Full Vectorial Analysis of the Tapered Dielectric Waveguides and Their Application in the MMI Couplers

Size: px
Start display at page:

Download "Full Vectorial Analysis of the Tapered Dielectric Waveguides and Their Application in the MMI Couplers"

Transcription

1 Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 Full Vectorial Analysis of the Tapered Dielectric Waveguides and Their Application in the MMI Couplers H. KEIVANI R. GHAYOUR H. ABIRI M. H. SHEYKHI -Islamic Azad University, Branch of Kazeroun College of Electrical Engineering Kazeroun, IRAN -Electrical Engineering Department Shiraz University, Shiraz, IRAN Abstract- Different types of tapered waveguides are analyzed by full vectorial method. Mode epansion and mode orthogonality are also used. Full vectorial without approimation in the wave equation makes the analysis more accurate and closer to the real problem. The proposed method is applied to analyze the loss in different types of simple tapered waveguides with application in tapered MMI couplers. Key-Words: Tapered dielectric waveguide, MMI coupler -Introduction In some of the optical components such as couplers and switches, waveguides with different dimensions (cross section have to be connected directly. This increases the loss and the reflection (return wave at the interconnection point. In recent yours several solutions are proposed to reduce the effect of this problem, where using a tapered waveguide at the inter connection is a well known method. In order to analyze the tapered waveguide, beam propagation method (BPM is used conventionally. However, this method with full vectorial analysis is not accurate due to large approimations []. Several other methods are proposed in references []. In this paper, different types of tapered waveguides are introduced, and then finite difference method is applied to the non approimate wave equation. Analysis is done fully vectorial in 3-dimension by resolving the wave equation into orthogonal modes.. In order to show the accuracy and applicability, the method is used to analyze a tapered 8 MMI coupler, then the result is compared with that of a simple coupler. -Tapered waveguides We have investigated four types of tapered waveguides shown in fig. In fig (a and (b, the widths of the waveguides are varying in z direction, where their heights (thickness are constant. In the waveguides shown in Fig (c and (d, both of the widths and thicknesses of the waveguides are varying in z direction. It is clear that the variations of the width and/or thickness have to follow a fied relation. This relation can be linear as in fig (a and (c or nonlinear (eponential as in Fig (b and (d. In Fig, the connection of two waveguides with different widths are shown. In Fig (a, the connection is done directly without any tapered waveguide. In this case the loss is large and the reflected wave is significant. However, in fig (b, a tapered waveguide is used to connect two different waveguides. In this case the loss and reflected wave are lower. In fact, appropriate dimension of the tapered waveguide and a proper variation of dimension reduce the effect of discontinuity in wave propagation greatly. 3-Analysis of tapered waveguides One approach to analyze the tapered waveguide is dividing the waveguide into m section each having the length Δz in z direction as shown in fig.3. The proper amount of Δz depends on the rate of variation of the tapered waveguide, i. e. the amount of (d -d and l.. In order to find the propagation constant β and field distribution of each propagating

2 Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 modes in all directions, finite difference method is used to solve the -dimensional wave equation (. [8]. H n k H n ( H = 0 ( n In this equation n is the matri of refraction coefficient at the points in the cross section of the waveguide. Considering a very low variation of n versus Z, equation ( can be written as: δn δh δh y H n k H ( = 0 n δy δy δ n δ δh y δh H n k H ( y y = 0 n δ δ δy ( We introduce u and w to write H and H y in the following forms: H = u. ep( jβz, H y = w. ep( jβz (3 Fig : Four types of tapered waveguides Fig: Connection of two waveguides with different widths Fig3: The step approimation of a tapered waveguide Where u and w are not functions of z. Now application of finite difference method to both equations given in ( and using eq. (3, results the following equations: n(i,j n(i, j u(i,j ( n k n(i, j n(i,j n(i, j u(i, j u(i,j ( n(i, j n(i,j n(i, j u(i,j u(i,j w(i,j. n(i, j n(i,j n(i, j w(i, j =β u(i, j Δ. y n(i, j (4 n(i,j n(i, j ( w(i,j ( n k n(i, j n(i,j n(i, j w(i, j w(i,j w(i,j n(i, j n(i,j n(i, j w(i,j u(i,j. n(i, j n(i,j n(i, j u(i, j =β w(i, j. n(i, j (5 It is clear that, we have to solve the wave equation in the difference form, (eqs 4 and 5 at all the nodes of the whole waveguide. The resulting system of equations has 3 unknowns β, u, and w. Applying some mathematical manipulations we obtain the following system of eq. B u u w = β N N, w y NN y, N N,N N y y (6 where, N and N y are the numbers of nodes in and y directions respectively. Matri B contains the coefficients of vectors u and w as given in eqs (4 and (5. Solving the system of eq. (6 gives the eign values & eigen vectors, i. e. H, H y and β in the matri form. To include the boundary conditions, we consider the boundary of the cladding region in a place beyond that the amplitude of each mode is almost zero. On the other hand, the number of equations in system (6 depends on the number of mesh points in the cross section of the waveguide. The large number of mesh points makes the result more accurate, but the solution to the problem becomes more complicated or sometimes impossible. To prevent this problem, we do inhomogeneous meshing. In this type of meshing, the mesh size is small where the wave has large variations as in the core,

