Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Size: px
Start display at page:

Download "Lecture 4 Fiber Optical Communication Lecture 4, Slide 1"

Transcription

1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical Communication ecture 4, Slide 1

2 Dispersion, qualitatively Different wavelengths frequency components propagate differently A pulse has a certain spectral width and will broaden during propagation The index of refraction as a function of wavelength The dispersion in SMF red and different dispersion-shifted fibers Fiber Optical Communication ecture 4, Slide

3 Fiber Optical Communication ecture 4, Slide 3 Each spectral component of a pulse has a specific group velocity The group delay after a distance is The group velocity is related to the mode group index given by Assuming that Δω is the spectral width, the pulse broadening is governed by where β is known as the GVD parameter unit is s /m or ps /km Group delay, group index, and GVD parameter.3.1 d d d dt T d dn n c d dn n c n c v g g d d v T g d n d n n g

4 The dispersion parameter Measuring the spectral width in units of wavelength rather than frequency, we can write the broadening as ΔT = D Δλ, where D [ps/nm km] is called the dispersion parameter D is related to β and the effective mode index according to D c d, v d d d 1 c d 1 d vg g dn d n d d The dispersion parameter has two contributions: material dispersion, D M : The index of refraction of the fiber material depends on the frequency waveguide dispersion, D W : The guided mode has a frequency dependence Fiber Optical Communication ecture 4, Slide 4

5 The material dispersion is related to the dependence of the cladding material s group index on the frequency D M dn g d An approximate relation for the material dispersion in silica is D M M 1 1 where D M is given in ps/nm km Material dispersion.3. Fiber Optical Communication ecture 4, Slide 5

6 Waveguide dispersion.3.3 The waveguide dispersion arises from the modes dependence on frequency D W n g Vd n dv V Vb dn g dvb d dv n g : the cladding group index V: the normalized frequency V a n1 n an1 c b: the normalized waveguide index n n b n n 1 Fiber Optical Communication ecture 4, Slide 6

7 Total dispersion The total dispersion D is the sum of the waveguide and material contributions D = D W + D M Note: D W increases the net zero dispersion wavelength The zero-dispersion wavelength is denoted either λ or λ ZD An estimate of the dispersionlimited bit-rate is D B Δλ < 1 where B is the bit-rate, Δλ the spectral width, and the fiber length Fiber Optical Communication ecture 4, Slide 7

8 Anomalous and normal dispersion The dispersion can have different signs in a standard single-mode fiber SMF D > for λ > 1.31 μm: anomalous dispersion, the group velocity of higher frequencies is higher than for lower frequencies D < for λ < 1.31 μm: normal dispersion, the group velocity of higher frequencies is lower than for lower frequency components Pulses are affected differently by nonlinear effects in these two cases Fiber Optical Communication ecture 4, Slide 8

9 Different fiber types The fiber parameters can be tailored to shift the λ -wavelength from 1.3 μm to 1.55 μm, dispersion-shifted fiber DSF A fiber with small D over a wide spectral range typically with two λ - wavelengths, dispersion-flattened fiber DFF A short fiber with large normal dispersion can compensate the dispersion in a long SMF, dispersion compensating fibers DCF Dispersion compensating fiber Fiber Optical Communication ecture 4, Slide 9

10 This dispersion compensating module contains 4 km of DCF... Fibers in the lab...and it compensates the dispersion in this 5 km roll of SMF Fiber Optical Communication ecture 4, Slide 1

11 Index profiles of different fiber types Standard single-mode fiber SMF Dispersion-shifted fiber DSF Dispersion-flattened fiber DFF Fiber Optical Communication ecture 4, Slide 11

12 Higher order dispersion.3.4 Near the zero-dispersion wavelength D The variation of D with the wavelength must be accounted for S dd d c We have used β = S [ps/nm km] is called the dispersion slope Typical value in SMF is.7 ps/nm km 3 d 3 d Fiber Optical Communication ecture 4, Slide 1

13 Polarization-mode dispersion PMD.3.5 An optical fiber is always slightly elliptical Different index of refraction for x and y polarization, difference is Δn This leads to: Changes along the fiber Changes with frequency Changes with time The state-of-polarization SOP of the signal in the fiber will be random Different delay for different polarizations, differential group delay DGD 1x 1y 1 vgx vgy DGD acting along varying axes leads to polarization-mode dispersion PMD T 1 l c z D p D p is the PMD parameter typical value is.5 1 ps/ km Fiber Optical Communication ecture 4, Slide 13

