All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation

Size: px
Start display at page:

Download "All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation"

Transcription

1 All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation Linear polarized light input PM Magnet Tb Detector PZ L. Sun 1,2, S. Jiang, 3 and J. R. Marciante 1,2 University of Rochester Laboratory for Laser Energetics 1. Laboratory for Laser Energetics, University of Rochester 2. Institute of Optics, University of Rochester 3. AdValue Photonics Inc., Tucson, Arizona OFC 2010 San Diego, CA 21 March 2010

2 Summary An all-fiber optical Faraday magnet field sensor is demonstrated using Tb fiber* All-fiber magnet field sensors are required for strong EMI environments The all-fiber magnet field sensor is made of a fiber Faraday rotator and a fiber polarizer The fiber Faraday rotator uses a 56 wt% terbium-doped multicomponent silicate fiber The sensor can measure magnet fields with a measurement range from 0.02 to 3.2 T resolution of T sensitivity of 0.49 rad/t E18755 *L. Sun, S. Jiang, and J. R. Marciante, Opt. Express 18, 5407 (2010).

3 All-fiber magnet field sensors are required for strong EMI environments Magnet field sensors are currently electronic based superconducting quantum interference devices (SQUID s), search coils, fluxgates, Hall-effect sensors, etc. Electronic devices do not work properly in strong EMI environments All-fiber optical magnet field sensors are suitable for strong EMI environments no electronics in measurement region robust, low weight, small size, remote sensing suitable for sensing in nuclear facilities, magnet levitation rail, etc. Strong EMI environments need all-optical devices. E18756

4 All-fiber Faraday magnet field sensors have advantages over traditional magnet field sensors Several all-fiber magnet field sensors were demonstrated * using special material coatings, prohibiting low-cost manufacturing We developed an all-fiber magnet field sensor based on Faraday rotation using terbium-doped fiber Laser PM Sensor Tb PZ Detector PM E18757 * H. Okamura, J. Lightwave Technol. 8, 1558 (1990).

5 The Faraday effect is the rotation of linear polarized light in the presence of a magnetic field Faraday rotation is the result of circular birefringence induced by a magnet field applied along the axis of light propagation The angle of rotation is given by i = VBL V: Verdet constant B: magnet-field flux density L: length of the crystal Faraday rotation is used for optical isolation Example Magnet Crystal i E17156b

6 The small Verdet constant is the bottleneck to realizing Faraday rotation in standard silica fibers Silica fiber has a small verdet constant V = 1.1 rad/(tm) in silica fiber at 1064 nm V = 40 rad/(tm) in TGG (terbium gallium garnet) at 1064 nm for 2-cm silica fiber, sensitivity di/db = rad/t - such a small sensitivity is useless in most applications Silica fiber has been coiled multi-turns to increase the sensitivity 1,2 however, bend-induced linear birefringence affects the state of polarization and quenches the desired Faraday effect E G. W. Day et al., Opt. Lett. 7, 238 (1982). 2 V. Annovazzi-Lodi, S. Merlo, and A. Leona, J. Lightwave Technol. 13, 2349 (1995).

7 56 wt% terbium is doped in the silicate fiber to increase the Verdet constant Core: 56 wt% terbium, 4-nm diameter Cladding: 130-nm diameter N. A. = 0.14 Loss: 0.11 db/cm at 1310 nm Effective Verdet constant* = 24±1 rad/(tm) at 1053 nm 20 larger than silica fiber E17163b *L. Sun et al., Opt. Lett. 34, 1699 (2009).

8 The fiber polarizers are made from Corning SP1060 polarizing fiber (PZ fiber) Only one linear polarization can propagate. Core Airhole Cladding Core: 8 (2.6) nm diameter Cladding: 125-nm diameter N. A. = 0.14 Loss = 0.1 db/m at 1060 nm E18299

9 Transmission spectrum of orthogonal polarizations in PZ fiber shows an extinction ratio >15 db 0 30-cm section of fiber Horizontal Relative power (db) 10 Vertical Extinction ratio >15 db Bandwidth = 25 nm Sufficient extinction for all-fiber polarizers Wavelength (nm) 1080 E18300a

10 The magnet-field distribution of a magnet tube along the axis direction can be accurately derived a 2 Magnet a L L z B z Br = 2 * z + L 2 z + L 2 a1 2 z L ^ + h C 9a2 2 + ^z + L 2h 2 C 1 2 z - L 2 z - L 2 - a1 2 z L ^ - h C 9a2 2 + ^z - L 2h 2 C B z (T) B r = 1.35 T (residual flux density) a 1 = 2.5 mm, a 2 = 30 mm, L = 40 mm E z (cm) The prediction matches the measured magnetic field outside the tube.