3 Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 whereas in the places with low variations as in the cladding, the mesh size is large. Fig 4 shows this type of meshing in the core and cladding of a waveguide. Fig4: Nonuniform meshing in the core and cladding of a waveguide. Numerical solution to the Mawell equation and using the matrices of H and H y, give the other vectors of E and H as H y H E z 0 H E z = (,E = ( jw 0 μ y jw y j 0 n β Ez Ey E ( jw,h ( E y 0 0 H = μ y z = jβ y jw0 μ0 y (7 By eq. (7, the field distributions of all the propagating modes in the waveguide are determined. Now we can analyze the tapered waveguide in z direction. The eciting field into the tapered waveguide can be written as: E in = E a E y a y E z a z Hin = Ha H ya y Hza z (8 From Fig 3, it is clear that the input to the tapered waveguide is the input to the section of the staircase model (fig.3. Epansions of the these waves into the modes are epressed as [7] M E in = aμe μ μ=, M H in = aμh μ μ= (9 where E lμ =E lμ E lμy E lμz and H lμ =H lμ H lμy H lμz are the propagating modes in the first section of tapered waveguide of fig 3 and M is the number of the propagating modes in that section. At the - point z= z in the first section, we can write: E(, y, H(, y, z = aμeμ ep( jβz μ= = z aμhμ ep( jβz μ= (0 It is possible to use mode orthogonality to find the field distribution at the point z=z. The electric and magnetic fields in the second section of the tapered waveguide can be written as: E (, y, z H (, y, z = b μ E μ μ = = b μ H μ μ = (, y, z (, y, z ( where E μ = E μ E μy E μz and H μ = H μ H μy H μz are the fields of propagating modes in the nd section of the tapered waveguide (Fig. 3. Now, b μ can be determined as follows [7]: [E * μ * in H Eμ H in ].kddy b μ = A ( [Eμ H * μ E * μ Hμ].kddy A Performing the same operation for all the sections in Fig. 3, we can determine the The wave propagation along the tapered waveguide. We have considered only two modes ( and of the waveguide in fig 3 as the input to first section of the tapered waveguide, thus: E in = E E y E z Ein = E Ey Ez 4-Numerical results: H in = H H y H z Hin = H Hy Hz (3 Before analyzing the tapered waveguides, it is informative to analyze the connection of two waveguides without tapering shown in Fig 5. The dimension of the waveguide shown in Fig. 5(a are: d = 8μm, d =3.μm, t =t = 5μm, n =.49 and n =.46. The amount of power losses of the modes and obtained for the structure of fig. 5 (a are given in table. Fig.5: Interconnection of two waveguides without tapereing

4 Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 In this table, P out is the output power from the core and P in is the input power to the core. The higher loss of the nd mode in table can be eplained as follows: the power of the first mode is more concentrated at the middle of the core, whereas for the nd mode, the power is concentrated at the sides of the core. During the propagation of mode and mode from section to section, more power of the nd mode enters the cladding or reflected beak to section than those of the l st mode. This makes the nd mode more lossy than the l st one. Fig 6 shows the propagation of the l st mode in the structure of fig 5 (a, where an abrupt change in the field distribution at the discontinuity point is observed. Table : Power loss ( 0*log(P out /P in in fig 5(a for the modes and input Loss in Fig 5(a E in,h in.(db E in,h in 3.8(db Table is obtained from simulation of the first mode in the structure of fig (a and (b in which, d =8μn, d =3.μm, t =t =5μm n =.49 and n =.46. In fig (a profile of the tapered waveguide is linear, whereas in fig (b, the profile has a variation of ep ( z. Table includes different lengths of tapered waveguide (L and also different sizes of Δz and Δd. Generally, the losses in structures of fig (tapered are much less than those in the structures of fig 5 (without tapering. input E in, H in Table : Power loss ( 0*log(P out /P in in fig. (a and fig. (b for the mode Waveguide length L=.5µ L=.5µ Δz=0.µ Δd=0.µ fig(a 0.48(db 0.5(db 0.54(db fig(b 0.55(db fig6: Propagation of the l st mode in the structure of fig 5 (a Investigating the results represented in table, shows that the larger length of the tapered waveguide, the less is the loss, note that larger Δz or Δd (less number of sections in fig 3 increases the loss. From the results represented in table we can see that the linear tapered waveguide has a lower loss than that of the eponential one. Fig 7 shows the propagating of the l st mode in the structure of fig (a, where there is no discontinuity in the field distribution at the interconnection point. This justifies reduction in the loss and reflection of fig. Fig 8 shows the propagation of the nd mode in the tapered waveguide of fig (a. Fig 5 (b, has dimensions: d =4.5μn, d =.8μm, t =4.5 t =.8μm n =.49 and n =.46. Comparing the results given in table with those of table 3 shows that the loss in structure with discontinuity in -dimension (fig. 5 (b is more than the loss in structure with discontinuity in dimension (fig 5 (a. Table 3: Power loss ( 0*log(P out /P in in fig 5(b for the modes and Input E in,h in E in,h in Loss Fig5 (b 3.74(db.6(db Fig 7: Propagation of the l st mode in the structure of fig (a Fig 8: Propagation of the nd mode in the tapered waveguide of fig (a. The results of simulation of the structures shown in fig (c and (d are given in table 4. In these structures, d =.46μn, d =.8μm, t =4.5μm, t =.8μm n =.49 and n =.46. the structure of fig. (c is linearly tapered and that of the fig (b has an eponential variation of ep ( z for and y.