14 Fiber Optical Communication ecture 4, Slide 14 Basic propagation equation We will now develop the theory for signal propagation in fibers The electric field is written as The field is polarized in the x-direction Fx, y describes the mode in the transverse directions Az, t is the complex field envelope β is the propagation constant corresponding to ω Only Az, t changes upon propagation described in the Fourier domain Each spectral component of a pulse propagates differently exp,, ˆ Re, t i z i t z A y x F t x E r d t i t z A z A z i z i A z A exp,, ~ exp, ~, ~

15 Fiber Optical Communication ecture 4, Slide 15 The propagation constant The propagation constant is in general complex α is the attenuation δn N is a small nonlinear = power dependent change of the refractive index Dispersion arises from β ω The frequency dependence of β N and α is small We now expand β ω in a Taylor series around ω = ω Δω = ω ω 1/v p 1/v g GVDrel. to D dispersion sloperelated to S , 6 m m m d d / / / ] [ i i c n n N N

16 Basic propagation equation.4.1 Substitute β with the Taylor expansion in the expression for the evolution of Az, ω, calculate A/ z, and write in time domain by using Δω i / t A A 1 i z t A 3 t 6 3 A 3 t i N A A The nonlinearity is quantified by using δn N = n I where n [m /W] is a measure of the strength of the nonlinearity, and I is the light intensity β N = γ A, where γ = πn /λ A eff is the nonlinear coefficient A eff is the effective mode area and A is normalized to represent the power γ is typically 1 W 1 km 1 Fiber Optical Communication ecture 4, Slide 16

17 Basic propagation equation Use a coordinate system that moves with the pulse group velocity! This is called retarded time, t = t β 1 z We neglect β 3 to get A i z This is the nonlinear Schrödinger equation NSE The primes are implicit A t i A A The loss reduces the power reduces the impact from the nonlinearity The average power of the signal during propagation in the fiber is P T / 1 av z lim A z, t dt Pav T T T / Note: α is in m -1 while loss is often expressed in db/km A e z Fiber Optical Communication ecture 4, Slide 17

18 Chirped Gaussian pulses.4. To study dispersion, we neglect nonlinearity and loss The formal solution is A i z Note: Dispersion acts like an all-pass filter We study chirped Gaussian pulses A t A ~ z A ~,, expi z A, t A exp 1 ic t / T 1 A is the peak amplitude C is the chirp parameter T is the 1/e half width power T ln T 1. T 1/ FWHM 665 Fiber Optical Communication ecture 4, Slide 18

19 For a chirped pulse, the frequency of the pulse changes with time What does this mean??? Study a CW continuous wave A is a constant Chirp frequency Writing A expiβ z iω t = A expiφ, we see that ω = φ/ t We define the chirp frequency to be We allow φ to have a time dependence We get φ from the complex amplitude In this way, the chirp frequency can depend on time For the Gaussian pulse we get ω c = Ct/T E r, t Re xˆ F x, y A z, texp i z i t t / t c Fiber Optical Communication ecture 4, Slide 19

20 Frequency increases with time A linearly chirped pulse Frequency decreases with time ω c ω c t t Fiber Optical Communication ecture 4, Slide

21 Time-bandwidth product The Fourier transform of the input Gaussian pulse is A ~, T A 1 ic 1/ exp T 1 ic The 1/e spectral half width intensity is The product of the spectral and temporal widths is C / T 1 C 1 T If C = then the pulses are chirp-free and said to be transform-limited as they occupy the smallest possible spectral width Using the full width at half maximum FWHM, we get T ln 1 C.44 FWHM FWHM 1 C Fiber Optical Communication ecture 4, Slide 1

22 Fiber Optical Communication ecture 4, Slide We introduce ξ = z/ D where the dispersion length D = T / β In the time domain the dispersed pulse is The output width 1/e-intensity point broadens as Chirped Gaussian pulses.4. A Gaussian pulse remains Gaussian during propagation The chirp, C 1 ξ, evolves as the pulse propagates If C β is negative, the pulse will initially be compressed C i b T t ic b A t A f f 1 arctan 1 exp, 1 sign / s C s C C sc b f 1/ 1 1 T z T z C T z T z b f

23 Fiber Optical Communication ecture 4, Slide 3 Broadening of chirp-free Gaussian pulses Short pulses broaden more quickly than longer pulses Compare with diffraction of beams 1 1 T z z z b D f

24 Broadening of linearly chirped Gaussian pulses For C β <, pulses initially compress and reaches a minimum at z = C /1+C min T 1 D at which C 1 = and T1 1 C Chirped pulses eventually broaden more quickly than unchirped pulses Fiber Optical Communication ecture 4, Slide 4

