Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013

Size: px
Start display at page:

Download "Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013"

Transcription

1 Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry 4-15 February 2013 Data capture and tomographic reconstruction of phase microobjects M. Kujawinska WUT Poland

2

3

4

5

6 CT computer tomography hard tissue (bones) X rays MRI magnetic resonance Imaging, soft tissue ultrasound tomography Terahertz tomography Optical tomography Diffraction tomography

7 Intensity in a single projection f(x,y) P (, t) f ( x, y) ds Fourier transform of intensity t Reconstruction of object function P(,t) Single projection

8 Sinogram t

9

10

11 Series of projections Filt er Object Sinogram Filtered Sinogram Typical filters Result Reconstruction

12 Reconstruction from small number of projections

13 Presence of noises in projections 2% noise Noncentric rotation of object Radial run-out: 2.5% Presence of background in projections 5% relative background

14 Provide a convenient tool for 3D material properties determination in novel photonics materials and elements Provide experimental data for optimization of novel prototyping and production technologies e.g. - deep lithography with protons (DLP), - laser ablation and laser writing, - hot embossing, - injection molding. Provide a tool for reliability studies of phase photonics elements (essp. for polimer elements or elements being subjected to radiation, temperature, fatigue) Quantities of interest: refractive index, birefringence, residual stresses

15

16 The scheme of standard ODT data aquisition system, Co-ordinate system Reconstruction of internal structure by filtered back projection algorithm 1 Ox, y d ~ 2 k P k exp i kx cos ysin 2 0 where or algebraic tomographic reconstruction ~ P dk k P exp ikd

17

18 Series interferogram acquisition Integrated phase distribution computing z =1 w P(w,z,) Reconstruction of phase distribution (back-projection algorythm) Scaling to refractive index value ( x, y, z) n( x, y, z) nl, 2d -source wavelength, n l refractive index of immersion liquid, d-object size corresponding to pixel of camera

19

20

21

22 Fused optical fibre(sm and M M F) I nterferogram Distribution n(x,y,z) - rendering

23 Cross-sections sequence

24 Considerable deviation of refractive index in the middle area ideal profile measured profile

25 [pixels] core Fiber parameters: -fiber diameter 120 -core diameter 8 -core refractive index 1,47 -cladding refractive index pixel=0,33 core cladding core cladding Only central core area was reconstructed propoperly -refractive index determination error is considerable in core area, source of this error is difraction phenomenon on edge of core and cladding; step of refractive index is equal 0,01

26

27 n ( x, y, z ) i S(,, z j w d dx d i ) exp( 2 ) 2 0 S(,, zi ) (, w, zi )exp( j2w) dw, spatial frequency of the function (, w,zi - source wavelegth, dx - spatialstep

28 , ) cos 2( sin cos ) sin 2( sin ) sin 2( sin ) cos 2( sin cos cos 2 1 sin 2 sin 2 cos 2 1 cos sin sin cos 2 1 t i ke i i i i i i i i i i V U

29 i )cos 2( sin i i sin 2( )cos 2 i sin 2 2 m v v Output intensity equations 0 /4 0 3/4 i i i a i 1 b i a i 2 b cos cos 0 0 /4 /4 /2 /2 3/4 3/4 i i i i i a i 3 b i a i 4 b i a i 5 b i a i 6 b sin sin cos sin sin sin cos sin 1 i5 i arctan 2 i4 i 1 2 ( i arctan i3)sin 2 ( i4 i6)cos 2 i 1 i 2

30 Elastooptics tomograph

31 Capillary 127m Outer diameter 350 m n o Analysed objects are fibers with channels filled with liquid crystal (nematic LC with n = Due to viscosity forces liquid crystals particles are expected to be oriented paralelly to axis of capillary Expected birefringence B 0.02<B<0.06

32 Experiment: birefringence in a single layer A-A A A birefringence [m] [m]

33 Quantities of interest: n(x,y,z) or n 0 (x,y,z), n e (x,y,z)), and birefringence B(x,y,z)* *) assumption that rotation of anisotropy axes is moderate and birefringence is weak.