5 Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 Comparing the results given in table with those in table 4 shows that the taper with discontinuity in -dimension has much higher loss than those of the taper with - dimensional discontinuity. Table 4 : Power loss ( 0*log(P out /P in in fig. (c and fig. (d for the modes and Input E in,h in E in,h in fig(c 3.(db.8(db fig(d 3.97(db.55(db 5- MMI couplers The structure of a N simple MMI coupler is shown is fig 9, where n core =.4895,n cladding =.46,w M =60μm,w out =4μ m, w in =3μm d 0 =550μm, N=8. Fig.0 shows the propagation of wave in z direction in this MMI. We can see in fig 0 that at the lengths of 464 μm, 530μm and 630μm of the MMI coupler, we have 8, 7 and 6 outputs respectively. Simulation shows that for the input at the center of the MMI, the y position of 8 output are at.5 μm, 0.5μm, 8.5μm, 6μm, 34μm, 45μm 49.5μm and 57.5μm from the bottom of the MMI waveguide. Table 5: The ratio of output power to the input power ( P r in db for fig. 9 output P r output P r Fig shows the MMI coupler with the tapered waveguides at the output. In the device: nc =.4895, nr =.46, WM = 60μm, Wout = 3μm 0 Win = 3μ m, Wt = 4μm, θ = 60, λ0 = 550nm, N = 8 Table 6 shows the normalized output power in the MMI coupler of fig. Comparing the results of a simple MMI coupler with those of the tapered MMI coupler shows less loss in the tapered one. In fact, in MMI coupler with tapered waveguides reflection at the output gates is reduced and the coupling is improved. For the coupler shown in fig. the output ports power distribution shown in fig., is relatively the same, implying uniform power distributed to the output. fig : N, MMI coupler without tapering Fig.9: N, MMI coupler without tapering In table 5 the relative output power entering to the output waveguides (normalized to the input power are given in db. Ideally, the normalized output power should be: 0*log (/8 =-9db Table6 : The ratio of output power to the input power ( P r in db for fig. output P r output P r Fig 0: Wave propagation along the MMI coupler (z direction fig : represents the simulation of MMI coupler of Fig

6 Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 It is possible to improve the loss in the MMI coupler by tapering the input waveguide as well. Fig 3 shows such a structure, where both input and output waveguides are tapered. The result of Simulation of this structure is represented in table 7, where the amount of loss is lower than that of the structure of fig. The distribution of power in the out put of the 8 coupler is shown in fig 4. Another advantage of tapering the waveguides in couplers is less sensitivity of the response to the manufacturing tolerances. fig 3: : N, MMI coupler without tapered Table 5: The ratio of output power to the input power ( P r in db for fig. 3 output P r output P r fig 4: distribution of power in the out put of the 8 coupler In the simple MMI coupler (Fig 9, the out put power and consequently the loss in the structure strongly depends on the position of the input and output waveguides. In this case any error in manufacturing of the structure makes the loss higher and the output power distribution ununiform. However, in the tapered MMI coupler (fig 3, the response is not strongly dependent to the input and output positions of the coupler. of different cross sections. Tapering of the cross-sections reduce the reflection and loss. In this paper a method is presented to analyze the tapered optical waveguide in 3-dimension by full vectorial approach. In this method, the complete (non approimate equation of the wave propagation is used. In fact, replacing. E = 0 by. D = 0 makes the accuracy of the simulation higher than that of the conventional approimate case. However, many authors stated that. E = 0 is reasonable when the weak guidance approimation is applicable. Meanwhile, application of. E = 0 in devices with a large refractive inde contrast (n core -n cladding, reduces the accuracy greatly, where this is not the case with. D = 0. In addition by doing a proper onohomogenuous meshing in the cross-section of the waveguide more accuracy in results is observed. The results show that using the tapered waveguide in couplers makes the structure more capable in reducing the loss and reflection at the interconnections. We have shown the improvement of performance for MMI couplers using taperd waveguides. 7-Reference [] D. Marcuse, Radiation losses of steptapered channel waveguides, Appl. Opt., vol. 9, pp , Nov [] R. N. Thurston, E. Kapon, and A. Shahar, Two-dimensional control of mode size in optical channel waveguides by lateral channel tapering, Opt. Lett., vol. 6, pp , Mar. 99. [7]R. Syms, J. Cozens, Optical Guied Waves and Devices, International Edition, McGraw- Hill, 99 [8] W.P.Huang, A Vector Beam Propagation Method Based On H Fields IEEE Photon. Technol. Lett., vol. 3, no., December. 99, pp. 7. [9] L. O. Lierstuen and A. Sudb, 8-channel wavelength division multipleer based on multimode interference couplers, IEEE Photon. Technol. Lett., vol. 7, no. 9, Sept. 995, pp Conclusion In optical devices like MMI couplers, we are faced with junctions of dielectric waveguides