11 An all-fiber magnet field sensor is built by combining the fiber Faraday rotator and the fiber polarizer Linear polarized light input PM Magnet Tb Detector PZ 2-cm Tb fiber is spliced with PM fiber and 1-m long PZ fiber The magnet field can be measured from the relative light intensity I/I 0 = cos 2 (i 0 + i) = cos 2 (i 0 + VB ave L) PM and PZ fibers are aligned with 50º rotation angle (i = 50º) E18766

12 The data measured by translating the magnet along the fiber axis agrees well with the theoretical curve I/I Sensitivity is 20 larger than silica fiber di db = VL = 0.49 rad/t av Maximum measureable B B max ^r 2h VL. = = 3 2 T 0.2 Resolution 0.1 DI 2Bmax DB = I0 r sin82^i0 + ihb B av (T) In a self-referenced configuration -6-6 DI/I = 10, DB = 2 # 10 T E18767

13 Summary/Conclusions An all-fiber optical Faraday magnet field sensor is demonstrated using Tb fiber* All-fiber magnet field sensors are required for strong EMI environments The all-fiber magnet field sensor is made of a fiber Faraday rotator and a fiber polarizer The fiber Faraday rotator uses a 56 wt% terbium-doped multicomponent silicate fiber The sensor can measure magnet fields with a measurement range from 0.02 to 3.2 T resolution of T sensitivity of 0.49 rad/t E18755 *L. Sun, S. Jiang, and J. R. Marciante, Opt. Express 18, 5407 (2010).

Objectives. Faraday Rotation. Introduction. component. polarizers are at 0 with respect to. reduced to

Objectives. Faraday Rotation. Introduction. component. polarizers are at 0 with respect to. reduced to Faraday Rotation Objectives o To verify Malus law for two polarizers o To study the effect known as Faraday Rotation Introduction Light consists of oscillating electric and magnetic fields. Light is polarized

More information

Experiment and Simulation Study on A New Structure of Full Optical Fiber Current Sensor

Experiment and Simulation Study on A New Structure of Full Optical Fiber Current Sensor 2017 2nd International Conference on Computational Modeling, Simulation and Applied Mathematics (CMSAM 2017) ISBN: 978-1-60595-499-8 Experiment and Simulation Study on A New Structure of Full Optical Fiber

More information

Case Study: Faraday Rotators in LIGO

Case Study: Faraday Rotators in LIGO Case Study: Faraday Rotators in LIGO Physics 208, Electro-optics Peter Beyersdorf Document info 1 Input Optics Overview Requirements for LIGO faraday isolator LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

More information

Modulators. Tuesday, 11/14/2006 Physics 158 Peter Beyersdorf. Document info 17. 1

Modulators. Tuesday, 11/14/2006 Physics 158 Peter Beyersdorf. Document info 17. 1 Modulators Tuesday, 11/14/2006 Physics 158 Peter Beyersdorf Document info 17. 1 Class Outline Birefringence Optical Activity Faraday Rotation Optical Modulators Electrooptic Modulators Accoustooptic Modulators

More information

The Glass Ceiling: Limits of Silica. PCF: Holey Silica Cladding

The Glass Ceiling: Limits of Silica. PCF: Holey Silica Cladding The Glass Ceiling: Limits of Silica Loss: amplifiers every 50 100km limited by Rayleigh scattering (molecular entropy) cannot use exotic wavelengths like 10.µm Breaking the Glass Ceiling: Hollow-core Bandgap

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is assigned, due March 25 th Start discussion

More information

All-fiber Faraday Devices Based on Terbium-doped Fiber. Lei Sun

All-fiber Faraday Devices Based on Terbium-doped Fiber. Lei Sun All-fiber Faraday Devices Based on Terbium-doped Fiber by Lei Sun Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy supervised by Professor John R. Marciante The

More information

Optical sensor based on hybrid LPG/FBG in D-fiber for simultaneous refractive index and temperature measurement

Optical sensor based on hybrid LPG/FBG in D-fiber for simultaneous refractive index and temperature measurement Optical sensor based on hybrid G/FBG in D-fiber for simultaneous refractive index and temperature measurement Xianfeng Chen*, Kaiming Zhou, Lin Zhang, Ian Bennion Photonics Research Group, Aston University,