34 Experimental and simulation results Experiment Simulations

35 Microscopic image of sample Determined axial stress in sample Axial stress Panda type fiber cladding diameter 125 m, stress members diameter 35 m refractive index of cladding and for matching liquid D field of axial stress Plot of axial stress profile Determined refractive index in sample (for horizontal plane 2D distribution of refractive index Refractive index Distance along profile Plot of refractive index profile

36

37

38

39 Properties of bio-samples Polarization Sensitive Birefringence Models High-Phase Gradient Depend on Choice of Wavelengths Core of the Cell important Cell boundary important Use of Born / Rytov Models needed

40

41

42 Example: DHM phase contrast video of Chinese Hamster Ovary (CHO) cells during internalization of SiO 2 micro particles ( ) Cell division Phagocytosis SiO 2 micro particle Nucleus Cell division CHO cells

43

44

45 , Co-ordinate system The simplest reconstruction method : filtered back projection 1 Ox, y d k P k exp i kx cos ysin ~ where ~ P dk k P exp ikd

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80 object HT1080 fibroblasts HT1080 fibroblasts Agarose beads 30m PVA coated inside collagen 0,08% inside collagen 0,16% inside Agar 0,15% inside Glycerin outside immersion oil Outside Phosphat Buffered Saline Inner diameter [m] Incubation time h h h result most cells stick to the wall cells stick to the wall and shrink good results, less diffraction U937 Human Leukemia h good results, some cells are in the middle of the fiber, diffraction not important HT1080 fibroblasts h vertical good results, most cells stick to the wall but some are in the middle of the fiber HT1080 fibroblasts h vertical good results, strong cells, centered

81

82

83

84

85

86

87

88

89

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

ECE185 LIQUID CRYSTAL DISPLAYS

ECE185 LIQUID CRYSTAL DISPLAYS ECE185 LIQUID CRYSTAL DISPLAYS Objective: To study characteristics of liquid crystal modulators and to construct a simple liquid crystal modulator in lab and measure its characteristics. References: B.

More information

Medical Biophysics II. Final exam theoretical questions 2013.

Medical Biophysics II. Final exam theoretical questions 2013. Medical Biophysics II. Final exam theoretical questions 2013. 1. Early atomic models. Rutherford-experiment. Franck-Hertz experiment. Bohr model of atom. 2. Quantum mechanical atomic model. Quantum numbers.

More information

Tomography and Reconstruction

Tomography and Reconstruction Tomography and Reconstruction Lecture Overview Applications Background/history of tomography Radon Transform Fourier Slice Theorem Filtered Back Projection Algebraic techniques Measurement of Projection

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372 Tomography Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372, SMU Department of Electrical Engineering 86 Tomography: Background 1-D Fourier Transform: F(

More information

Towards Tomographic Photoelasticity

Towards Tomographic Photoelasticity Towards Tomographic Photoelasticity Dr Rachel Tomlinson Department of Mechanical Engineering, Outline What is photoelasticity? 3D Photoelasticity Methods Advances in data collection and processing Future

More information

MB-JASS D Reconstruction. Hannes Hofmann March 2006

MB-JASS D Reconstruction. Hannes Hofmann March 2006 MB-JASS 2006 2-D Reconstruction Hannes Hofmann 19 29 March 2006 Outline Projections Radon Transform Fourier-Slice-Theorem Filtered Backprojection Ramp Filter 19 29 Mar 2006 Hannes Hofmann 2 Parallel Projections

More information

Electrical Engineering 3BA3: Structure of Biological Materials

Electrical Engineering 3BA3: Structure of Biological Materials Electrical Engineering 3BA3: Structure of Biological Materials Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2004 This examination

