ) 1 3d = ( 1 f 1 (3d f )) ( r 1 r 1 ) 1 3d A B [ C D ] = [ 1 f 1 (3d f )] (c) Values of d that make the cavity stable: Stable if  f 1 < A + D < 1 3d f 1 < < 1 < 3d f < 4 < 3d f < < d f < 0 0 < d f < 4 3 Values of d f that make the cavity stable are d f (0, 4 3 ) 10
What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light
What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase
More informationLaser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful
What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase
More informationLaser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful
Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population
More informationLASER. Light Amplification by Stimulated Emission of Radiation
LASER Light Amplification by Stimulated Emission of Radiation Energy Level, Definitions The valence band is the highest filled band The conduction band is the next higher empty band The energy gap has
More informationPHYSICS. The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v)..
ABSORPTION of RADIATION : PHYSICS The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v).. of the radiation > P12 = B12 u(v) hv E2 E1 Where as, the
More informationLaser OpticsII. ME 677: Laser Material Processing Instructor: Ramesh Singh 1
Laser OpticsII 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1  absorptivity
More informationMaterialwissenschaft und Nanotechnologie. Introduction to Lasers
Materialwissenschaft und Nanotechnologie Introduction to Lasers Dr. Andrés Lasagni Lehrstuhl für Funktionswerkstoffe Sommersemester 007 1Introduction to LASER Contents: Light sources LASER definition
More informationLASER. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe
LSER hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe www.thephysicsafe.com www.pmc.sg 1 laser point creates a spot on a screen as it reflects 70% of the light striking
More informationF. Elohim Becerra Chavez
F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 2772673 Lectures: Tuesday and Thursday, 9:3010:45 P&A Room 184. Textbook: Laser Electronics (3rd Edition) by Joseph T. Verdeyen.
More informationLasers and Electrooptics
Lasers and Electrooptics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1
More informationExperiment 3 1. The Michelson Interferometer and the He Ne Laser Physics 2150 Experiment No. 3 University of Colorado
Experiment 3 1 Introduction The Michelson Interferometer and the He Ne Laser Physics 2150 Experiment No. 3 University of Colorado The Michelson interferometer is one example of an optical interferometer.
More informationIntroduction Fundamentals of laser Types of lasers Semiconductor lasers
Introduction Fundamentals of laser Types of lasers Semiconductor lasers Is it Light Amplification and Stimulated Emission Radiation? No. So what if I know an acronym? What exactly is Light Amplification
More informationQUESTION BANK IN PHYSICS
QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate
More informationChapter4 Stimulated emission devices LASERS
Semiconductor Laser Diodes Chapter4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement
More informationExternal (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected
Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency
More informationStimulated Emission Devices: LASERS
Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle
More informationMansoor SheikBahae. Class meeting times: Mondays, Wednesdays 17:3018:45 am; Physics and Astronomy, Room 184
Mansoor SheikBahae Office: Physics & Astronomy Rm. 1109 (North Wing) Phone: 2772080 Email: msb@unm.edu To see me in my office, please make an appointment (call or email). Class meeting times: Mondays,
More informationChemistry Instrumental Analysis Lecture 5. Chem 4631
Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy
More informationLASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam
LASERS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the principle, characteristics and types
More informationDept. of Physics, MIT Manipal 1
Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using
More informationLaser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford
Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1
More informationPrinciples of Lasers. Cheng Wang. Phone: Office: SEM 318
Principles of Lasers Cheng Wang Phone: 20685263 Office: SEM 318 wangcheng1@shanghaitech.edu.cn The course 2 4 credits, 64 credit hours, 16 weeks, 32 lectures 70% exame, 30% project including lab Reference:
More informationWhat can laser light do for (or to) me?