More information

Phase Sensitive Faraday Rotation in. and various Diamagnetic liquid Samples

Phase Sensitive Faraday Rotation in. and various Diamagnetic liquid Samples Phase Sensitive Faraday Rotation in TERBIUM GALLIUM GARNET crystal and various Diamagnetic liquid Samples Supervisor: Dr. Saadat Anwar Siddiqi Co-Supervisor: Dr. Muhammad Sabieh Anwar Presented by: Aysha

More information

Dynamic population gratings in highly doped erbium fibers

Dynamic population gratings in highly doped erbium fibers Dynamic population gratings in highly doped erbium fibers Sonia Melle, Oscar G. Calderón, Z. C. Zhuo, M. A. Antón, F. Carreño Lasers, Quantum Optics and Non-linear Optics Group Complutense University of

More information

PMD Compensator and PMD Emulator

PMD Compensator and PMD Emulator by Yu Mimura *, Kazuhiro Ikeda *, Tatsuya Hatano *, Takeshi Takagi *, Sugio Wako * and Hiroshi Matsuura * As a technology for increasing the capacity to meet the growing demand ABSTRACT for communications

More information

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL. Title Polarization characteristics of photonic crystal fib Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori CitationOptics Express, 19(4): 3799-3808 Issue Date 2011-02-14 Doc URL http://hdl.handle.net/2115/45257

More information

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 21, NOVEMBER 1, 2012 3381 Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss Wenbin Liang, Ningliang Liu, Zhihua Li, and Peixiang

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Effective area of photonic crystal fibers

Effective area of photonic crystal fibers Effective area of photonic crystal fibers Niels Asger Mortensen Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød, Denmark nam@crystal-fibre.com http://www.crystal-fibre.com Abstract: We consider the effective

More information

FARADAY isolators are a key optical element for many

FARADAY isolators are a key optical element for many 1116 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 8, AUGUST 1999 Investigation of Self-Induced Depolarization of Laser Radiation in Terbium Gallium Garnet Efim A. Khazanov, Oleg V. Kulagin, Sanichiro

More information

Fujikura PANDA fiber products and Basics of PM fibers

Fujikura PANDA fiber products and Basics of PM fibers Fujikura PANDA fiber products and Basics of PM fibers Fiber Optics Network Products Engineering Department Fujikura Ltd. 1 Fujikura PANDA fiber solutions Fujikura has been developing below new PANDA fibers

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #2 is due Feb. 12 Mid-term exam Feb 28

More information

Faraday Isolator Performance at High Laser Power

Faraday Isolator Performance at High Laser Power Faraday Isolator Performance at High Laser Power R. M. Martin, V. Quetschke, A. Lucianetti, L. Williams, G. Mueller, D. H. Reitze, D. B. Tanner University of Florida Research supported by The National

More information

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs:

Sensors: a) Gyroscope. Micro Electro-Mechanical (MEM) Gyroscopes: (MEM) Gyroscopes. Needs: Sensors: Needs: Data redundancy Data for both situations: eclipse and sun Question of sampling frequency Location and size/weight Ability to resist to environment Low consumption Low price a) Gyroscope

More information

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS Sait Eser KARLIK 1 Güneş YILMAZ 1, Uludağ University, Faculty of Engineering and Architecture,

More information

Negative curvature fibers

Negative curvature fibers Negative curvature fibers presented by Jonathan Hu 1 with Chengli Wei, 1 R. Joseph Weiblen, 2,* and Curtis R. Menyuk 2 1 Baylor University, Waco, Texas 76798, USA 2 University of Maryland Baltimore County,

More information

Optical Fiber Signal Degradation

Optical Fiber Signal Degradation Optical Fiber Signal Degradation Effects Pulse Spreading Dispersion (Distortion) Causes the optical pulses to broaden as they travel along a fiber Overlap between neighboring pulses creates errors Resulting

More information

Arbitrary and reconfigurable optics - new opportunities for integrated photonics

Arbitrary and reconfigurable optics - new opportunities for integrated photonics Arbitrary and reconfigurable optics - new opportunities for integrated photonics David Miller, Stanford University For a copy of these slides, please e-mail dabm@ee.stanford.edu How to design any linear

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Principle of photonic crystal fibers

Principle of photonic crystal fibers Principle of photonic crystal fibers Jan Sporik 1, Miloslav Filka 1, Vladimír Tejkal 1, Pavel Reichert 1 1 Fakulta elektrotechniky a komunikačních technologií VUT v Brně Email: {xspori1, filka, xtejka,