Vectorial Analysis of the Tapered Dielectric Waveguides

Vectorial Analysis of the Tapered Dielectric Waveguides Proceedings of the 5th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Madrid, Spain, February 5-7, 006 (pp03-08) Vectorial Analysis of the Tapered Dielectric Waveguides

More information

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method 214 J. Opt. Soc. Am. A/ Vol. 23, No. 8/ August 26 Wang et al. Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method Qian Wang, Gerald Farrell, and Yuliya Semenova

More information

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane Optimum Access Waveguide Width for 1xN Multimode Interference Couplers on Silicon Nanomembrane Amir Hosseini 1,*, Harish Subbaraman 2, David Kwong 1, Yang Zhang 1, and Ray T. Chen 1,* 1 Microelectronic

More information

Numerical Analysis of Low-order Modes in Thermally Diffused Expanded Core (TEC) Fibers

Numerical Analysis of Low-order Modes in Thermally Diffused Expanded Core (TEC) Fibers Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, Italy, November 2-22, 26 26 Numerical Analysis of Low-order Modes in Thermally Diffused Expanded

More information

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Proceedings of the Federated Conference on Computer Science and Information Systems pp. 255 260 ISBN 978-83-60810-22-4 Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is assigned, due March 25 th Start discussion

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC WAVEGUIDES Chin-ping Yu (1) and Hung-chun Chang (2) (1) Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei,

More information

Design of Integrated Polarization Beam Splitter with Liquid Crystal

Design of Integrated Polarization Beam Splitter with Liquid Crystal Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2006-01-01 Design of Integrated Polarization Beam Splitter with Liquid Crystal Qian Wang Gerald Farrell

More information

Effective area of photonic crystal fibers

Effective area of photonic crystal fibers Effective area of photonic crystal fibers Niels Asger Mortensen Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød, Denmark nam@crystal-fibre.com http://www.crystal-fibre.com Abstract: We consider the effective

More information

Theory of Optical Waveguide

Theory of Optical Waveguide Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION Progress In Electromagnetics Research, PIER 103, 393 401, 2010 A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION Y. C. Shi Centre

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

Nonreciprocal polarization converter consisting of asymmetric waveguide with ferrimagnetic Ce:YIG

Nonreciprocal polarization converter consisting of asymmetric waveguide with ferrimagnetic Ce:YIG 8th International Conference on Numerical Simulation of Optoelectronic Devices Nonreciprocal polarization converter consisting of asymmetric waveguide with ferrimagnetic Ce:YIG Research Center for Advanced

More information

CHARACTERISTICS ANALYSIS OF DUAL CORE PHOTONIC CRYSTAL FIBER (PCF)

CHARACTERISTICS ANALYSIS OF DUAL CORE PHOTONIC CRYSTAL FIBER (PCF) CHARACTERISTICS ANALYSIS OF DUAL CORE PHOTONIC CRYSTAL FIBER (PCF) Mali Suraj Suryakant 1, Mali Rameshwar Suryakant 2, Landge Mangesh Manik 3 1 PG Student, Electronics and Telecommunication Engineering

More information

Modeling of Kerr non-linear photonic components with mode expansion

Modeling of Kerr non-linear photonic components with mode expansion Modeling of Kerr non-linear photonic components with mode expansion Björn Maes (bjorn.maes@intec.ugent.be), Peter Bienstman and Roel Baets Department of Information Technology, Ghent University IMEC, St.-Pietersnieuwstraat

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Sendy Phang 1, Ana Vukovic 1, Hadi Susanto 2, Trevor M. Benson 1, and Phillip Sewell 1 1 School of Electrical and Electronic

More information

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix Nikola Dordevic and Yannick Salamin 30.10.2017 1 Content Revision Wave Propagation Losses Wave Propagation

More information

Analysis of Photonic Band Structure in 1-D Photonic Crystal using PWE and FDTD Method

Analysis of Photonic Band Structure in 1-D Photonic Crystal using PWE and FDTD Method P P IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. Issue 8, August 05. Analysis of Photonic Band Structure in -D Photonic Crystal using PWE and FDTD Method Pooja ChhokerP

More information

Arbitrary and reconfigurable optics - new opportunities for integrated photonics

Arbitrary and reconfigurable optics - new opportunities for integrated photonics Arbitrary and reconfigurable optics - new opportunities for integrated photonics David Miller, Stanford University For a copy of these slides, please e-mail dabm@ee.stanford.edu How to design any linear

More information

Supporting Info for. Lithography"

Supporting Info for. Lithography Supporting Info for "Deterministic Integration of Quantum Dots into on-chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography" Peter Schnauber, Johannes Schall, Samir Bounouar,

More information

GRATING CLASSIFICATION

GRATING CLASSIFICATION GRATING CLASSIFICATION SURFACE-RELIEF GRATING TYPES GRATING CLASSIFICATION Transmission or Reflection Classification based on Regime DIFFRACTION BY GRATINGS Acousto-Optics Diffractive Optics Integrated

More information

A RIDGE WAVEGUIDE FOR THERMO-OPTIC APPLICATION

A RIDGE WAVEGUIDE FOR THERMO-OPTIC APPLICATION Progress In Electromagnetics Research Letters, Vol. 6, 1 9, 2009 A RIDGE WAVEGUIDE FOR THERMO-OPTIC APPLICATION A. M. Al-Hetar, A. S. M. Supa at, and A. B. Mohammad Photonics Technology Center (PTC) Faculty