What can laser light do for (or to) me? Phys 1020, Day 15: Questions? Refection, refraction LASERS: 14.3 Next Up: Finish lasers Cameras and optics 1 Eyes to web: Final Project Info Light travels more slowly
More informationWhat are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light
What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent
More informationL.A.S.E.R. LIGHT AMPLIFICATION. EMISSION of RADIATION
Lasers L.A.S.E.R. LIGHT AMPLIFICATION by STIMULATED EMISSION of RADIATION History of Lasers and Related Discoveries 1917 Stimulated emission proposed by Einstein 1947 Holography (Gabor, Physics Nobel Prize
More informationLasers. Optical Fibres
Lasers & Optical Fibres P a g e 2 Contents LASER 1) Coherence 3 2) Interaction of radiation with matter 4 3) Laser fundamentals 5 4) Laser system 5 5) Ruby Laser 6 6) HeNe Gas Laser 7 7) Semiconductor
More informationEngineering Medical Optics BME136/251 Winter 2017
Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:003:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the
More informationLasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz  PHYS 1560 Lecture 10 1
Lasers & Holography Ulrich Heintz Brown University 4/5/2016 Ulrich Heintz  PHYS 1560 Lecture 10 1 Lecture schedule Date Topic Thu, Jan 28 Introductory meeting Tue, Feb 2 Safety training Thu, Feb 4 Lab
More informationA system of two lenses is achromatic when the separation between them is
L e c t u r e 1 5 1 Eyepieces Single eye lens in a telescope / microscope produces spherical and chromatic aberrations. The field of view is also narrow. The eye lens is replaced by a system of lenses
More informationChapter 2 Optical Transitions
Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they
More informationChapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions
Chapter 7: Optical Properties of Solids Interaction of light with atoms Insert Fig. 8.1 Allowed and forbidden electronic transitions 1 Insert Fig. 8.3 or equivalent Ti 3+ absorption: e g t 2g 2 Ruby Laser
More informationLast Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics
Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Timeresolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy
More informationChapter 5. Semiconductor Laser
Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must
More informationOPTICAL GAIN AND LASERS
OPTICAL GAIN AND LASERS 01021 BY DAVID ROCKWELL DIRECTOR, RESEARCH & DEVELOPMENT fsona COMMUNICATIONS MARCH 6, 2001 OUTLINE 01022 I. DEFINITIONS, BASIC CONCEPTS II. III. IV. OPTICAL GAIN AND ABSORPTION
More information(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.
Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and HeNe Laser The output spectrum of a gas laser Laser
More informationWhat do we study and do?
What do we study and do? Light comes from electrons transitioning from higher energy to lower energy levels. Waveparticle nature of light Wave nature: refraction, diffraction, interference (labs) Particle
More informationStimulated Emission. ! Electrons can absorb photons from medium. ! Accelerated electrons emit light to return their ground state
Lecture 15 Stimulated Emission Devices Lasers! Stimulated emission and light amplification! Einstein coefficients! Optical fiber amplifiers! Gas laser and HeNe Laser! The output spectrum of a gas laser!
More information16. More About Polarization
16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special
More informationChapter 13. Phys 322 Lecture 34. Modern optics
Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Fourlevel System Threshold Some lasers Pump Fast decay Laser Fast decay
More informationChapter 2 Laser Light Amplification by Stimulated Emission of Radiation
Chapter Laser Light Ampliication by Stimulated Emission o Radiation Part I How does an object emit light or radiation? Blackbody Radiation Solids heated to very high temperatures emit visible light (glow)
More informationMichelson Interferometer
Michelson Interferometer Objective Determination of the wave length of the light of the heliumneon laser by means of Michelson interferometer subsectionprinciple and Task Light is made to produce interference
More informationDEPARTMENT OF PHYSICS RV COLLEGE OF ENGINEERING
DEPARTMENT OF PHYSICS RV COLLEGE OF ENGINEERING ENGINEERING PHYSICS NOTES078 COURSE CODE: 6PH/ Semester: I/II ENGINEERING PHYSICS( Theory and practice) Course Code: 6PH/6PH CIE Marks:00+5050 Hrs/Week:
More informationChapter 2 Basic Optics
Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter
More informationChapters 31 Atomic Physics
Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical
More informationInstructor: Welcome to. Phys 774: Principles of Spectroscopy. Fall How can we produce EM waves? Spectrum of Electromagnetic Radiation and Light
Welcome to Phys 774: Principles of Spectroscopy Fall 2007 Instructor: Andrei Sirenko Associate Professor at the Dept. of Physics, NJIT http://web.njit.edu/~sirenko 476 Tiernan Office hours: After the classes
More informationδf / δx = σ F (N 2 N 1 ) ΔF~N 2 N 1
LASER Light Amplification by Stimulated Emission of Radiation BASIC PROPERTIES O LASER RADIATION Spontaneous emission Incoherence in time Incoherence in space Polychromatic light Small energy density Nonpolarized
More informationCorrelated Emission Laser, Quenching Of Spontaneous Noise and Coupled Pendulum Analogy
RESEARCH INVENTY: International Journal of Engineering and Science ISBN: 23196483, ISSN: 22784721, Vol. 2, Issue 1 (January 2013), PP 1115 www.researchinventy.com Correlated Emission Laser, Quenching
More informationJRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity
ASSIGNMENT # 1 Special Theory of Relativity 1. What was the objective of conducting the MichelsonMorley experiment? Describe the experiment. How is the negative result of the experiment interpreted? 2.