More information

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging Topic #1: Intro to medical imaging Medical Imaging Classifications n Measurement physics Send Energy into body Send stuff

More information

The Theory of Diffraction Tomography

The Theory of Diffraction Tomography The Theory of Diffraction Tomography Paul Müller 1, Mirjam Schürmann, and Jochen Guck Biotechnology Center, Technische Universität Dresden, Dresden, Germany (Dated: October 10, 2016) Abstract arxiv:1507.00466v3

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS Sait Eser KARLIK 1 Güneş YILMAZ 1, Uludağ University, Faculty of Engineering and Architecture,

More information

Summary of Fourier Optics

Summary of Fourier Optics Summary of Fourier Optics Diffraction of the paraxial wave is described by Fresnel diffraction integral, u(x, y, z) = j λz dx 0 dy 0 u 0 (x 0, y 0 )e j(k/2z)[(x x 0) 2 +(y y 0 ) 2 )], Fraunhofer diffraction

More information

Fujikura PANDA fiber products and Basics of PM fibers

Fujikura PANDA fiber products and Basics of PM fibers Fujikura PANDA fiber products and Basics of PM fibers Fiber Optics Network Products Engineering Department Fujikura Ltd. 1 Fujikura PANDA fiber solutions Fujikura has been developing below new PANDA fibers

More information

Polarization Mode Dispersion

Polarization Mode Dispersion Unit-7: Polarization Mode Dispersion https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Goos Hänchen Shift The Goos-Hänchen effect is a phenomenon

More information

Tracing rays through the Earth

Tracing rays through the Earth Tracing rays through the Earth Ray parameter p: source receiv er i 1 V 1 sin i 1 = sin i 2 = = sin i n = const. = p V 1 V 2 V n p is constant for a given ray i 2 i 3 i 4 V 2 V 3 V 4 i critical If V increases

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 11 pages Written test, 9 December 2010 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: none. "Weighting": All problems weight equally.

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration INFN Bari, Ohio State University, CERN, University of Michigan, University of Oslo, INFN Roma,

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field.

MRI Homework. i. (0.5 pt each) Consider the following arrangements of bar magnets in a strong magnetic field. MRI Homework 1. While x-rays are used to image bones, magnetic resonance imaging (MRI) is used to examine tissues within the body by detecting where hydrogen atoms (H atoms) are and their environment (e.g.

More information

X-Rays From Laser Plasmas

X-Rays From Laser Plasmas X-Rays From Laser Plasmas Generation and Applications I. C. E. TURCU CLRC Rutherford Appleton Laboratory, UK and J. B. DANCE JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Matter Waves. Chapter 5

Matter Waves. Chapter 5 Matter Waves Chapter 5 De Broglie pilot waves Electromagnetic waves are associated with quanta - particles called photons. Turning this fact on its head, Louis de Broglie guessed : Matter particles have

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

Introduction to Medical Imaging. Medical Imaging

Introduction to Medical Imaging. Medical Imaging Introduction to Medical Imaging BME/EECS 516 Douglas C. Noll Medical Imaging Non-invasive visualization of internal organs, tissue, etc. I typically don t include endoscopy as an imaging modality Image

More information

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications DAVID ATTWOOD UNIVERSITY OF CALIFORNIA, BERKELEY AND LAWRENCE BERKELEY NATIONAL LABORATORY CAMBRIDGE UNIVERSITY PRESS Contents

More information

Spatial phase-shifting moiré tomography

Spatial phase-shifting moiré tomography Spatial phase-shifting moiré tomography Song Yang,, Zhao Zhimin, Chen YunYun, He Anzhi College of Natural Science Nanking University of Aeronautics & Astronautics, Nanking, 006 P. R. China Department of

More information

NMR Imaging in porous media

NMR Imaging in porous media NMR Imaging in porous media What does NMR give us. Chemical structure. Molecular structure. Interactions between atoms and molecules. Incoherent dynamics (fluctuation, rotation, diffusion). Coherent flow

More information

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle L 36 Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s Modern physics ideas are strange!