25 Fiber Optical Communication ecture 4, Slide 5 Non-Gaussian pulses Only Gaussian pulses remain Gaussian upon propagation Not even Gaussian pulses remain Gaussian if β 3 cannot be ignored In these cases, the RMS-pulse width can be used σ p can be calculated when the initial pulse is known Example 1: An unchirped rectangular pulse will, in presence of only β, broaden as Example : An unchirped Gaussian pulse will, in presence of only β, broaden as t t p dt t z A dt t z A t t m m,, 3 1 D p 1 D p

26 Fiber Optical Communication ecture 4, Slide 6 Chirped Gaussian pulses in the presence of β 3 Higher order dispersion gives rise to oscillations and pulse shape changes C C / T

27 Fiber Optical Communication ecture 4, Slide 7 Effect from source spectrum width Using a light source with a broad spectrum leads to strong dispersive broadening of the signal pulses In practice, this only needs to be considered when the source spectral width approaches the symbol rate For a Gaussian-shaped source spectrum with RMS-width σ ω and with Gaussian pulses, we have where V ω = σ ω σ V C V C p V ω << 1 when the source spectral width << the signal spectral width

28 imitations on bit rate, incoherent source.4.3 If, as for an ED light source, V ω >> 1 we obtain approximately A common criteria for the bit rate is that D T B / 4 1/4B For the Gaussian pulse, this means that 95% of the pulse energy remains within the bit slot In the limit of large broadening 4B D 1 σ λ is the source RMS width in wavelength units Example: D = 17 ps/km nm, σ λ = 15 nm B max 1 Gbit/s km Fiber Optical Communication ecture 4, Slide 8

29 imitations on bit rate, incoherent source In the case of operation at λ = λ ZD, β = we have S With the same condition on the pulse broadening, we obtain 8B S The dispersion slope, S, will determine the bit rate-distance product 1 Example: D =, S =.8 ps/km nm, σ λ = 15 nm B max Gbit/s km Fiber Optical Communication ecture 4, Slide 9

30 imitations on bit rate, coherent source.4.3 For most lasers V ω << 1 and can be neglected and the criteria become Neglecting β 3 : / D The output pulse width is minimized for a certain input pulse width giving 4B 1 Example: β = ps /km B max 3 Gbit/s km 5 Gbit/s, 3 1 Gbit/s If β = close to λ : 3 / 4 / D For an optimal input pulse width, we get 1/3 B 3.34 Fiber Optical Communication ecture 4, Slide 3

31 imitations on bit rate, summary A coherent source improves the bit rate-distance product Operation near the zero-dispersion wavelength also is beneficial...but may lead to problems with nonlinear signal distortion Fiber Optical Communication ecture 4, Slide 31

32 Super-Gaussian pulses Super-Gaussian pulses are flat-top and can be used to model NRZ...but more accurate modeling is preferred If m = 1 We recover the Gaussian A, t A If m > 1 The shape is more rectangular 1 ic exp Numerical simulation shows: Super-Gaussian has: Smaller bit rate-distance product...due to more problems with dispersion......due to the sharper edges A small chirp can be beneficial: C 1 is optimal Fiber Optical Communication ecture 4, Slide 3 t T m

33 Dispersion compensation Dispersion is a key limiting factor for an optical transmission system Several ways to compensate for the dispersion exist More about this in a later lecture... One way is to periodically insert fiber with opposite sign of D This is called dispersion-compensating fiber DCF Figure shows a system with both SMF and DCF The GVD parameters are β 1 and β Group-velocity dispersion is perfectly compensated when β 1 l 1 + β l =, which is equivalent to D 1 l 1 + D l = GVD and PMD can also be compensated in digital signal processing DSP Fiber Optical Communication ecture 4, Slide 33

34 Fiber losses.5 Fiber have low loss but the loss grows exponentially with distance Approx. 5 db loss over 1 km Optical receivers add noise......and the input power may be too low to obtain sufficient SNR The optical power in a fiber decreases exponentially with the propagation distance as P out = P in exp αz α is the attenuation coefficient unit m -1 Often, attenuation is given in db/km and its relation to α is db 1 1log 1 e 1 log e log1 1 log Typical value in SMF at 155 nm α db =. db/km α =.46 km -1 = 1/1.7 km Fiber Optical Communication ecture 4, Slide 34

