All Silica Fiber (Low & High OH) Anhydroguide (AFS) & Superguide (SFS)

Size: px
Start display at page:

Download "All Silica Fiber (Low & High OH) Anhydroguide (AFS) & Superguide (SFS)"

Transcription

1 (AFS) & (SFS) Silica / Polyimide or Acrylate Coated Nylon or Tefzel Coated guide s Silica / fibers are primarily used in photonics applications where individual or bundled large core (> 5µm) multimode fibers are needed for the transmission of optical energy. These fibers can be coated with a variety of polymers or metalized, for extreme temperature performance. FIBER SPECIFICATIONS Pure Fused Silica / Fluorine Doped Silica Layer for Nylon & Tefzel Outer s / Sizes: 5/125µm to 15/165µm.12,.22,.26 Recommended : o Short Term: 1 X Clad o : 2 X Clad Please note that these figures represent best practice recommendations. In applications where tighter bends are required, guide can assist you in estimating what impact they may have on fiber reliability. 1% Proof Test Using 4-Axis Bend Method Standard /Clad Ratio: 1.1 Available /Clad Ratios: 1.2, 1.4 and 2.5 Thermocoat (Polyimide), Nylon, Tefzel certified to NAMSA Class VI APPLICATIONS Bio-Analytical Sensing Medical Laser Aerospace/Defense Spectroscopy Nuclear Plasma Sensing Industrial Laser Systems Page 1 of 7

2 (AFS) & (SFS) Silica / Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 3 nm - 24 nm Attenuation (db/km) % 1% Transmission (db/km) 9% 8% 7% 6% 5% 4% Page 2 of 7

3 (AFS) & (SFS) Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 19 nm nm Silica / Attenuation (db/km) % 1% 875nm Transmission (db/km) 9% 8% 7% 6% 5% 94nm 1246nm 4% Page 3 of 7

4 (AFS) & (SFS) Silica / Type Pure Fused Silica / Fluorine Doped Silica - Pure Fused Silica / Fluorine Doped Silica - Acrylate Temperature: -4 C to +85 C / -4 F to F Index of Refraction 633 nm Layer Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 3 nm - 24 nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix AFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix AFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix AFH Numerical Apterature (NA) Proof Test: 1 KPSI 4-Axis Bend Test AFS5/125/25Y 5 ± /-3 N/A 25 ± /25 AFS1/14/25Y 1 ± /-3 N/A 25 ± /28 AFS15/125/25Y 15 ± /-3 N/A 25 ± /25 AFS2/22/32Y 2 ± 4 22 ± 4 N/A 32 ± 16 22/44 Acrylate Temperature: -4 C to +85 C / -4 F to F Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 19 nm nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix SFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix SFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix SFH Proof Test: 1 KPSI 4-Axis Bend Test SFS5/125/25Y 5 ± /-3 N/A 25 ± /25 SFS1/14/25Y 1 ± /-3 N/A 25 ± /28 SFS15/125/25Y 15 ± /-3 N/A 25 ± /25 SFS2/22/32Y 2 ± 4 22 ± 4 N/A 32 ± 16 22/44 Page 4 of 7