More information

NUMERICAL methods are indispensable tools for the

NUMERICAL methods are indispensable tools for the IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 2, FEBRUARY 2009 117 A Numerical Approach for Full-Vectorial Analysis of 3-D Guided Wave Structures With Multiple and Strong Longitudinal Discontinuities

More information

Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/ Asymmetric Planar Slab Waveguide Structure

Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/ Asymmetric Planar Slab Waveguide Structure ISSN 0974-9373 Vol. 15 No.1 (011) Journal of International Academy of Physical Sciences pp. 113-1 Derivation of Eigen value Equation by Using Equivalent Transmission Line method for the Case of Symmetric/

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Time: March 10, 006, -3:30pm MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.097 (UG) Fundamentals of Photonics 6.974 (G) Quantum Electronics Spring 006

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Interferometric model for phase analysis in fiber couplers

Interferometric model for phase analysis in fiber couplers Interferometric model for phase analysis in fiber couplers Xiaojun Fang, Richard O. Claus, and Guy Indebetouw An interferometric model is proposed to estimate the phase differences in lossless, strongly

More information

Simulation of Phase Dynamics in Active Multimode Interferometers

Simulation of Phase Dynamics in Active Multimode Interferometers The University of Tokyo Simulation of Phase Dynamics in Active Multimode Interferometers 4/09/2008 Salah Ibrahim Nakano/Sugiyama/Tanemura Lab. Research Center for Advanced Science and Technology Outline

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

OPTICAL COMMUNICATIONS

OPTICAL COMMUNICATIONS L21-1 OPTICAL COMMUNICATIONS Free-Space Propagation: Similar to radiowaves (but more absorption by clouds, haze) Same expressions: antenna gain, effective area, power received Examples: TV controllers,

More information

Bragg waveguides. Leaky modes 1D Bragg reflector waveguides

Bragg waveguides. Leaky modes 1D Bragg reflector waveguides Outline Bragg waveguides These are covered etensively in Nanophotonics. Let s look closely at the nature of the modes that are common to all such structures. Leaky modes 1D Bragg reflector waveguides 142

More information

Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber

Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber Toto Sakioto saktioto@yahoo.com abstract Mohamed Fadhali mohamedfadhali@yahoo.com

More information

Polarization Properties of Photonic Crystal Fibers Considering Thermal and External Stress Effects

Polarization Properties of Photonic Crystal Fibers Considering Thermal and External Stress Effects Polarization Properties of Photonic Crystal Fibers Considering Thermal and External Stress Effects Md. Afzal Hossain*, M. Shah Alam** * Department of Computer Science and Engineering Military Institute

More information

Introduction to Photonic Crystals

Introduction to Photonic Crystals 1 Introduction to Photonic Crystals Summary. Chapter 1 gives a brief introduction into the basics of photonic crystals which are a special class of optical media with periodic modulation of permittivity.

More information

The observation of super-long range surface plasmon polaritons modes and its application as sensory devices

The observation of super-long range surface plasmon polaritons modes and its application as sensory devices The observation of super-long range surface plasmon polaritons modes and its application as sensory devices X. -L. Zhang, 1,2 J. -F. Song, 1,2,3,4 G. Q. Lo, 2 and D. -L. Kwong 2 1 State Key Laboratory

More information

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Sourangsu Banerji Department of Electronics & Communication Engineering, RCC Institute of Information

More information

Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings

Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings Meng-Chou Wu *, William H. Prosser NASA, Langley Research Center, MS 231, Hampton, VA,

More information

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber ragg Grating F. Emami, Member IAENG, A. H. Jafari, M. Hatami, and A. R. Keshavarz Abstract In this paper we investigated

More information

All-optical sensor based on nonlinear multimode interference coupler features

All-optical sensor based on nonlinear multimode interference coupler features Optica Applicata, Vol. XLV, No. 3, 015 DOI: 10.577/oa150306 All-optical sensor based on nonlinear multimode interference coupler features MEHDI TAJALDINI 1, *, MOHD Z.M. JAFRI 1 1 School of Physics, University

More information

Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers

Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers Tushar Biswas 1, Shyamal K. Bhadra 1 1 Fiber optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute *196, Raja

More information

TLM modelling of heat flow through defects in aircraft sandwich structures

TLM modelling of heat flow through defects in aircraft sandwich structures TLM modelling of heat flow through defects in aircraft sandwich structures Joanna Wójcik, Tadeusz Niedziela + Abstract The Transmission Line Matrix (TLM) model is applied to describe heat flow in highly

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplemental Material Property Tables Cited in Main Text Table SI. Measured parameters for the sapphire-derived optical fibers Fiber Maximum Alumina Content Δn 10-3 Core Size Mole Percent (%) Weight Percent

More information

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Ai-Ping Luo, Zhi-Chao Luo,, Wen-Cheng Xu,, * and Hu Cui Laboratory of Photonic Information Technology,

More information

ONE can design optical filters using different filter architectures.