35 Material absorption Attenuation mechanisms Intrinsic absorption: In the SiO material Electronic transitions UV absorption Vibrational transitions IR absorption Extrinsic: Due to impurity atoms Metal and OH ions, dopants Rayleigh scattering Occurs when waves scatter off small, randomly oriented particles Makes the sky blue! Proportional to λ -4 Waveguide imperfections Core-cladding imperfections on > λ length scales Mie scattering Micro-bending bending curvature λ Macro-bending negligible unless bending curvature < 1 5 mm Fiber Optical Communication ecture 4, Slide 35

36 Total attenuation Minimum theoretical loss is.15 db/km at 155 nm Main contributions: Rayleigh scattering and IR absorption eft figure: Theoretical curves and measured loss for typical fiber Right figure: oss for sophisticated fiber with negligible loss peak Fiber Optical Communication ecture 4, Slide 36

Optical Fiber Signal Degradation

Optical Fiber Signal Degradation Optical Fiber Signal Degradation Effects Pulse Spreading Dispersion (Distortion) Causes the optical pulses to broaden as they travel along a fiber Overlap between neighboring pulses creates errors Resulting

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP Nonlinear effects in optical fibers - v1 Miguel A. Muriel UPM-ETSIT-MUIT-CFOP Miguel A. Muriel-015/10-1 Nonlinear effects in optical fibers 1) Introduction ) Causes 3) Parameters 4) Fundamental processes

More information

Mode-Field Diameter (MFD)

Mode-Field Diameter (MFD) Mode-Field Diameter (MFD) Important parameter determined from mode-field distribution of fundamental LP 01 mode. Characterized by various models Main consideration: how to approximate the electric field

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is assigned, due March 25 th Start discussion

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

10. OPTICAL COHERENCE TOMOGRAPHY

10. OPTICAL COHERENCE TOMOGRAPHY 1. OPTICAL COHERENCE TOMOGRAPHY Optical coherence tomography (OCT) is a label-free (intrinsic contrast) technique that enables 3D imaging of tissues. The principle of its operation relies on low-coherence

More information

Module II: Part B. Optical Fibers: Dispersion

Module II: Part B. Optical Fibers: Dispersion Module II: Part B Optical Fibers: Dispersion Dispersion We had already seen that that intermodal dispersion can be, eliminated, in principle, using graded-index fibers. We had also seen that single-mode,

More information

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 7.1. Low-Coherence Interferometry (LCI) Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). The light is split by the beam splitter (BS) and

More information

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers General pulse propagation equation Optical pulse propagation just as any other optical

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao Dielectric Waveguides and Optical Fibers 高錕 Charles Kao 1 Planar Dielectric Slab Waveguide Symmetric Planar Slab Waveguide n 1 area : core, n 2 area : cladding a light ray can undergo TIR at the n 1 /n

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Analysis of Polarization Mode Dispersion Effect on Quantum State Decoherence in Fiber-based Optical Quantum Communication

Analysis of Polarization Mode Dispersion Effect on Quantum State Decoherence in Fiber-based Optical Quantum Communication Analysis of Polarization Mode Dispersion Effect on Quantum State Decoherence in Fiber-based Optical Quantum Communication Shamsolah Salemian,, Shahram Mohammadnejad Nanoptronics Research Center, School

More information

Nonlinear effects and pulse propagation in PCFs

Nonlinear effects and pulse propagation in PCFs Nonlinear effects and pulse propagation in PCFs --Examples of nonlinear effects in small glass core photonic crystal fibers --Physics of nonlinear effects in fibers --Theoretical framework --Solitons and

More information

Module 5 - Dispersion and Dispersion Mitigation

Module 5 - Dispersion and Dispersion Mitigation Module 5 - Dispersion and Dispersion Mitigation Dr. Masud Mansuripur Chair of Optical Data Storage, University of Arizona Dr. Masud Mansuripur is the Chair of Optical Data Storage and Professor of Optical

More information

Polarization Mode Dispersion

Polarization Mode Dispersion Unit-7: Polarization Mode Dispersion https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Goos Hänchen Shift The Goos-Hänchen effect is a phenomenon

More information

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10 Optics and Optical Design Chapter 5: Electromagnetic Optics Lectures 9 & 1 Cord Arnold / Anne L Huillier Electromagnetic waves in dielectric media EM optics compared to simpler theories Electromagnetic

More information

Photonic Communications Engineering I

Photonic Communications Engineering I Photonic Communications Engineering I Module 3 - Attenuation in Optical Fibers Alan E. Willner Professor, Dept. of Electrical Engineering - Systems, University of Southern California and Thrust 1 Lead