More information

Fliifl. HEWLETT. Deterministic, Analytically Complete Measurement of Polarization-Dependent Transmission Through Optical Devices

Fliifl. HEWLETT. Deterministic, Analytically Complete Measurement of Polarization-Dependent Transmission Through Optical Devices Fliifl. HEWLETT ~r.ji PACKARD Deterministic, Analytically Complete Measurement of Polarization-Dependent Transmission Through Optical Devices Brian Heffner Instruments and Photonics Laboratory HPL-92-14

More information

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2007-12-31 Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber Pengfei

More information

Model 556X User s Manual. Optical Isolator

Model 556X User s Manual. Optical Isolator Model 556X User s Manual Optical Isolator 550031 Rev. A 2 Is a registered trademark of New Focus Inc. Warranty New Focus, Inc. guarantees its products to be free of defects for one year from the date of

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Measurement of Verdet Constant in Diamagnetic Glass Using Faraday Effect

Measurement of Verdet Constant in Diamagnetic Glass Using Faraday Effect 18 Kasetsart J. (Nat. Sci.) 40 : 18-23 (2006) Kasetsart J. (Nat. Sci.) 40(5) Measurement of Verdet Constant in Diamagnetic Glass Using Faraday Effect Kheamrutai Thamaphat, Piyarat Bharmanee and Pichet

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Author(s) Citation Fiber-optic temperature sensor based on temperaturedependent refractive index of Germanium-silica

More information

Numerical Analysis of Low-order Modes in Thermally Diffused Expanded Core (TEC) Fibers

Numerical Analysis of Low-order Modes in Thermally Diffused Expanded Core (TEC) Fibers Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, Italy, November 2-22, 26 26 Numerical Analysis of Low-order Modes in Thermally Diffused Expanded

More information

OPTICAL isolator, which is a non-reciprocal device to

OPTICAL isolator, which is a non-reciprocal device to JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15, 2013 2793 Demonstration of All-Optical Fiber Isolator Based on a CdSe Quantum Dots Doped Optical Fiber Operating at 660 nm Seongmin Ju, Member,

More information

Photonic crystal fiber with a hybrid honeycomb cladding

Photonic crystal fiber with a hybrid honeycomb cladding Photonic crystal fiber with a hybrid honeycomb cladding Niels Asger Mortensen asger@mailaps.org Martin Dybendal Nielsen COM, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark Jacob Riis

More information

Polarization characteristics of a reflective erbium doped fiber amplifier with temperature changes at the Faraday rotator mirror

Polarization characteristics of a reflective erbium doped fiber amplifier with temperature changes at the Faraday rotator mirror Polarization characteristics of a reflective erbium doped fiber amplifier with temperature changes at the Faraday rotator mirror M. Angeles Quintela, José Miguel López-Higuera and César Jáuregui Grupo

More information

Photonic Communications Engineering I

Photonic Communications Engineering I Photonic Communications Engineering I Module 3 - Attenuation in Optical Fibers Alan E. Willner Professor, Dept. of Electrical Engineering - Systems, University of Southern California and Thrust 1 Lead

More information

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute,

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, 1,2 Physics Department, Midlands State University, P/Bag 9055, Gweru, Zimbabwe Abstract

More information

by applying two pairs of confocal cylindrical lenses

by applying two pairs of confocal cylindrical lenses Title:Design of optical circulators with a small-aperture Faraday rotator by applying two pairs of confocal Author(s): Yung Hsu Class: 2nd year of Department of Photonics Student ID: M0100579 Course: Master

More information

BB84 Quantum Key Distribution System based on Silica-Based Planar Lightwave Circuits

BB84 Quantum Key Distribution System based on Silica-Based Planar Lightwave Circuits BB84 Quantum Key Distribution System based on Silica-Based Planar Lightwave Circuits (*) Yoshihiro NAMBU*, Takaaki HATANAKA, and Kazuo NAKAMURA (*) Corresponding author: E-mail address: y-nambu@ah.jp.nec.com

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

Design and modeling of a photonic crystal fiber gas sensor

Design and modeling of a photonic crystal fiber gas sensor Design and modeling of a photonic crystal fiber gas sensor Yeuk L. Hoo, Wei Jin, Chunzheng Shi, Hoi L. Ho, Dong N. Wang, and Shuang C. Ruan We report the modeling results of an all-fiber gas detector that