5 (AFS) & (SFS) Silica / Thermocoat (Polyimide) Temperature: -19 C to +35 C / -31 F to F Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 3 nm - 24 nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix AFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix AFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix AFH Proof Test: 5 KPSI 4-Axis Bend Test AFS5/125/145T 5 ± /-3 N/A 145 ± 5 13/25 AFS1/11/13T 1 ± 2 11 ± 2.2 N/A 13 ± 5 11/22 AFS1/12/14T 1 ± 2 12 ± 2.4 N/A 14 ± 5 12/24 AFS1/14/165T 1 ± /-3 N/A 165 ± 5 14/28 AFS15/125/145T 15 ± /-3 N/A 145 ± 5 13/25 AFS2/22/245T 2 ± 4 22 ± 4.4 N/A 245 ± 5 22/44 AFS3/33/37T 3 ± 6 33 ± 6.6 N/A 37 ± 1 33/66 AFS4/44/48T 4 ± 8 44 ± 8.8 N/A 48 ± 1 44/88 AFS6/66/71T 6 ± ± 13.2 N/A 71 ± 15 66/132 Thermocoat (Polyimide) Temperature: -19 C to +35 C / -31 F to F Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 19 nm nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix SFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix SFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix SFH Proof Test: 5 KPSI 4-Axis Bend Test SFS5/125/145T 5 ± /-3 N/A 145 ± 5 13/25 SFS1/11/13T 1 ± 2 11 ± 2.2 N/A 13 ± 5 11/22 SFS1/12/14T 1 ± 2 12 ± 2.4 N/A 14 ± 5 12/24 SFS1/14/165T 1 ± /-3 N/A 165 ± 5 14/28 SFS15/125/145T 15 ± /-3 N/A 145 ± 5 13/25 SFS2/22/245T 2 ± 4 22 ± 4.4 N/A 245 ± 5 22/44 SFS3/33/37T 3 ± 6 33 ± 6.6 N/A 37 ± 5 33/66 SFS4/44/48T 4 ± 8 44 ± 8.8 N/A 48 ± 5 44/88 SFS6/66/71T 6 ± ± 13.2 N/A 71 ± 5 66/132 Page 5 of 7

6 (AFS) & (SFS) Silica / Nylon Temperature: -4 C to +1 C / -4 F to F Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 3 nm - 24 nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix AFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix AFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix AFH Proof Test: 1 KPSI 4-Axis Bend Test AFS5/125/225/295N 5 ± / ± ± /25 AFS1/11/21/28N 1 ± 2 11 ± ± ± 14 11/22 AFS1/14/24/31N 1 ± /-3 24 ± ± /28 AFS2/22/32/39N 2 ± 4 22 ± ± ± /44 AFS3/33/43/53N 3 ± 6 33 ± ± ± /66 AFS4/44/54/64N 4 ± 8 44 ± ± ± 32 44/88 AFS6/66/76/86N 6 ± ± ± ± 43 66/132 AFS8/88/98/18N 8 ± ± ± ± 54 88/176 AFS/11/12/13N ± 2 11 ± ± ± 65 11/22 AFS15/165/18/195N 15 ± ± ± ± /33 Nylon Temperature: -4 C to +1 C / -4 F to F Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 19 nm nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix SFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix SFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix SFH Proof Test: 1 KPSI 4-Axis Bend Test SFS5/125/225/295N 5 ± / ± ± /25 SFS1/11/21/28N 1 ± 2 11 ± ± ± 14 11/22 SFS1/14/24/31N 1 ± /-3 24 ± ± /28 SFS2/22/32/39N 2 ± 4 22 ± ± ± /44 SFS3/33/43/53N 3 ± 6 33 ± ± ± /66 SFS4/44/54/64N 4 ± 8 44 ± ± ± 32 44/88 SFS6/66/76/86N 6 ± ± ± ± 43 66/132 SFS8/88/98/18N 8 ± ± ± ± 54 88/176 SFS/11/12/13N ± 2 11 ± ± ± 65 11/22 SFS15/165/18/195N 15 ± ± ± ± /33 Page 6 of 7

7 (AFS) & (SFS) Silica / Tefzel Temperature: -4 C to +2 C / -4 F to F Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 3 nm - 24 nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix AFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix AFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix AFH Proof Test: 1 KPSI 4-Axis Bend Test AFS1/11/24/31Z 1 ± 2 11 ± ± ± /22 AFS1/14/24/37Z 1 ± /-3 24 ± ± /28 AFS2/22/32/48Z 2 ± 4 22 ± ± ± 24 22/44 AFS3/33/48/72Z 3 ± 6 33 ± ± ± 36 33/66 AFS4/44/59/88Z 4 ± 8 44 ± ± ± 44 44/88 AFS6/66/81/12Z 6 ± ± ± ± 6 66/132 AFS8/88/13/155Z 8 ± ± ± ± /176 AFS/11/125/185Z ± 2 11 ± ± ± /22 AFS15/165/18/275Z 15 ± ± ± ± /33 Tefzel Temperature: -4 C to +2 C / -4 F to F Pure Fused Silica / Fluorine Doped Silica - Wavelength: : 19 nm nm Standard:.22 ±.2 (Full acceptance Angle 25 ) - Prefix SFS (Shown Below) Low:.12 ±.2 (Full Acceptance Angle 14 ) - Prefix SFM High:.26 ±.2 (Full Acceptance Angle 3 ) - Prefix SFH Proof Test: 1 KPSI 4-Axis Bend Test SFS1/11/24/31Z 1 ± 2 11 ± ± ± /22 SFS1/14/24/37Z 1 ± /-3 24 ± ± /28 SFS2/22/32/48Z 2 ± 4 22 ± ± ± 24 22/44 SFS3/33/48/72Z 3 ± 6 33 ± ± ± 36 33/66 SFS4/44/59/88Z 4 ± 8 44 ± ± ± 44 44/88 SFS6/66/81/12Z 6 ± ± ± ± 6 66/132 SFS8/88/13/155Z 8 ± ± ± ± /176 SFS/11/125/185Z ± 2 11 ± ± ± /22 SFS15/165/18/275Z 15 ± ± ± ± /33 Page 7 of 7