More information

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Nonlinear Fiber Optics and its Applications in Optical Signal Processing 1/44 Nonlinear Fiber Optics and its Applications in Optical Signal Processing Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

Decay of Higher Order Solitons in the presence of Dispersion, Self-steeping & Raman Scattering

Decay of Higher Order Solitons in the presence of Dispersion, Self-steeping & Raman Scattering Decay of Higher Order Solitons in the presence of Dispersion, Self-steeping & Raman Scattering Thesis submitted in partial fulfillment of the requirement for the award of the degree of MASTER OF ENGINEERING

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 07 Analysis of Wave-Model of Light Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Dispersion and how to control it

Dispersion and how to control it Dispersion and how to control it Group velocity versus phase velocity Angular dispersion Prism sequences Grating pairs Chirped mirrors Intracavity and extra-cavity examples 1 Pulse propagation and broadening

More information

Nonlinear Optical Effects in Fibers

Nonlinear Optical Effects in Fibers Nonlinear Optical Effects in Fibers NLO effects are manifested as attenuation, phase shifts, or wavelength conversion effects, and become stronger with increasing light intensity. The glass materials usually

More information

ANALYSIS AND DESIGN OF SINGLE-MODE FIBER WITH ZERO POLARIZATION-MODE DISPERSION

ANALYSIS AND DESIGN OF SINGLE-MODE FIBER WITH ZERO POLARIZATION-MODE DISPERSION CHAPTER 4. ANALYSIS AND DESIGN OF SINGLE-MODE FIBER WITH ZERO POLARIZATION-MODE DISPERSION Polarization-mode dispersion (PMD) has gained considerable attention over the past few years. It has been the

More information

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS Sait Eser KARLIK 1 Güneş YILMAZ 1, Uludağ University, Faculty of Engineering and Architecture,

More information

STUDY OF FUNDAMENTAL AND HIGHER ORDER SOLITON PROPAGATION IN OPTICAL LIGHT WAVE SYSTEMS

STUDY OF FUNDAMENTAL AND HIGHER ORDER SOLITON PROPAGATION IN OPTICAL LIGHT WAVE SYSTEMS STUDY OF FUNDAMENTAL AND HIGHER ORDER SOLITON PROPAGATION IN OPTICAL LIGHT WAVE SYSTEMS 1 BHUPESHWARAN MANI, 2 CHITRA.K 1,2 Department of ECE, St Joseph s College of Engineering, Anna University, Chennai

More information

Lect. 15: Optical Fiber

Lect. 15: Optical Fiber 3-dimentioanl dielectric waveguide? planar waveguide circular waveguide optical fiber Optical Fiber: Circular dielectric waveguide made of silica (SiO ) y y n n 1 n Cladding Core r z Fiber axis SiO :Ge

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Propagation of signals in optical fibres

Propagation of signals in optical fibres 11 11 Fiber optic link OR Propagation of signals in optical fibres??? Simon-Pierre Gorza BEST Course - 213 http://opera.ulb.ac.be/ Outline: 2.1 Geometrical-optics description 2.2 Electromagnetic analysis

More information

An electric field wave packet propagating in a laser beam along the z axis can be described as

An electric field wave packet propagating in a laser beam along the z axis can be described as Electromagnetic pulses: propagation & properties Propagation equation, group velocity, group velocity dispersion An electric field wave packet propagating in a laser beam along the z axis can be described

More information

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs P. L. Kelley Optical Society of America Washington, DC and T. K. Gustafson EECS University of California Berkeley,

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Outline. Propagation of Signals in Optical Fiber. Outline. Geometric Approach. Refraction. How do we use this?

Outline. Propagation of Signals in Optical Fiber. Outline. Geometric Approach. Refraction. How do we use this? Outline Propagation of Signals in Optial Fiber Geometri approah Wave theory approah Loss and Bandwidth Galen Sasaki University of Hawaii Galen Sasaki University of Hawaii Outline Geometri approah Wave

More information

Department of Electrical and Computer Systems Engineering

Department of Electrical and Computer Systems Engineering Department of Electrical and Computer Systems Engineering Technical Report MECSE-3-4 MODELLING OF POLRISTION MODE DISPERSION EFFECT SYSTEM USING FINITE IMPULSE RESPONSE DICRETE FILTE TECHNIQUE LN Binh

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

Nonlinear Photonics with Optical Waveguides

Nonlinear Photonics with Optical Waveguides 1/44 Nonlinear Photonics with Optical Waveguides Govind P. Agrawal The Institute of Optics University of Rochester Rochester, New York, USA c 2015 G. P. Agrawal Outline Introduction Planar and Cylindrical