More information

FIBER Bragg gratings are important elements in optical

FIBER Bragg gratings are important elements in optical IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004 1099 New Technique to Accurately Interpolate the Complex Reflection Spectrum of Fiber Bragg Gratings Amir Rosenthal and Moshe Horowitz Abstract

More information

Polarization division multiplexing system quality in the presence of polarization effects

Polarization division multiplexing system quality in the presence of polarization effects Opt Quant Electron (2009) 41:997 1006 DOI 10.1007/s11082-010-9412-0 Polarization division multiplexing system quality in the presence of polarization effects Krzysztof Perlicki Received: 6 January 2010

More information

Polarization-maintaining optical microfiber

Polarization-maintaining optical microfiber Polarization-maintaining optical microfiber Yongmin Jung *, Gilberto Brambilla, and David J. Richardson Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK * Corresponding

More information

Yolande Sikali 1,Yves Jaouën 2, Renaud Gabet 2, Xavier Pheron 3 Gautier Moreau 1, Frédéric Taillade 4

Yolande Sikali 1,Yves Jaouën 2, Renaud Gabet 2, Xavier Pheron 3 Gautier Moreau 1, Frédéric Taillade 4 Presented at the COMSOL Conference 2010 Paris Two-dimensional FEM Analysis of Brillouin Gain Spectra in Acoustic Guiding and Antiguiding Single Mode Optical Fibers Yolande Sikali 1,Yves Jaouën 2, Renaud

More information

Design and Modal Analysis of Photonic Crystal Fiber for Dispersion Compensation over Broadband Range

Design and Modal Analysis of Photonic Crystal Fiber for Dispersion Compensation over Broadband Range 365 Design and Modal Analysis of Photonic Crystal Fiber for Dispersion Compensation over Broadband Range Madhavi Waghmare 1, K.T.V.Reddy 2, 1. Research Scholar, Department of Electronics and Telecommunication

More information

NEW COMPENSATION SCHEME OF MAGNETO-OPTICAL CURRENT SENSOR FOR TEMPERATURE STABILITY IMPROVEMENT

NEW COMPENSATION SCHEME OF MAGNETO-OPTICAL CURRENT SENSOR FOR TEMPERATURE STABILITY IMPROVEMENT Metrol. Meas. Syst., Vol. XIX (2012), No. 3, pp. 611-616. METROLOGY AND MEASUREMENT SYSTEMS Index 330930, ISSN 0860-8229 www.metrology.pg.gda.pl NEW COMPENSATION SCHEME OF MAGNETO-OPTICAL CURRENT SENSOR

More information

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 1, Issue 1, Ver. III (Jan.-Feb. 17), PP 35-39 www.iosrjournals.org Dispersion Properties of

More information

The Fiber Optic Gyroscope a SAGNAC Interferometer for Inertial Sensor Applications

The Fiber Optic Gyroscope a SAGNAC Interferometer for Inertial Sensor Applications Contributing International Traveling Summer School 2007, Pforzheim: The Fiber Optic Gyroscope a SAGNAC Interferometer for Inertial Sensor Applications Thomas Erler 12th July 2007 1 0. Outline 1. Scope

More information

Clint Zeringue and Gerald T. Moore. 1. Introduction

Clint Zeringue and Gerald T. Moore. 1. Introduction Advances in OptoElectronics Volume 21, Article ID 586986, 7 pages doi:1.1155/21/586986 Research Article Model and Simulation of a Tunable Birefringent Fiber Using Capillaries Filled with Liquid Ethanol

More information

LIGO-P R. Suppression of Self-Induced Depolarization of High-Power Laser Radiation in Glass-Based Faraday Isolators

LIGO-P R. Suppression of Self-Induced Depolarization of High-Power Laser Radiation in Glass-Based Faraday Isolators LIGO-P060019-00-R Suppression of Self-Induced Depolarization of High-Power Laser Radiation in Glass-Based Faraday Isolators Efim Khazanov, Nikolay Andreev, Alexey Babin, Alexander Kiselev, and Oleg Palashov

More information

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany Numerical and Experimental Investigation of a Fiber-Optic Sensor Consisting of a Fiber Bragg Grating in a Two-Mode Fiber for Simultaneous Sensing of Temperature and Strain A. Siekiera 1,, R. Engelbrecht

More information

Optical sensor based on two in-series birefringent optical fibers

Optical sensor based on two in-series birefringent optical fibers Optical sensor based on two in-series birefringent optical fibers Jonas H. Osório 1,2 and Cristiano M. B. Cordeiro 1,3 1 Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP, Brazil 2 email: jhosorio@ifi.unicamp.br