ONE can design optical filters using different filter architectures. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 23, DECEMBER 1, 2010 3463 Comparison of Cascade, Lattice, and Parallel Filter Architectures Rohit Patnaik, Vivek Vandrasi, Christi K. Madsen, Ali A. Eftekhar,

More information

Polarization division multiplexing system quality in the presence of polarization effects

Polarization division multiplexing system quality in the presence of polarization effects Opt Quant Electron (2009) 41:997 1006 DOI 10.1007/s11082-010-9412-0 Polarization division multiplexing system quality in the presence of polarization effects Krzysztof Perlicki Received: 6 January 2010

More information

Novel All-Optical Logic Gates Based on Photonic Crystal Structure

Novel All-Optical Logic Gates Based on Photonic Crystal Structure Journal of Physics: Conference Series Novel All-Optical Logic Gates Based on Photonic Crystal Structure To cite this article: Mortaza Noshad et al 2012 J. Phys.: Conf. Ser. 350 012007 View the article

More information

FIBER Bragg gratings are important elements in optical

FIBER Bragg gratings are important elements in optical IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004 1099 New Technique to Accurately Interpolate the Complex Reflection Spectrum of Fiber Bragg Gratings Amir Rosenthal and Moshe Horowitz Abstract

More information

MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS. Evgeny Klavir. Ryerson University Electrical And Computer Engineering

MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS. Evgeny Klavir. Ryerson University Electrical And Computer Engineering MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS Evgeny Klavir Ryerson University Electrical And Computer Engineering eklavir@ee.ryerson.ca ABSTRACT Cladding n = n This project consider modal theory for step

More information

Analysis of Power Coupling and Losses at Splice Joints of Dissimilar Optical Fibers

Analysis of Power Coupling and Losses at Splice Joints of Dissimilar Optical Fibers International Journal of Optics and Applications 014, 4(): 54-61 DOI: 10.593/j.optics.014040.05 Analysis of Power Coupling and Losses at Splice Joints of Dissimilar Optical Fibers Faramarz E. Seraji 1,*,

More information

Efficient Lanczos Fourier expansion-based transmission line formulation for full-wave modal analysis of optical waveguides

Efficient Lanczos Fourier expansion-based transmission line formulation for full-wave modal analysis of optical waveguides 196 J. Opt. Soc. Am. B / Vol. 9, No. 6 / June 1 A. Habibzadeh-Sharif and M. Soleimani Efficient Lanczos Fourier expansion-based transmission line formulation for full-wave modal analysis of optical waveguides

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

NONUNIFORM TRANSMISSION LINES AS COMPACT UNIFORM TRANSMISSION LINES

NONUNIFORM TRANSMISSION LINES AS COMPACT UNIFORM TRANSMISSION LINES Progress In Electromagnetics Research C, Vol. 4, 205 211, 2008 NONUNIFORM TRANSMISSION LINES AS COMPACT UNIFORM TRANSMISSION LINES M. Khalaj-Amirhosseini College of Electrical Engineering Iran University

More information

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING Progress In Electromagnetics Research C, Vol. 8, 121 133, 2009 ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING M. Aleshams Department of Electrical and Computer

More information

Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA

Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA Michael J. Connelly and Li-Qiang Guo Optical Communications Research Group, Department of Electronic and

More information

Chronological C. V. Personal Details. Name: Mehdi Tajaldini. Nationality: Iran. Date of birth: 1981/04/22. Age: 34 years. Degree: PhD of Photonics

Chronological C. V. Personal Details. Name: Mehdi Tajaldini. Nationality: Iran. Date of birth: 1981/04/22. Age: 34 years. Degree: PhD of Photonics Chronological C. V. Personal Details Name: Mehdi Tajaldini Nationality: Iran Date of birth: 1981/04/22 Age: 34 years Degree: PhD of Photonics Email: tajaldini.usm@gmail.com Hand Phone: 006024123574 and

More information

arxiv: v1 [physics.optics] 30 Mar 2010

arxiv: v1 [physics.optics] 30 Mar 2010 Analytical vectorial structure of non-paraxial four-petal Gaussian beams in the far field Xuewen Long a,b, Keqing Lu a, Yuhong Zhang a,b, Jianbang Guo a,b, and Kehao Li a,b a State Key Laboratory of Transient

More information

Dielectric Slab Waveguide

Dielectric Slab Waveguide Chapter Dielectric Slab Waveguide We will start off examining the waveguide properties of a slab of dielectric shown in Fig... d n n x z n Figure.: Cross-sectional view of a slab waveguide. { n, x < d/

More information

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM School of Electrical and Computer Engineering, Cornell University ECE 533: Semiconductor Optoelectronics Fall 14 Homewor 8 Due on Nov, 14 by 5: PM This is a long -wee homewor (start early). It will count

More information

DIELECTRIC waveguides and dielectric-loaded metallic

DIELECTRIC waveguides and dielectric-loaded metallic IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 46, NO 7, JULY 1998 975 Transfer Matrix Function (TMF) for Wave Propagation in Dielectric Waveguides With Arbitrary Transverse Profiles Zion Menachem

More information

Polarization-Resolved Output Characteristics of InAlGaAs VCSELs under Anisotropic Strain

Polarization-Resolved Output Characteristics of InAlGaAs VCSELs under Anisotropic Strain Polarization-Resolved Output Characteristics of InAlGaAs VCSELs under Anisotropic Strain Andrea Kroner and Johannes Michael Ostermann We present a setup that enables direct examination of the correlation