More information

Fiber-Optic Parametric Amplifiers for Lightwave Systems

Fiber-Optic Parametric Amplifiers for Lightwave Systems Fiber-Optic Parametric Amplifiers for Lightwave Systems F. Yaman, Q. Lin, and Govind P. Agrawal Institute of Optics, University of Rochester, Rochester, NY 14627 May 21, 2005 Abstract Fiber-optic parametric

More information

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich Mode locking by forcing

More information

LOW NONLINEARITY OPTICAL FIBERS FOR BROADBAND AND LONG-DISTANCE COMMUNICATIONS

LOW NONLINEARITY OPTICAL FIBERS FOR BROADBAND AND LONG-DISTANCE COMMUNICATIONS LOW NONLINEARITY OPTICAL FIBERS FOR BROADBAND AND LONG-DISTANCE COMMUNICATIONS Haroldo T. Hattori Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Four-wave mixing in PCF s and tapered fibers

Four-wave mixing in PCF s and tapered fibers Chapter 4 Four-wave mixing in PCF s and tapered fibers The dramatically increased nonlinear response in PCF s in combination with single-mode behavior over almost the entire transmission range and the

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

INFLUENCE OF EVEN ORDER DISPERSION ON SOLITON TRANSMISSION QUALITY WITH COHERENT INTERFERENCE

INFLUENCE OF EVEN ORDER DISPERSION ON SOLITON TRANSMISSION QUALITY WITH COHERENT INTERFERENCE Progress In Electromagnetics Research B, Vol. 3, 63 72, 2008 INFLUENCE OF EVEN ORDER DISPERSION ON SOLITON TRANSMISSION QUALITY WITH COHERENT INTERFERENCE A. Panajotovic and D. Milovic Faculty of Electronic

More information

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber Chapter 3 Ultra-short pulse propagation in dispersion-managed birefringent optical fiber 3.1 Introduction This chapter deals with the real world physical systems, where the inhomogeneous parameters of

More information

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath International Letters of Chemistry, Physics and Astronomy Submitted: 6-- ISSN: 99-3843, Vol. 64, pp 59-7 Accepted: 6--5 doi:.85/www.scipress.com/ilcpa.64.59 Online: 6--5 6 SciPress Ltd., Switzerland Simulation

More information

Optical Fiber Concept

Optical Fiber Concept Optical Fiber Concept Optical fibers are light pipes Communications signals can be transmitted over these hair-thin strands of glass or plastic Concept is a century old But only used commercially for the

More information

Optical Solitons. Lisa Larrimore Physics 116

Optical Solitons. Lisa Larrimore Physics 116 Lisa Larrimore Physics 116 Optical Solitons An optical soliton is a pulse that travels without distortion due to dispersion or other effects. They are a nonlinear phenomenon caused by self-phase modulation

More information

Polarization division multiplexing system quality in the presence of polarization effects

Polarization division multiplexing system quality in the presence of polarization effects Opt Quant Electron (2009) 41:997 1006 DOI 10.1007/s11082-010-9412-0 Polarization division multiplexing system quality in the presence of polarization effects Krzysztof Perlicki Received: 6 January 2010

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

More information

Submitted to. Department of Electrical & Electronic Engineering BRAC University Dhaka, Bangladesh.

Submitted to. Department of Electrical & Electronic Engineering BRAC University Dhaka, Bangladesh. Study of Soliton Propagation Inside Optical Fiber for ultra-short pulse hesis Presented By MHMUDUL HSN #091169 S. N. SHYOKH HMED #091061 MD. KHWZ MOHIUDDIN #091068 Submitted to Department of Electrical

More information

Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems

Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems 632 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 3, MAY/JUNE 2002 Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems Jayanthi Santhanam and Govind P.

More information

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 14 Dispersion engineering part 1 - Introduction EEC 598-2 Winter 26 Nanophotonics and Nano-scale Fabrication P.C.Ku chedule for the rest of the semester Introduction to light-matter interaction

More information

Photon Physics. Week 4 26/02/2013

Photon Physics. Week 4 26/02/2013 Photon Physics Week 4 6//13 1 Classical atom-field interaction Lorentz oscillator: Classical electron oscillator with frequency ω and damping constant γ Eqn of motion: Final result: Classical atom-field

More information

Attenuation and dispersion

Attenuation and dispersion Attenuation and dispersion! Mechanisms: Absorption (inelastic); Scattering (elastic).! Mathematical descriptions! Measurement! Frequency dependence! Dispersion, its relation to attenuation Reading: Sheriff