Plastic Coated Silica/Silica (Low OH) FIBER CROSS SECTION Polyimide and Acrylate Coated. Nylon and Tefzel Coated

Plastic Coated Silica/Silica (Low OH) FIBER CROSS SECTION Polyimide and Acrylate Coated. Nylon and Tefzel Coated DESCRIPTION When looking for a high quality fiber with superior transmission and a numerical aperture (N.A.) of 0.22 for efficient light coupling, the is the fiber of choice. The Anhydroguide fiber is

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is assigned, due March 25 th Start discussion

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

Lect. 15: Optical Fiber

Lect. 15: Optical Fiber 3-dimentioanl dielectric waveguide? planar waveguide circular waveguide optical fiber Optical Fiber: Circular dielectric waveguide made of silica (SiO ) y y n n 1 n Cladding Core r z Fiber axis SiO :Ge

More information

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2007-12-31 Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber Pengfei

More information

Photonic crystal fiber with a hybrid honeycomb cladding

Photonic crystal fiber with a hybrid honeycomb cladding Photonic crystal fiber with a hybrid honeycomb cladding Niels Asger Mortensen asger@mailaps.org Martin Dybendal Nielsen COM, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark Jacob Riis

More information

Photonic Communications Engineering I

Photonic Communications Engineering I Photonic Communications Engineering I Module 3 - Attenuation in Optical Fibers Alan E. Willner Professor, Dept. of Electrical Engineering - Systems, University of Southern California and Thrust 1 Lead

More information

Fundamentals of fiber waveguide modes

Fundamentals of fiber waveguide modes SMR 189 - Winter College on Fibre Optics, Fibre Lasers and Sensors 1-3 February 007 Fundamentals of fiber waveguide modes (second part) K. Thyagarajan Physics Department IIT Delhi New Delhi, India Fundamentals

More information

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior By Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior Unit 2 Laser acronym Laser Vs ordinary light Characteristics of lasers Different processes involved in lasers

More information

Principle of photonic crystal fibers

Principle of photonic crystal fibers Principle of photonic crystal fibers Jan Sporik 1, Miloslav Filka 1, Vladimír Tejkal 1, Pavel Reichert 1 1 Fakulta elektrotechniky a komunikačních technologií VUT v Brně Email: {xspori1, filka, xtejka,

More information

The Glass Ceiling: Limits of Silica. PCF: Holey Silica Cladding

The Glass Ceiling: Limits of Silica. PCF: Holey Silica Cladding The Glass Ceiling: Limits of Silica Loss: amplifiers every 50 100km limited by Rayleigh scattering (molecular entropy) cannot use exotic wavelengths like 10.µm Breaking the Glass Ceiling: Hollow-core Bandgap

More information

OPTICAL FIBRES IN ASTRONOMY (OP-006) Course Overview

OPTICAL FIBRES IN ASTRONOMY (OP-006) Course Overview OPTICAL FIBRES IN ASTRONOMY (OP-006) Course Overview The course, based on practical experience and containing several examples of real instruments, is focused on the application of optical fibres in Astronomy.