More information

3x3 transfer matrix modelling Matteo Cherchi, VTT Technical Research Centre of Finland

3x3 transfer matrix modelling Matteo Cherchi, VTT Technical Research Centre of Finland 3x3 transfer matrix modelling Matteo Cherchi, VTT Technical esearch Centre of Finland Unlike common devices based on ring resonators, the structure in Fig..a involves not only 2x2 couplers but also a 3x3

More information

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 1, Issue 1, Ver. III (Jan.-Feb. 17), PP 35-39 www.iosrjournals.org Dispersion Properties of

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes Tooth-shaped plasmonic waveguide filters with nanometeric sizes Xian-Shi LIN and Xu-Guang HUANG * Laboratory of Photonic Information Technology, South China Normal University, Guangzhou, 510006, China

More information

Magnetic and optic sensing. Magnetic sensors

Magnetic and optic sensing. Magnetic sensors Magnetic and optic sensing Magnetic sensors 1 Literature Physics of Semiconductor Devices S.M. Sze, Kwok K. Ng Available as ebook on http://www.lub.lu.se/en/search/lubsearch.ht ml This lecture chapters

More information

Modeling microlenses by use of vectorial field rays and diffraction integrals

Modeling microlenses by use of vectorial field rays and diffraction integrals Modeling microlenses by use of vectorial field rays and diffraction integrals Miguel A. Alvarez-Cabanillas, Fang Xu, and Yeshaiahu Fainman A nonparaxial vector-field method is used to describe the behavior

More information

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells M. R. Beversluis 17 December 2001 1 Introduction For over thirty years, silicon based electronics have continued

More information

Surface plasmon waveguides

Surface plasmon waveguides Surface plasmon waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics Photonic integrated system with subwavelength scale components CMOS transistor: Medium-sized molecule

More information

M.Sc., Physics, Institut Teknologi Sepuluh Nopember, Indonesia, 2005.

M.Sc., Physics, Institut Teknologi Sepuluh Nopember, Indonesia, 2005. Agus Muhamad Hatta Jazan University Physics Department Faculty of Science Gizan 22822 P.O. Box 114 Kingdom of Saudi Arabia Mobile: +966 54993 1978 Email: amhatta@gmail.com Education Ph.D, Photonics, Dublin

More information

Theoretical Analysis of the TE Mode Cerenkov Type Second Harmonic Generation in Ion-Implanted X-Cut Lithium Niobate Planar Waveguides

Theoretical Analysis of the TE Mode Cerenkov Type Second Harmonic Generation in Ion-Implanted X-Cut Lithium Niobate Planar Waveguides Vol. 115 (2009) ACTA PHYSICA POLONICA A No. 3 Theoretical Analysis of the TE Mode Cerenkov Type Second Harmonic Generation in Ion-Implanted X-Cut Lithium Niobate Planar Waveguides G. Du, G. Li, S. Zhao,

More information

Beam propagation method for waveguide device simulation

Beam propagation method for waveguide device simulation 1/29 Beam propagation method for waveguide device simulation Chrisada Sookdhis Photonics Research Centre, Nanyang Technological University This is for III-V Group Internal Tutorial Overview EM theory,

More information

Alka Sharma Department of Physics, J. N. P. G. College Lucknow University, Lucknow, India

Alka Sharma Department of Physics, J. N. P. G. College Lucknow University, Lucknow, India IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 78-4861.Volume 8, Issue 4 Ver. II (Jul. - Aug. 016), PP 87-91 www.iosrjournals.org Analysis Of Waveguide Whose Guiding Region Filled With Dielectric Material

More information

Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination Supplementary Information

Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination Supplementary Information Light-induced spiral mass transport in azo-polymer films under vorte-beam illumination Supplementary Information Antonio Ambrosio a),1, Lorenzo Marrucci 1, Fabio Borbone, Antonio Roviello and Pasqualino

More information

3D analysis of hybrid photonic crystal/ conventional waveguide 90 bend

3D analysis of hybrid photonic crystal/ conventional waveguide 90 bend Brigham Young University BYU ScholarsArchive All Faculty Publications 2004-07-20 3D analysis of hybrid photonic crystal/ conventional waveguide 90 bend J. Cai S. Kim See next page for additional authors

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 21, NOVEMBER 1, 2012 3381 Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss Wenbin Liang, Ningliang Liu, Zhihua Li, and Peixiang

More information

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV Numerical Techniques in Electromagnetics ECE 757 THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV The Perfectly Matched Layer (PML) Absorbing Boundary Condition Nikolova 2009 1 1. The need for good

More information

THE beam propagation method (BPM) is at present the

THE beam propagation method (BPM) is at present the JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999 2389 Three-Dimensional Noniterative Full-Vectorial Beam Propagation Method Based on the Alternating Direction Implicit Method Yu-li Hsueh,

More information

Designing of All Optical Two Bits Full Adder using TOAD, TMIN and Feynman Gate

Designing of All Optical Two Bits Full Adder using TOAD, TMIN and Feynman Gate International Journal of Computational Intelligence Research ISSN 0973-1873 Volume 13, Number 5 (2017), pp. 841-849 Research India Publications http://www.ripublication.com Designing of All Optical Two