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

George L. Fischer a, Thomas R. Moore b c & Robert W. Boyd b a Department of Physics and The Institute of Optics,

George L. Fischer a, Thomas R. Moore b c & Robert W. Boyd b a Department of Physics and The Institute of Optics, This article was downloaded by: [University of Rochester] On: 28 May 2015, At: 13:34 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC WAVEGUIDES Chin-ping Yu (1) and Hung-chun Chang (2) (1) Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei,

More information

Quantum Photonic Integrated Circuits

Quantum Photonic Integrated Circuits Quantum Photonic Integrated Circuits IHFG Hauptseminar: Nanooptik und Nanophotonik Supervisor: Prof. Dr. Peter Michler 14.07.2016 Motivation and Contents 1 Quantum Computer Basics and Materials Photon

More information

*, D. Ortega* Corresponding author. Tel.: ; fax: address:

*, D. Ortega* Corresponding author. Tel.: ; fax: address: Magneto-Optic Faraday Effect in Maghemite Nanoparticles/Silica Matrix Nanocomposites prepared by the Sol-Gel Method M. Domínguez a, *, D. Ortega b, J.S. Garitaonandía c, R. Litrán a, C. Barrera-Solano

More information

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) FRISNO-9 Dominique Elser 15/02/2007 GAWBS Theory Thermally excited acoustic fiber vibrations at certain resonance frequencies

More information

Ultrasensitive magnetic field sensor based on an in-fiber Mach Zehnder interferometer with a magnetic fluid component

Ultrasensitive magnetic field sensor based on an in-fiber Mach Zehnder interferometer with a magnetic fluid component Li et al. Vol. 4, No. 5 / October 2016 / Photon. Res. 197 Ultrasensitive magnetic field sensor based on an in-fiber Mach Zehnder interferometer with a magnetic fluid component Zhengyong Li, 1 Changrui

More information

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system Jiacheng Hu ( ) 1,2, Fuchang Chen ( ) 1,2, Chengtao Zhang ( ) 1,2,

More information

Full polarization control for fiber optical quantum communication systems using polarization encoding

Full polarization control for fiber optical quantum communication systems using polarization encoding Full polarization control for fiber optical quantum communication systems using polarization encoding G. B. Xavier, G. Vilela de Faria, G. P. Temporão and J. P. von der Weid* Pontifical Catholic University

More information

Plastic Coated Silica/Silica (Low OH) FIBER CROSS SECTION Polyimide and Acrylate Coated. Nylon and Tefzel Coated

Plastic Coated Silica/Silica (Low OH) FIBER CROSS SECTION Polyimide and Acrylate Coated. Nylon and Tefzel Coated DESCRIPTION When looking for a high quality fiber with superior transmission and a numerical aperture (N.A.) of 0.22 for efficient light coupling, the is the fiber of choice. The Anhydroguide fiber is

More information

Essence of Re-Calibrating Optical Instruments: Analysis of the Digital Delay Line

Essence of Re-Calibrating Optical Instruments: Analysis of the Digital Delay Line Advances in Applied Physics, Vol. 1, 213, no. 3, 117-125 HIKARI Ltd, www.m-hikari.com Essence of Re-Calibrating Optical Instruments: Analysis of the Digital Delay Line Winston T. Ireeta 1,2,*, Vitalis

More information

Modal Analysis and Cutoff Condition of a Doubly Clad Cardioidic Waveguide

Modal Analysis and Cutoff Condition of a Doubly Clad Cardioidic Waveguide Intl J ngg Sci Adv Research 5 Sep;():9-97 Modal Analysis and Cutoff Condition of a Doubly Clad Cardioidic Waveguide Ram Janma Department of Physics, University Institute of ngineering and Technology, Chhatrapati

More information

Delta undulator magnet: concept and project status

Delta undulator magnet: concept and project status Delta undulator magnet: concept and project status Part I: concept and model construction* Alexander Temnykh, CLASSE, Cornell University, Ithaca, New York, USA Part - II: beam test at ATF in BNL + M. Babzien,

More information

All Silica Fiber (Low & High OH) Anhydroguide (AFS) & Superguide (SFS)

All Silica Fiber (Low & High OH) Anhydroguide (AFS) & Superguide (SFS) (AFS) & (SFS) Silica / Polyimide or Acrylate Coated Nylon or Tefzel Coated guide s Silica / fibers are primarily used in photonics applications where individual or bundled large core (> 5µm) multimode