More information

Yolande Sikali 1,Yves Jaouën 2, Renaud Gabet 2, Xavier Pheron 3 Gautier Moreau 1, Frédéric Taillade 4

Yolande Sikali 1,Yves Jaouën 2, Renaud Gabet 2, Xavier Pheron 3 Gautier Moreau 1, Frédéric Taillade 4 Presented at the COMSOL Conference 2010 Paris Two-dimensional FEM Analysis of Brillouin Gain Spectra in Acoustic Guiding and Antiguiding Single Mode Optical Fibers Yolande Sikali 1,Yves Jaouën 2, Renaud

More information

Fiber Lasers: Fundamentals and Applications

Fiber Lasers: Fundamentals and Applications Fiber Lasers: Fundamentals and Applications Lecture 4 V R Supradeepa Center for Nano Science and Engineering (CeNSE) Indian Institute of Science Nonlinear Photonics and High Power Lasers Laboratory, CeNSE,

More information

All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation

All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation All-Fiber Optical Magnet Field Sensor Based on Faraday Rotation Linear polarized light input PM Magnet Tb Detector PZ L. Sun 1,2, S. Jiang, 3 and J. R. Marciante 1,2 University of Rochester Laboratory

More information

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute,

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, 1,2 Physics Department, Midlands State University, P/Bag 9055, Gweru, Zimbabwe Abstract

More information

Optical Fiber Signal Degradation

Optical Fiber Signal Degradation Optical Fiber Signal Degradation Effects Pulse Spreading Dispersion (Distortion) Causes the optical pulses to broaden as they travel along a fiber Overlap between neighboring pulses creates errors Resulting

More information

Mode-Field Diameter (MFD)

Mode-Field Diameter (MFD) Mode-Field Diameter (MFD) Important parameter determined from mode-field distribution of fundamental LP 01 mode. Characterized by various models Main consideration: how to approximate the electric field

More information

Optical Fiber Concept

Optical Fiber Concept Optical Fiber Concept Optical fibers are light pipes Communications signals can be transmitted over these hair-thin strands of glass or plastic Concept is a century old But only used commercially for the

More information

MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER

MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER Bushra R. Mahdi*, Hadi Dawyich AL-Attabi**, Sadeq Dawood Salman*** * Ministry of Science and Technology, Laser and optoelectronic researcher center,

More information

Negative curvature fibers

Negative curvature fibers Negative curvature fibers presented by Jonathan Hu 1 with Chengli Wei, 1 R. Joseph Weiblen, 2,* and Curtis R. Menyuk 2 1 Baylor University, Waco, Texas 76798, USA 2 University of Maryland Baltimore County,

More information

(12) United States Patent (10) Patent No.: US 7,315,677 B1

(12) United States Patent (10) Patent No.: US 7,315,677 B1 USOO731.5677B1 (12) United States Patent (10) Patent No.: US 7,315,677 B1 Li et al. (45) Date of Patent: Jan. 1, 2008 (54) DUAL DOPANT DUAL ALPHA MULTIMODE 2006/0285809 A1* 12/2006 Bickham et al.... 385,123

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao Dielectric Waveguides and Optical Fibers 高錕 Charles Kao 1 Planar Dielectric Slab Waveguide Symmetric Planar Slab Waveguide n 1 area : core, n 2 area : cladding a light ray can undergo TIR at the n 1 /n

More information

Optical Fibre Communication Systems

Optical Fibre Communication Systems Optical Fibre Communication Systems Lecture 2: Nature of Light and Light Propagation Professor Z Ghassemlooy Northumbria Communications Laboratory Faculty of Engineering and Environment The University

More information

Nonlinear Optical Effects in Fibers

Nonlinear Optical Effects in Fibers Nonlinear Optical Effects in Fibers NLO effects are manifested as attenuation, phase shifts, or wavelength conversion effects, and become stronger with increasing light intensity. The glass materials usually

More information

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL. Title Polarization characteristics of photonic crystal fib Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori CitationOptics Express, 19(4): 3799-3808 Issue Date 2011-02-14 Doc URL http://hdl.handle.net/2115/45257

More information

Chalcogenide glass Photonic Crystal Fiber with flattened dispersion and high nonlinearity at telecommunication wavelength