More informationPhys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time
Phys 2310 Mon. Dec. 4, 2017 Today s Topics Begin supplementary material: Lasers Reading for Next Time 1 By Wed.: Reading this Week Lasers, Holography 2 Homework this Week No Homework this chapter. Finish
More informationClass 14light and lasers
Class 14light and lasers Today  light & glass  light & lasers (complete with awesome graphics!) a. What is different/special about laser light. b. How does a laser work. review atomic discharge streetlight.
More informationPolarization Mode Dispersion
Unit7: Polarization Mode Dispersion https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Goos Hänchen Shift The GoosHänchen effect is a phenomenon
More informationUnit I LASER Engineering Physics
Introduction LASER stands for light Amplification by Stimulated Emission of Radiation. The theoretical basis for the development of laser was provided by Albert Einstein in 1917. In 1960, the first laser
More informationOptical Spectroscopy of Advanced Materials
Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University
More informationand the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P?
Physics 3 Interference and Interferometry Page 1 of 6 Interference Imagine that we have two or more waves that interact at a single point. At that point, we are concerned with the interaction of those
More informationLecture notes 5: Diffraction
Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through
More informationFIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical SourcesLASER
FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 15 Optical SourcesLASER Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical
More informationThe Electromagnetic Properties of Materials
The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)
More informationTHEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES
THEORETICAL PROBLEM 2 DOPPLER LASER COOLING AND OPTICAL MOLASSES The purpose of this problem is to develop a simple theory to understand the socalled laser cooling and optical molasses phenomena. This
More informationGeneral Physics II PHYS 102 Final Exam Spring st May 2011
Qatar University Arts and Sciences College Mathematics and Physics Department General Physics II PHYS 102 Final Exam Spring 2011 31 st May 2011 Student Name: ID Number: 60 Please read the following carefully
More informationLaser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.
What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4  + n=3 n=2 13.6 = [ev]
More informationDiode laser emission
Lecture 9/1 Diode laser emission x Diode laser emission has oblong crosssection. Yaxis with large divergence angle is called fast axis Xaxis with smaller divergence angle is called slow axis Lecture
More informationChapter 31 Atomic Physics
100 92 86 100 92 84 100 92 84 98 92 83 97 92 82 96 91 80 96 91 76 95 91 74 95 90 68 95 89 67 95 89 66 94 87 93 86 No. of Students in Range Exam 3 Score Distribution 25 22 20 15 10 10 5 3 2 0 0 0 0 0 0
More informationQuantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths
Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths 4.1 The Natural Line Shape 4.2 Collisional Broadening 4.3 Doppler Broadening 4.4 Einstein Treatment of Stimulated Processes Width
More informationFigure 1 Relaxation processes within an excited state or the ground state.
Excited State Processes and Application to Lasers The technology of the laser (Light Amplified by Stimulated Emission of Radiation) was developed in the early 1960s. The technology is based on an understanding
More informationCarbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The halflife of C 14 is 5730 years.
Carbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The halflife of C 14 is 5730 years. a) If a sample shows only onefourth of its estimated
More informationElectromagnetic fields and waves
Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell
More informationVersion 087 EX4 ditmire (58335) 1
Version 087 EX4 ditmire (58335) This printout should have 3 questions. Multiplechoice questions ma continue on the next column or page find all choices before answering. 00 (part of ) 0.0 points A material
More informationIn a metal, how does the probability distribution of an electron look like at absolute zero?