More information

High birefringence in elliptical hollow optical fiber

High birefringence in elliptical hollow optical fiber High birefringence in elliptical hollow optical fiber In-Kag Hwang and Yong-Hee Lee Department of Physics, Korea Advanced Institute of Science and Technology Daejeon, 305-701, Korea ikhwang@kaist.ac.kr

More information

Strong Coupling between On Chip Notched Ring Resonator and Nanoparticle

Strong Coupling between On Chip Notched Ring Resonator and Nanoparticle Strong Coupling between On Chip Notched Ring Resonator and Nanoparticle S. Wang 1, K. Broderick 1, 3, H. Smith 1 2, 3,1 *, and Y. Yi 1 Massauchusetts Institute of Technology, Cambridge, MA 02139 2 New

More information

Plasmonic nanoguides and circuits

Plasmonic nanoguides and circuits Plasmonic nanoguides and circuits Introduction: need for plasmonics? Strip SPPs Cylindrical SPPs Gap SPP waveguides Channel plasmon polaritons Dielectric-loaded SPP waveguides PLASMOCOM 1. Intro: need

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

Low Losses Left Handed Materials Using Metallic Magnetic Cylinders.

Low Losses Left Handed Materials Using Metallic Magnetic Cylinders. Low Losses Left Handed Materials Using Metallic Magnetic Cylinders. N. García and E.V. Ponizovskaia Laboratorio de Física de Sistemas Pequeños y Nanotecnología, Consejo Superior de Investigaciones Científicas,

More information

Fourier Decomposition Analysis af Anisotropic Inhomogeneous Dielectric Waveguide Structures

Fourier Decomposition Analysis af Anisotropic Inhomogeneous Dielectric Waveguide Structures University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering August 2007 Fourier Decomposition Analysis af Anisotropic Inhomogeneous Dielectric Waveguide

More information

An Optimum Design Of 3x3 Optical Switch Based On Integrated. MZI, Including The Influence Of Electro Optic

An Optimum Design Of 3x3 Optical Switch Based On Integrated. MZI, Including The Influence Of Electro Optic An Optimum Design Of 3x3 Optical Switch Based On Integrated MZI, Including The Influence Of Electro Optic Mohammad Syuhaimi Ab. Rahman 1, Khaled Mohamed Shaktur 1, Rahmah Mohammad 2 Spectrum Technology

More information

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP L. Subačius a,,

More information

White light generation and amplification using a soliton pulse within a nano-waveguide

White light generation and amplification using a soliton pulse within a nano-waveguide Available online at www.sciencedirect.com Physics Procedia 00 (009) 000 000 53 57 www.elsevier.com/locate/procedia Frontier Research in Nanoscale Science and Technology White light generation and amplification

More information

Absorption suppression in photonic crystals

Absorption suppression in photonic crystals PHYSICAL REVIEW B 77, 442 28 Absorption suppression in photonic crystals A. Figotin and I. Vitebskiy Department of Mathematics, University of California at Irvine, Irvine, California 92697, USA Received

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Ashim Kumar Saha (D3) Supervisor: Prof. Toshiaki Suhara Doctoral Thesis Defense Quantum Engineering Design Course Graduate

More information

Transmission-Reflection Method to Estimate Permittivity of Polymer

Transmission-Reflection Method to Estimate Permittivity of Polymer Transmission-Reflection Method to Estimate Permittivity of Polymer Chanchal Yadav Department of Physics & Electronics, Rajdhani College, University of Delhi, Delhi, India Abstract In transmission-reflection

More information

Polarization control of defect modes in threedimensional woodpile photonic crystals

Polarization control of defect modes in threedimensional woodpile photonic crystals Polarization control of defect modes in threedimensional woodpile photonic crystals Michael James Ventura and Min Gu* Centre for Micro-Photonics and Centre for Ultrahigh-bandwidth Devices for Optical Systems,

More information

Sub-wavelength electromagnetic structures

Sub-wavelength electromagnetic structures Sub-wavelength electromagnetic structures Shanhui Fan, Z. Ruan, L. Verselegers, P. Catrysse, Z. Yu, J. Shin, J. T. Shen, G. Veronis Ginzton Laboratory, Stanford University http://www.stanford.edu/group/fan

More information

INTEREST in utilizing optical bistability of semiconductor

INTEREST in utilizing optical bistability of semiconductor IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 11, NOVEMBER 1997 2029 Transfer-Matrix Analysis of Optical Bistability in DFB Semiconductor Laser Amplifiers with Nonuniform Gratings Drew N. Maywar and

More information

Switching behaviour of nonlinear Mach Zehnder interferometer based on photonic crystal geometry

Switching behaviour of nonlinear Mach Zehnder interferometer based on photonic crystal geometry PRAMANA c Indian Academy of Sciences Vol. 82, No. 6 journal of June 2014 physics pp. 1061 1074 Switching behaviour of nonlinear Mach Zehnder interferometer based on photonic crystal geometry MAN MOHAN

More information

All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation

All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation Linear polarized light input PM Magnet Tb Detector PZ L. Sun 1,2, S. Jiang, 3 and J. R. Marciante 1,2 University of Rochester Laboratory

More information