Chalcogenide glass Photonic Crystal Fiber with flattened dispersion and high nonlinearity at telecommunication wavelength Chalcogenide glass Photonic Crystal Fiber with flattened dispersion and high nonlinearity at telecommunication wavelength S.REVATHI #, ABHIJITH CHANDRAN #, A. AMIR #3, SRINIVASA RAO INBATHINI #4 # School

More information

Fujikura PANDA fiber products and Basics of PM fibers

Fujikura PANDA fiber products and Basics of PM fibers Fujikura PANDA fiber products and Basics of PM fibers Fiber Optics Network Products Engineering Department Fujikura Ltd. 1 Fujikura PANDA fiber solutions Fujikura has been developing below new PANDA fibers

More information

GURU NANAK DEV ENGINEERING COLLEGE GILL PARK, GILL ROAD, LUDHIANA

GURU NANAK DEV ENGINEERING COLLEGE GILL PARK, GILL ROAD, LUDHIANA GURU NANAK DEV ENGINEERING COLLEGE GILL PARK, GILL ROAD, LUDHIANA MST-I Subject Name:-Physics (BSC-18101) Max. Marks: Section:- CE1,CE56 Semester- nd Time: 90 Minutes Note:- (i) All questions are compulsory.

More information

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 30, NO. 21, NOVEMBER 1, 2012 3381 Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss Wenbin Liang, Ningliang Liu, Zhihua Li, and Peixiang

More information

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Guillermo E. Villanueva, Claudio J. Oton Michael B. Jakubinek, Benoit Simard,, Jaques Albert, Pere Pérez-Millán Outline Introduction CNT-coated

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 07 Analysis of Wave-Model of Light Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

PHYSICS. The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v)..

PHYSICS. The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v).. ABSORPTION of RADIATION : PHYSICS The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v).. of the radiation > P12 = B12 u(v) hv E2 E1 Where as, the

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Fiber Gratings: Basic Theory and Sensing Principle

Fiber Gratings: Basic Theory and Sensing Principle Chapter 2 Fiber Gratings: Basic Theory and Sensing Principle Abstract This chapter begins with a review of the historical prospective of the photosensitivity mechanisms in optical fibers and a brief discussion

More information

Synthetic Fused Silica Optical and technical grades

Synthetic Fused Silica Optical and technical grades SCHOTT LITHOTEC FUSED SILICA Synthetic Fused Silica Optical and technical grades Schott Lithotec Fused Silica LithosilTMQ is available in six different quality grades: LithosilTMQT is not specified concerning

More information

Near-Field Nano/Atom Optics and Technology

Near-Field Nano/Atom Optics and Technology M. Ohtsu (Ed.) Near-Field Nano/Atom Optics and Technology With 189 Figures / Springer Preface List of Contributors V VII XIII 1. Introduction 1 1.1 Near-Field Optics and Related Technologies 1 1.2 History

More information

Experiment and Simulation Study on A New Structure of Full Optical Fiber Current Sensor

Experiment and Simulation Study on A New Structure of Full Optical Fiber Current Sensor 2017 2nd International Conference on Computational Modeling, Simulation and Applied Mathematics (CMSAM 2017) ISBN: 978-1-60595-499-8 Experiment and Simulation Study on A New Structure of Full Optical Fiber

More information

UNIT 1. By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 1. By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 1 By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun Syllabus Introduction: Demand of Information Age, Block Diagram

More information

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS Engineering Physics -I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS Syllabus: Lasers Spontaneous and stimulated emission Population Inversion -Einstein s co-efficient (Derivation)- types of lasers-nd-yag,co

More information

OPTICAL COMMUNICATIONS

OPTICAL COMMUNICATIONS L21-1 OPTICAL COMMUNICATIONS Free-Space Propagation: Similar to radiowaves (but more absorption by clouds, haze) Same expressions: antenna gain, effective area, power received Examples: TV controllers,

More information

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics BANNAI AMMAN INSTITTE OF TECHNOLOGY SATHYAMANGALAM DEPATMENT OF PHYSICAL SCIENCES NIT II Applied Optics PAT A A1 The superimposition of one light wave over another is called as a) interference b) Diffraction