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Chapter 5. Transmission System Engineering. Design the physical layer Allocate power margin for each impairment Make trade-off

Chapter 5. Transmission System Engineering. Design the physical layer Allocate power margin for each impairment Make trade-off Chapter 5 Transmission System Engineering Design the physical layer Allocate power margin for each impairment Make trade-off 1 5.1 System Model Only digital systems are considered Using NRZ codes BER is

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

Optical fibers. Weak guidance approximation in cylindrical waveguides

Optical fibers. Weak guidance approximation in cylindrical waveguides Optical fibers Weak guidance approximation in cylindrical waveguides Propagation equation with symmetry of revolution r With cylindrical coordinates : r ( r,θ) 1 ψ( r,θ) 1 ψ( r,θ) ψ + + r r + r θ [ ( )

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities Yu et al. Vol. 15, No. 2/February 1998/J. Opt. Soc. Am. B 617 Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities M.

More information

Optical spectral pulse shaping by combining two oppositely chirped fiber Bragg grating

Optical spectral pulse shaping by combining two oppositely chirped fiber Bragg grating Optical spectral pulse shaping by combining two oppositely chirped fiber Bragg grating Miguel A. Preciado, Víctor García-Muñoz, Miguel A. Muriel ETSI Telecomunicación, Universidad Politécnica de Madrid

More information

Fundamentals of fiber waveguide modes

Fundamentals of fiber waveguide modes SMR 189 - Winter College on Fibre Optics, Fibre Lasers and Sensors 1-3 February 007 Fundamentals of fiber waveguide modes (second part) K. Thyagarajan Physics Department IIT Delhi New Delhi, India Fundamentals

More information

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY USA http://www.optics.rochester.edu

More information

Design of Uniform Fiber Bragg grating using Transfer matrix method

Design of Uniform Fiber Bragg grating using Transfer matrix method International Journal of Computational Engineering Research Vol, 3 Issue, 5 Design of Uniform Fiber Bragg grating using Transfer matrix method Deba Kumar Mahanta Department of Electrical Engineering, Assam

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Single-Mode Propagation ofmutual Temporal Coherence: Equivalence of Time and Frequency Measurements of Polarization Mode Dispersion

Single-Mode Propagation ofmutual Temporal Coherence: Equivalence of Time and Frequency Measurements of Polarization Mode Dispersion r~3 HEWLETT ~~ PACKARD Single-Mode Propagation ofmutual Temporal Coherence: Equivalence of Time and Frequency Measurements of Polarization Mode Dispersion Brian Heffner Instruments and Photonics Laboratory

More information

4. The interaction of light with matter

4. The interaction of light with matter 4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again,

More information

Lecture 20. Wind Lidar (2) Vector Wind Determination

Lecture 20. Wind Lidar (2) Vector Wind Determination Lecture 20. Wind Lidar (2) Vector Wind Determination Vector wind determination Ideal vector wind measurement VAD and DBS technique for vector wind Coherent versus incoherent Detection Doppler wind lidar

More information

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber ragg Grating F. Emami, Member IAENG, A. H. Jafari, M. Hatami, and A. R. Keshavarz Abstract In this paper we investigated

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media

Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media PHYSICAL REVIEW A VOLUME 57, NUMBER 6 JUNE 1998 Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media Marek Trippenbach and Y. B. Band Departments

More information

Multilayer Thin Films Dielectric Double Chirped Mirrors Design

Multilayer Thin Films Dielectric Double Chirped Mirrors Design International Journal of Physics and Applications. ISSN 974-313 Volume 5, Number 1 (13), pp. 19-3 International Research Publication House http://www.irphouse.com Multilayer Thin Films Dielectric Double

More information

Optical Communication Systems (OPT428)

Optical Communication Systems (OPT428) 1/549 Optical Communication Systems (OPT428) Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Chapter 7: Dispersion Management Dispersion Problem and

More information

UNIT 1. By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 1. By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 1 By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun Syllabus Introduction: Demand of Information Age, Block Diagram

More information

Recent Progress in Distributed Fiber Optic Sensors

Recent Progress in Distributed Fiber Optic Sensors Sensors 2012, 12, 8601-8639; doi:10.3390/s120708601 Review OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Recent Progress in Distributed Fiber Optic Sensors Xiaoyi Bao * and Liang Chen

More information

ABRIDGING INTERACTION RESULT IN TEMPORAL SPREAD- ING

ABRIDGING INTERACTION RESULT IN TEMPORAL SPREAD- ING 1 INTERNATIONAL JOURNAL OF ADVANCE RESEARCH, IJOAR.ORG ISSN 232-9186 International Journal of Advance Research, IJOAR.org Volume 1, Issue 2, MAY 213, Online: ISSN 232-9186 ABRIDGING INTERACTION RESULT