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Single-beam optical fiber trap

Single-beam optical fiber trap Journal of Physics: Conference Series Single-beam optical fiber trap To cite this article: K Taguchi and N Watanabe 2007 J. Phys.: Conf. Ser. 61 1137 View the article online for updates and enhancements.

More information

Part III Minor Option in Medical Physics 2018 Examples Sheet

Part III Minor Option in Medical Physics 2018 Examples Sheet Part III Minor Option in Medical Physics 2018 Examples Sheet Any errors or comments should be addressed sent to: seb53@cam.ac.uk URLs that may be useful: Stanford Event Generation Simulator: http://tinyurl.com/pkg476r

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR

SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR 1 SUPPLEMENTAL MATERIAL I: SEM IMAGE OF PHOTONIC CRYSTAL RESONATOR Figure S1 below is a scanning electronic microscopy image of a typical evanescently coupled photonic crystal resonator used in these experiments.

More information

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 X-Rays/CT Lecture 1. Topics

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 X-Rays/CT Lecture 1. Topics Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

Procesamiento de Imágenes y Bioseñales

Procesamiento de Imágenes y Bioseñales Procesamiento de Imágenes y Bioseñales Dr. Víctor Castañeda Agenda Physical basis of X-ray- CT, NMR, Ultrasound, Nuclear Medicine Sensors (cameras, gamma probes, microphone) Computational Tomography (CT)

More information

AQA Physics /7408

AQA Physics /7408 AQA Physics - 7407/7408 Module 10: Medical physics You should be able to demonstrate and show your understanding of: 10.1 Physics of the eye 10.1.1 Physics of vision The eye as an optical refracting system,

More information

(INCLUDING THIS FRONT PAGE)

(INCLUDING THIS FRONT PAGE) I'IFIITIIBIFI UNIVERSITY OF SCIEI'ICE RITD TECHNOLOGY FACULTY OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR) QUALIFICATION

More information

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) FRISNO-9 Dominique Elser 15/02/2007 GAWBS Theory Thermally excited acoustic fiber vibrations at certain resonance frequencies

More information

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Masaki TAKEUCHI, Satoshi OHDACHI and LHD experimental group National Institute for Fusion

More information

Electromagnetism and Light

Electromagnetism and Light Electromagnetism and Light Monday Properties of waves (sound and light) interference, diffraction [Hewitt 12] Tuesday Light waves, diffraction, refraction, Snell's Law. [Hewitt 13, 14] Wednesday Lenses,

More information

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics BANNAI AMMAN INSTITTE OF TECHNOLOGY SATHYAMANGALAM DEPATMENT OF PHYSICAL SCIENCES NIT II Applied Optics PAT A A1 The superimposition of one light wave over another is called as a) interference b) Diffraction

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

EE485 Introduction to Photonics. Introduction

EE485 Introduction to Photonics. Introduction EE485 Introduction to Photonics Introduction Nature of Light They could but make the best of it and went around with woebegone faces, sadly complaining that on Mondays, Wednesdays, and Fridays, they must

More information

III. Proton-therapytherapy. Rome SB - 2/5 1

III. Proton-therapytherapy. Rome SB - 2/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

5. 3P PIV Measurements

5. 3P PIV Measurements Micro PIV Last Class: 1. Data Validation 2. Vector Field Operator (Differentials & Integrals) 3. Standard Differential Scheme 4. Implementation of Differential & Integral quantities with PIV data 5. 3P

More information

Light propagation in Photonic. Crystal. Fibers infiltrated with Nematic. Liquid

Light propagation in Photonic. Crystal. Fibers infiltrated with Nematic. Liquid Light propagation in Photonic Crstal Fibers infiltrated with Nematic Liquid Crstals Tomasz R. Wolinski,, K. A. Brzdakiewicz, P. Lesiak, S. rtman,, A. Czapla, K. Nowecka, and A. W. Domanski Facult of Phsics,