More information

Chapter 29 Molecular and Solid-State Physics

Chapter 29 Molecular and Solid-State Physics Chapter 29 Molecular and Solid-State Physics GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and

More information

The details of point source helicity injection as a noninductive startup technique must be characterized:

The details of point source helicity injection as a noninductive startup technique must be characterized: The details of point source helicity injection as a noninductive startup technique must be characterized: Is energy confinement dominated by cross-field transport? Is energy confinement dominated by parallel

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Long term life of Nuclear Fiber Optic Cables. Dr.John Hanigofsky & Jack Rosko

Long term life of Nuclear Fiber Optic Cables. Dr.John Hanigofsky & Jack Rosko Long term life of Nuclear Fiber Optic Cables Dr.John Hanigofsky & Jack Rosko 1 Outline Background Accelerated Test Models Draka Optical Fiber Studies - Literature - Performance Draka Cable Materials -

More information

New age fibers: the children of the photonic revolution

New age fibers: the children of the photonic revolution New age fibers: the children of the photonic revolution R. Haynes *a, J. Bland-Hawthorn a, M. C. J. Large b, K. F. Klein c, G. Nelson d a Anglo-Australian Observatory, PO Box 296, Epping NSW 1710, Australia.

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

Gratings in Electrooptic Polymer Devices

Gratings in Electrooptic Polymer Devices Gratings in Electrooptic Polymer Devices Venkata N.P.Sivashankar 1, Edward M. McKenna 2 and Alan R.Mickelson 3 Department of Electrical and Computer Engineering, University of Colorado at Boulder, Boulder,

More information

Introduction to Photonic Crystals

Introduction to Photonic Crystals 1 Introduction to Photonic Crystals Summary. Chapter 1 gives a brief introduction into the basics of photonic crystals which are a special class of optical media with periodic modulation of permittivity.

More information

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida Optical and Photonic Glasses : Rare Earth Doped Glasses I Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Rare-earth doped glasses The lanthanide

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Fiber Lasers at LLNL

Fiber Lasers at LLNL Fiber Lasers at LLNL J.W. Dawson, M.J. Messerly, J.E. Heebner, P.H. Pax, A.K. Sridharan, A. L. Bullington, R.E. Bonanno, R.J. Beach, C.W. Siders and C.P.J. Barty NIF & PS Directorate Lawrence Livermore

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

Measurement of EUV scattering from Mo/Si multilayer mirrors

Measurement of EUV scattering from Mo/Si multilayer mirrors Measurement of EUV scattering from Mo/Si multilayer mirrors N. Kandaka, T. Kobayashi, T. Komiya, M. Shiraishi, T. Oshino and K. Murakami Nikon Corp. 3 rd EUVL Symposium Nov. 2-4 2004 (Miyazaki, JAPAN)

More information

Progress In Electromagnetics Research B, Vol. 22, 39 52, 2010

Progress In Electromagnetics Research B, Vol. 22, 39 52, 2010 Progress In Electromagnetics Research B, Vol. 22, 39 52, 2010 A COMPARATIVE STUDY OF HIGH BIREFRINGENCE AND LOW CONFINEMENT LOSS PHOTONIC CRYSTAL FIBER EMPLOYING ELLIPTICAL AIR HOLES IN FIBER CLADDING

More information

Photonic Crystal Fiber based Network Components: The Future Trend in Optical Network Design

Photonic Crystal Fiber based Network Components: The Future Trend in Optical Network Design International Journal of Current Engineering and Technology ISSN 2277 4106 2013 INPRESSCO. All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Photonic Crystal Fiber based

More information

Optics of complex micro structures

Optics of complex micro structures Optics of complex micro structures dielectric materials λ L disordered partially ordered ordered random multiple scattering liquid crystals quasi crystals (Fibonacci) photonic crystals Assembly of photonic

More information

Negative curvature fibers

Negative curvature fibers 504 Vol. 9, No. 3 / September 2017 / Advances in Optics and Photonics Review Negative curvature fibers CHENGLI WEI, 1 R. JOSEPH WEIBLEN, 2 CURTIS R. MENYUK, 2 AND JONATHAN HU 1,* 1 Department of Electrical