More information

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes Journal of the Optical Society of Korea Vol. 15, No. 3, September 011, pp. 37-43 DOI: http://dx.doi.org/10.3807/josk.011.15.3.37 Analysis of Temperature Dependence of Thermally Induced Transient Effect

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW #5 due today April 11 th class will be at 2PM instead of

More information

CREATING UNCONVENTIONALLY

CREATING UNCONVENTIONALLY CREATING UNCONVENTIONALLY POLARIZED BEAMS BY STRESS INDUCED BIREFRINGENCE Jacob Chamoun Cornell University Advisors: Dr. John Noe Dr. Marty Cohen October 25, 2010 OUTLINE Theory i. Birefringence ii. Cylindrical

More information

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Ai-Ping Luo, Zhi-Chao Luo,, Wen-Cheng Xu,, * and Hu Cui Laboratory of Photonic Information Technology,

More information

STUDY OF ELECTRO-OPTIC AND ELECTROSTRICTIVE EFFECTS ON POLARIZATION IN SINGLE MODE FIBER

STUDY OF ELECTRO-OPTIC AND ELECTROSTRICTIVE EFFECTS ON POLARIZATION IN SINGLE MODE FIBER Proceedings, XVII IMEKO World Congress, June 7, 003, Dubrovnik, Croatia Proceedings, XVII IMEKO World Congress, June 7, 003, Dubrovnik, Croatia XVII IMEKO World Congress Metrology in the 3 rd Millennium

More information

Simulation of Phase Dynamics in Active Multimode Interferometers

Simulation of Phase Dynamics in Active Multimode Interferometers The University of Tokyo Simulation of Phase Dynamics in Active Multimode Interferometers 4/09/2008 Salah Ibrahim Nakano/Sugiyama/Tanemura Lab. Research Center for Advanced Science and Technology Outline

More information

1 N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer

1 N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer 1 star coupler as a distributed fiber-optic strain sensor in a white-light interferometer Libo Yuan and Limin Zhou A novel technique of using a 1 star fiber optic coupler as a distributed strain sensor

More information

Tailoring Nonlinearity and Dispersion of Photonic Crystal Fibers Using Hybrid Cladding

Tailoring Nonlinearity and Dispersion of Photonic Crystal Fibers Using Hybrid Cladding 5 Liu Zhao-lun et al. Tailoring Nonlinearity and Dispersion of Photonic Crystal Fibers Using Hybrid Cladding Liu Zhao-lun, Hou Lan-tian, and Wang Wei Institute of Infrared Optical Fibers and Sensors, Yanshan

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Measuring the Refractive Index of a Laser-Plasma System

Measuring the Refractive Index of a Laser-Plasma System Measuring the Refractive Index of a Laser-Plasma System 1 dh ( 10 4 ) 0 1 J (dh) R (dh) 3 2 1 0 1 2 3 D. Turnbull University of Rochester Laboratory for Laser Energetics Dm (Å) 58th Annual Meeting of the

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Multiplexing of polarization-maintaining. photonic crystal fiber based Sagnac interferometric sensors.

Multiplexing of polarization-maintaining. photonic crystal fiber based Sagnac interferometric sensors. Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors H. Y. Fu, 1 A. C. L. Wong, 2 P. A. Childs, 3 H. Y. Tam, 1 Y. B. Liao, 3 C. Lu, 2 and P. K. A. Wai 2

More information

physics 590 ruslan prozorov magnetic measurements Nov 9,

physics 590 ruslan prozorov magnetic measurements Nov 9, physics 590 ruslan prozorov magnetic measurements Nov 9, 2009 - magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic field on the axis of a loop of radius R at

More information

γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibers

γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibers γ induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibers D. Sporea 1*, L. Mihai 1, D. Neguţ 2, Yanhua Luo 3, Binbin Yan 3,4, Mingjie Ding 3,

More information

Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications

Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications Vol. 25, No. 4 20 Feb 2017 OPTICS EXPRESS 4326 Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications BAO-LI LI, JIN-HUI CHEN, FEI XU, * AND YAN-QING

More information

Analysis of Power Coupling and Losses at Splice Joints of Dissimilar Optical Fibers

Analysis of Power Coupling and Losses at Splice Joints of Dissimilar Optical Fibers International Journal of Optics and Applications 014, 4(): 54-61 DOI: 10.593/j.optics.014040.05 Analysis of Power Coupling and Losses at Splice Joints of Dissimilar Optical Fibers Faramarz E. Seraji 1,*,