1 Lecture 6 Laser 2 In a metal, how does the probability distribution of an electron look like at absolute zero? 3 (Atom) Energy Levels For atoms, I draw a lower horizontal to indicate its lowest energy
More informationPhysics 214 Course Overview
Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization
More informationOPTI 511R: OPTICAL PHYSICS & LASERS
OPTI 511R: OPTICAL PHYSICS & LASERS Instructor: R. Jason Jones Office Hours: Monday 12pm Teaching Assistant: Sam Nerenburg Office Hours: Wed. (TBD) h"p://wp.op)cs.arizona.edu/op)551r/ h"p://wp.op)cs.arizona.edu/op)551r/
More informationInteraction of particles with matter  2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017
Interaction of particles with matter  2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with
More informationTypical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields
Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy
More informationQuantum Dot Lasers. Jose Mayen ECE 355
Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Qdot lasers Advantages over other lasers Characteristics of Qdot laser Types of Qdot lasers
More informationFluoride Laser Crystals: YLiF 4 (YLF)
Chapter 5 Fluoride Laser Crystals: YLiF 4 (YLF) Fluoride crystals are among the most important hosts for laser materials because of their special optical properties. Of these, LiYF 4 (YLF) is one of the
More informationEnhancing the Rate of Spontaneous Emission in Active CoreShell Nanowire Resonators
Chapter 6 Enhancing the Rate of Spontaneous Emission in Active CoreShell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors
More informationOPTI 511R: OPTICAL PHYSICS & LASERS
OPTI 511R: OPTICAL PHYSICS & LASERS Instructor: R. Jason Jones Office Hours: TBD Teaching Assistant: Robert Rockmore Office Hours: Wed. (TBD) h"p://wp.op)cs.arizona.edu/op)511r/ h"p://wp.op)cs.arizona.edu/op)511r/
More informationMolecular spectroscopy
Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering
More informationPOLARIZATION OF LIGHT
POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,
More information9 Atomic Coherence in ThreeLevel Atoms
9 Atomic Coherence in ThreeLevel Atoms 9.1 Coherent trapping  dark states In multilevel systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light
More information24. Advanced Topic: Laser resonators
4. Advanced Topic: Laser resonators Stability of laser resonators Ray matrix approach Gaussian beam approach g parameters Some typical resonators Criteria for steadystate laser operation 1. The amplitude
More informationLaser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1
Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction
More information3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator
Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator
More informationQuantum Information Processing with Electrons?
Quantum Information Processing with 10 10 Electrons? René Stock IQIS Seminar, October 2005 People: Barry Sanders Peter Marlin Jeremie Choquette Motivation Quantum information processing realiations Ions
More informationA) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2
55) The diagram shows the path of a light ray in three different materials. The index of refraction for each material is shown in the upper right portion of the material. What is the correct order for
More informationLasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:454:45 PM Engineering Building 240
Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:454:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building  UAHuntsville,
More informationLight Emission.
Light Emission www.physics.sfasu.edu/friedfeld/ch29lec.ppt Radio waves are produced by electrons moving up and down an antenna. Visible light is produced by electrons changing energy states in an atom.
More informationProperties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information
Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter
More informationSurface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan MasseyAllard Graham Zell Justin Lau
Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan MasseyAllard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in
More informationSchool. Team Number. Optics
School Team Number Optics Physical Optics (30%) Proceed to the laser shoot (40%) when your team number is called. 1. What are the four colors used in the CMYK color model? (2 points) 2. Muscae Volitantes
More informationChapter 1  The Nature of Light
David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing
More informationPhys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester.
Chapter 13 Phys 322 Lecture 34 Modern optics Note: 10 points will be given for attendance today and for the rest of the semester. Presentation schedule Name Topic Date Alip, Abylaikhan lasers Nov. 30th
More informationInnovation and Development of Study Field. nano.tul.cz
Innovation and Development of Study Field Nanomaterials at the Technical University of Liberec nano.tul.cz These materials have been developed within the ESF project: Innovation and development of study
More informationDistributed feedback semiconductor lasers
Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations
More informationPH300 Spring Homework 06
PH300 Spring 2011 Homework 06 Total Points: 30 1. (1 Point) Each week you should review both your answers and the solutions for the previous week's homework to make sure that you understand all the questions
More informationWhat are the six common sources of light?
What are the six common sources of light? Common light sources include incandescent, fluorescent, laser, neon, tungstenhalogen, and sodiumvapor bulbs. Objects that give off their own light are luminous.
More information10.8 LASERS Principle of Laser Induced Absorption
10.8 LASERS The word Laser stands for Light Amplification by Stimulated Emission of Radiations. Laser is biggest achieve of twentieth century in the field of research. The first laser was developed by
More information9. RADIATIVE PROCESSES I  ATOMS AND LIGHT
QM P453 F95 (Zorn) Atoms in the Radiation Field, I page 9.1 9. RADIATIVE PROCESSES I  ATOMS AND LIGHT We have discussed the field as a system and described it in terms of excitations of its normal modes.
More information1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light
1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. DoubleSlit Eperiment reading: Chapter 22 2. SingleSlit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter
More informationATOMIC AND LASER SPECTROSCOPY
ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates
More informationOPTICAL Optical properties of multilayer systems by computer modeling
Workshop on "Physics for Renewable Energy" October 1729, 2005 301/167915 "Optical Properties of Multilayer Systems by Computer Modeling" E. Centurioni CNR/IMM AREA Science Park  Bologna Italy OPTICAL
More information