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Module 3 - Attenuation in Optical Fibers

Module 3 - Attenuation in Optical Fibers Module 3 - Attenuation in Optical Fibers Dr. B.G. Potter Professor, Material Science and Engineering Dept, University of Arizona Dr. B.G.Potter is a Professor of Material Science and Engineering in the

More information

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) FRISNO-9 Dominique Elser 15/02/2007 GAWBS Theory Thermally excited acoustic fiber vibrations at certain resonance frequencies

More information

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification Nuclear Instruments and Methods in Physics Research B 210 (2003) 250 255 www.elsevier.com/locate/nimb Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

More information

Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber

Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber Toto Sakioto saktioto@yahoo.com abstract Mohamed Fadhali mohamedfadhali@yahoo.com

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0131955 A1 Bennett et al. US 2015O131955A1 (43) Pub. Date: (54) (71) (72) (73) (21) (22) (60) LIGHT OFFUSING FIBER WITH LOW

More information

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013 2443-27 Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry 4-15 February 2013 Data capture and tomographic reconstruction of phase microobjects

More information

Traceable Encircled Flux measurements for multimode fibre components and systems

Traceable Encircled Flux measurements for multimode fibre components and systems Traceable Encircled Flux measurements for multimode fibre components and systems J. Morel / N.Castagna CCPR WG-SP Workshop / 19.09.2016 Outline 1. Introduction to the problematic of multimode fibres 2.

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

INFLUENCE OF DOPING ELEMENT IN DISTRIBUTED HYDROGEN OPTICAL FIBER SENSORS WITH BRILLOUIN SCATTERING.

INFLUENCE OF DOPING ELEMENT IN DISTRIBUTED HYDROGEN OPTICAL FIBER SENSORS WITH BRILLOUIN SCATTERING. INFLUENCE OF DOPING ELEMENT IN DISTRIBUTED HYDROGEN OPTICAL FIBER SENSORS WITH BRILLOUIN SCATTERING. ABSTRACT Distributed hydrogen optical fiber sensor with Brillouin scattering is an innovative solution

More information

Platinum resistance. also wirewound versions. eg

Platinum resistance. also wirewound versions. eg Platinum resistance Platinum resistance Very stable and reproducible, wide T range (~ -200 C to 1000 C) T coefficient ~ +0.4%/ C Bulky and expensive for some applications (~ 2-3) need wires (R) or local

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research

PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research Laboratories, Industrial Technology Research Institute,

More information

TIE-35: Transmittance of optical glass

TIE-35: Transmittance of optical glass PAGE 1/12 0 Introduction Optical glasses are optimized to provide excellent transmittance throughout the total visible range from 400 to 800 nm Usually the transmittance range spreads also into the near

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

Thermal Corrective Devices for Advanced Gravitational Wave Interferometers

Thermal Corrective Devices for Advanced Gravitational Wave Interferometers Thermal Corrective Devices for Advanced Gravitational Wave Interferometers Marie Kasprzack, Louisiana State University 6 th October 2016 COMSOL Conference 2016 Boston 1 1. Advanced Gravitational Wave Detectors

More information

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Temple University 13th & Norris Street Philadelphia, PA 19122 T: 1-215-204-1052 contact: johanan@temple.edu http://www.temple.edu/capr/

More information

Femtosecond laser applied to biophotonics. Prof. Cleber R. Mendonca

Femtosecond laser applied to biophotonics. Prof. Cleber R. Mendonca Femtosecond laser applied to biophotonics Prof. Cleber R. Mendonca introduction short pulse duration ö high intensity (even at low energy) introduction how short is a femtosecond pulse? 1fs= 10-15 s introduction

More information

Numerical Modeling of the Fundamental Characteristics of ZBLAN Photonic Crystal Fiber for Communication in 2 3 m Midinfrared Region

Numerical Modeling of the Fundamental Characteristics of ZBLAN Photonic Crystal Fiber for Communication in 2 3 m Midinfrared Region Numerical Modeling of the Fundamental Characteristics of ZBLAN Photonic Crystal Fiber for Communication in 2 3 m Midinfrared Region Volume 8, Number 2, April 2016 D. C. Tee N. Tamchek C. H. Raymond Ooi