More information

Compact integrated depolarizer for interferometric fiber optic gyroscopes

Compact integrated depolarizer for interferometric fiber optic gyroscopes Brigham Young University BYU ScholarsArchive All Faculty Publications 2006-05-01 Compact integrated depolarizer for interferometric fiber optic gyroscopes Lixia Li University of Alabama - Huntsville Jaime

More information

SCIFED. Publishers. Keywords Temperature; Refractive Index; Michelson Interferometer; Up-Taper; Optical Fiber Sensor; All-Fiber Sensor

SCIFED. Publishers. Keywords Temperature; Refractive Index; Michelson Interferometer; Up-Taper; Optical Fiber Sensor; All-Fiber Sensor Research Article SCIFED Publishers Yundong Zhang,, 018, :1 SciFed Journal of Laser and Optics Open Access All-Fiber Inline Michelson Interferometer for Simultaneous Measurement of Refractive Index and

More information

Department of Electronic Engineering, Ching Yun University, Jung-Li 320, Taiwan 2

Department of Electronic Engineering, Ching Yun University, Jung-Li 320, Taiwan 2 Advances in Nonlinear Optics Volume 008, Article ID 39037, 6 pages doi:10.1155/008/39037 Research Article Analysis of High Birefringence of Four Types of Photonic Crystal Fiber by Combining Circular and

More information

Gain Apodization in Highly Doped, Distributed-Feedback (DFB) Fiber Lasers

Gain Apodization in Highly Doped, Distributed-Feedback (DFB) Fiber Lasers Gain Apodization in Highly Doped Distributed- Feedback (DFB) Fiber Lasers Introduction Fiber lasers have been the subect of much research over the past ten years. They can provide high reliability fiber

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

Fibre Optic Magnetic Field Sensors Utilizing Iron Garnet Materials by Hans Sohlström

Fibre Optic Magnetic Field Sensors Utilizing Iron Garnet Materials by Hans Sohlström TRITA-ILA 93.01 Fibre Optic Magnetic Field Sensors Utilizing Iron Garnet Materials by Hans Sohlström ROYAL INSTITUTE OF TECHNOLOGY Department of Signals, Sensors & Systems Instrumentation Laboratory S-100

More information

Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure

Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure Jun-long Kou, 1,2 Ye Chen, 1 Fei Xu, 1,2,4,* and Yan-qing Lu 1,3,4 1 National Laboratory of Solid State Microstructures

More information

High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials

High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials Sensors 008, 8, 187-1878 sensors ISSN 144-80 008 by MDPI www.mdpi.org/sensors Full Research Paper High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference

More information

Progress In Electromagnetics Research B, Vol. 1, , 2008

Progress In Electromagnetics Research B, Vol. 1, , 2008 Progress In Electromagnetics Research B Vol. 1 09 18 008 DIFFRACTION EFFICIENCY ENHANCEMENT OF GUIDED OPTICAL WAVES BY MAGNETOSTATIC FORWARD VOLUME WAVES IN THE YTTRIUM-IRON-GARNET WAVEGUIDE COATED WITH

More information

Negative curvature fibers

Negative curvature fibers 504 Vol. 9, No. 3 / September 2017 / Advances in Optics and Photonics Review Negative curvature fibers CHENGLI WEI, 1 R. JOSEPH WEIBLEN, 2 CURTIS R. MENYUK, 2 AND JONATHAN HU 1,* 1 Department of Electrical

More information

Single-Polarization Single-Mode Photonic Band Gap Fiber

Single-Polarization Single-Mode Photonic Band Gap Fiber Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 2 Single-Polarization Single-Mode Photonic Band Gap Fiber M. Szpulak a,, T. Martynkien a, J. Olszewski a, W. Urbanczyk a, T. Nasilowski b, F. Berghmans b,c and

More information

Angular and polarization properties of a photonic crystal slab mirror

Angular and polarization properties of a photonic crystal slab mirror Angular and polarization properties of a photonic crystal slab mirror Virginie Lousse 1,2, Wonjoo Suh 1, Onur Kilic 1, Sora Kim 1, Olav Solgaard 1, and Shanhui Fan 1 1 Department of Electrical Engineering,

More information

Physics 476LW. Advanced Physics Laboratory - Faraday Rotation

Physics 476LW. Advanced Physics Laboratory - Faraday Rotation Physics 476LW Advanced Physics Laboratory The Faraday Effect Introduction In 1845 Michael Faraday suspected that there were connections between light and electromagnetism. He conducted a series of experiments

More information