More information

Optimal dispersion precompensation by pulse chirping

Optimal dispersion precompensation by pulse chirping Optimal dispersion precompensation by pulse chirping Ira Jacobs and John K. Shaw For the procedure of dispersion precompensation in fibers by prechirping, we found that there is a maximum distance over

More information

THE fiber phase grating written by ultraviolet light into

THE fiber phase grating written by ultraviolet light into JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 8, AUGUST 1997 1277 Fiber Grating Spectra Turan Erdogan, Member, IEEE (Invited Paper) Abstract In this paper, we describe the spectral characteristics that

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

Lecturers for Week 1

Lecturers for Week 1 Lecturers for Week 1 Prof. Cid B. de Araújo, Recife, Brazil Prof. Sergey K. Turitsyn, Birmingham, UK Dr. Miguel C. Soriano, Palma de Mallorca, Spain Prof Marcel Clerc, Santiago, Chile Prof. Yuri S. Kivshar,

More information

Lecture 4: Polarisation of light, introduction

Lecture 4: Polarisation of light, introduction Lecture 4: Polarisation of light, introduction Lecture aims to explain: 1. Light as a transverse electro-magnetic wave 2. Importance of polarisation of light 3. Linearly polarised light 4. Natural light

More information

Optical time-domain differentiation based on intensive differential group delay

Optical time-domain differentiation based on intensive differential group delay Optical time-domain differentiation based on intensive differential group delay Li Zheng-Yong( ), Yu Xiang-Zhi( ), and Wu Chong-Qing( ) Key Laboratory of Luminescence and Optical Information of the Ministry

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

Experimental and numerical study of a high-repetition rate Yb-fiber amplifier source

Experimental and numerical study of a high-repetition rate Yb-fiber amplifier source Experimental and numerical study of a high-repetition rate Yb-fiber amplifier source by Robert Lindberg Supervisor Valdas Pasiskevicius Examinator Fredrik Laurell Master of Science Thesis Laser Physics

More information

Dark Soliton Fiber Laser

Dark Soliton Fiber Laser Dark Soliton Fiber Laser H. Zhang, D. Y. Tang*, L. M. Zhao, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 *: edytang@ntu.edu.sg, corresponding

More information

R. L. Sharma*and Dr. Ranjit Singh*

R. L. Sharma*and Dr. Ranjit Singh* e t International Journal on Emerging echnologies (): 141-145(011) ISSN No (Print) : 0975-8364 ISSN No (Online) : 49-355 Solitons, its Evolution and Applications in High Speed Optical Communication R L

More information

Optical Component Characterization: A Linear Systems Approach

Optical Component Characterization: A Linear Systems Approach Optical Component Characterization: A Linear Systems Approach Authors: Mark Froggatt, Brian Soller, Eric Moore, Matthew Wolfe Email: froggattm@lunatechnologies.com Luna Technologies, 2020 Kraft Drive,

More information

Coherent Raman imaging with fibers: From sources to endoscopes

Coherent Raman imaging with fibers: From sources to endoscopes Coherent Raman imaging with fibers: From sources to endoscopes Esben Ravn Andresen Institut Fresnel, CNRS, École Centrale, Aix-Marseille University, France Journées d'imagerie vibrationelle 1 Jul, 2014

More information

Raman Amplification for Telecom Optical Networks. Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux

Raman Amplification for Telecom Optical Networks. Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux Raman Amplification for Telecom Optical Networks Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux Training day www.brighter.eu project Cork, June 20th 2008 Outline of the

More information

Free-Electron Lasers

Free-Electron Lasers Introduction to Free-Electron Lasers Neil Thompson ASTeC Outline Introduction: What is a Free-Electron Laser? How does an FEL work? Choosing the required parameters Laser Resonators for FELs FEL Output

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplemental Material Property Tables Cited in Main Text Table SI. Measured parameters for the sapphire-derived optical fibers Fiber Maximum Alumina Content Δn 10-3 Core Size Mole Percent (%) Weight Percent

More information

Modification of optical fibers using femtosecond laser irradiation

Modification of optical fibers using femtosecond laser irradiation Modification of optical fibers using femtosecond laser irradiation Hans G. Limberger Advanced Photonics Laboratory Swiss Federal Institute of Technology CH-1015 Lausanne, Switzerland Hans.limberger@epfl.ch

More information