More information

Fibre Optic Materials. Stephen Kukureka

Fibre Optic Materials. Stephen Kukureka Fibre Optic Materials Stephen Kukureka Outline Fibre optics history, principles and materials www.npl.co.uk Optical fibres and cables for telecommunications Sensors and smart structures Reliability and

More information

Numerical Analysis of Low-order Modes in Thermally Diffused Expanded Core (TEC) Fibers

Numerical Analysis of Low-order Modes in Thermally Diffused Expanded Core (TEC) Fibers Proceedings of the 4th WSEAS Int. Conference on Electromagnetics, Wireless and Optical Communications, Venice, Italy, November 2-22, 26 26 Numerical Analysis of Low-order Modes in Thermally Diffused Expanded

More information

Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres

Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres J. Opt. A: Pure Appl. Opt. 1 (1999) 725 729. Printed in the UK PII: S1464-4258(99)00367-0 Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres Nikolai Minkovski, Ivan Divliansky, Ivan

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany Numerical and Experimental Investigation of a Fiber-Optic Sensor Consisting of a Fiber Bragg Grating in a Two-Mode Fiber for Simultaneous Sensing of Temperature and Strain A. Siekiera 1,, R. Engelbrecht

More information

Multilayer thin film coatings for reduced infrared loss in hollow glass waveguides

Multilayer thin film coatings for reduced infrared loss in hollow glass waveguides Multilayer thin film coatings for reduced infrared loss in hollow glass waveguides Carlos M. Bledt *a, Daniel V. Kopp a, and James A. Harrington a a Dept. of Material Science & Engineering, Rutgers University,

More information

Reference Standards Page 156 For calibrating your spectrometer. PIKECalc Page 159 For FTIR sampling computations

Reference Standards Page 156 For calibrating your spectrometer. PIKECalc Page 159 For FTIR sampling computations Standards, Software, Databases We strive to provide you with useful sampling tools for spectroscopy and offer these additional products and information to serve your laboratory requirements. If you have

More information

Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics

Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics I. Knorr 1, K. Christou,2, J. Meinertz

More information

Module II: Part B. Optical Fibers: Dispersion

Module II: Part B. Optical Fibers: Dispersion Module II: Part B Optical Fibers: Dispersion Dispersion We had already seen that that intermodal dispersion can be, eliminated, in principle, using graded-index fibers. We had also seen that single-mode,

More information

Magnetic and optic sensing. Magnetic sensors

Magnetic and optic sensing. Magnetic sensors Magnetic and optic sensing Magnetic sensors 1 Literature Physics of Semiconductor Devices S.M. Sze, Kwok K. Ng Available as ebook on http://www.lub.lu.se/en/search/lubsearch.ht ml This lecture chapters

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Different Optical Fiber Nonlinear Coefficient Experimental Measurements

Different Optical Fiber Nonlinear Coefficient Experimental Measurements Different Optical Fiber Nonlinear Coefficient Experimental Measurements Sugan Shakya, Andis Supe, Ingrida Lavrinovica, Sandis Spolitis and Jurgis Porins Institute of Telecommunications, Riga Technical

More information

Effective area of photonic crystal fibers

Effective area of photonic crystal fibers Effective area of photonic crystal fibers Niels Asger Mortensen Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød, Denmark nam@crystal-fibre.com http://www.crystal-fibre.com Abstract: We consider the effective

More information

High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials

High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials Sensors 008, 8, 187-1878 sensors ISSN 144-80 008 by MDPI www.mdpi.org/sensors Full Research Paper High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference

More information

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Supporting Information Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Yuanmu Yang, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs,

More information

OPTICAL PROPERTIES OF THE DIRC FUSED SILICA CHERENKOV RADIATOR

OPTICAL PROPERTIES OF THE DIRC FUSED SILICA CHERENKOV RADIATOR OPTICAL PROPERTIES OF THE DIRC FUSED SILICA CHERENKOV RADIATOR J. Cohen-Tanugi, M. Convery, B. Ratcliff, X. Sarazin, J. Schwiening, and J. Va'vra * Stanford Linear Accelerator Center, Stanford University,

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information