More information

Roll No. :... Invigilator's Signature :.. CS/B.TECH(N)/SEM-1/PH-101/ PHYSICS - I. Time Allotted : 3 Hours Full Marks : 70

Roll No. :... Invigilator's Signature :.. CS/B.TECH(N)/SEM-1/PH-101/ PHYSICS - I. Time Allotted : 3 Hours Full Marks : 70 Name : Roll No. :.... Invigilator's Signature :.. CS/B.TECH(N)/SEM-1/PH-101/2012-13 2012 PHYSICS - I Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

Magnetic and optic sensing. Magnetic sensors

Magnetic and optic sensing. Magnetic sensors Magnetic and optic sensing Magnetic sensors 1 Literature Physics of Semiconductor Devices S.M. Sze, Kwok K. Ng Available as ebook on http://www.lub.lu.se/en/search/lubsearch.ht ml This lecture chapters

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 2: Polarized light Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99 28 Electromagnetic

More information

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division AFM Imaging In Liquids W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division Imaging Techniques: Scales Proteins 10 nm Bacteria 1μm Red Blood Cell 5μm Human Hair 75μm Si Atom Spacing 0.4nm

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

Supporting Information

Supporting Information Supporting Information Devlin et al. 10.1073/pnas.1611740113 Optical Characterization We deposit blanket TiO films via ALD onto silicon substrates to prepare samples for spectroscopic ellipsometry (SE)

More information

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons Outline Chapter 9 The Atom 9-1. Photoelectric Effect 9-3. What Is Light? 9-4. X-rays 9-5. De Broglie Waves 9-6. Waves of What? 9-7. Uncertainty Principle 9-8. Atomic Spectra 9-9. The Bohr Model 9-10. Electron

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

Image Reconstruction from Projection

Image Reconstruction from Projection Image Reconstruction from Projection Reconstruct an image from a series of projections X-ray computed tomography (CT) Computed tomography is a medical imaging method employing tomography where digital

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

More information

Full-field measurements and identification for biological soft tissues: application to arteries in vitro

Full-field measurements and identification for biological soft tissues: application to arteries in vitro Centre for Health Engineering CNRS UMR 5146 INSERM IFR 143 Prof. Stéphane Avril Full-field measurements and identification for biological soft tissues: application to arteries in vitro using single-gage

More information

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions Ph.D. Dissertation Defense September 5, 2012 Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions David C. Clark Digital Holography

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

Application of Nuclear Physics

Application of Nuclear Physics Application of Nuclear Physics Frontier of gamma-ray spectroscopy 0.1 IR visible light UV soft X-ray X-ray hard X-ray gamma-ray 1 10 100 1e3 1e4 1e5 1e6 energy [ev] Photoelectric effect e - Compton scattering

More information

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Ultrasonics 42 (2004) 205 212 www.elsevier.com/locate/ultras Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Matthew Clark *, Steve D. Sharples, Mike

More information

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s The Photon Concept a beam of light waves

More information

Take-Home Final Exam Last Possible Due Date: Dec. 21, 2004, 5 p.m.

Take-Home Final Exam Last Possible Due Date: Dec. 21, 2004, 5 p.m. Take-Home Final Exam Last Possible Due Date: Dec 1, 004, 5 pm Your solutions to the exam should be handed in to the instructor (BIRB 1088) or to Eve Gochis, the MRI lab administrator (BIRB 107) no later

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Systems Part 10: Performance criteria 1 Summer term 01 Herbert Gross Overview 1. Basics 01-04-18. Materials 01-04-5 3. Components 01-05-0 4. Paraxial optics 01-05-09 5.

More information

Saveetha Engineering College, Thandalam, Chennai. Department of Physics. First Semester. Ph6151 Engineering Physics I (NOV/DEC 2014)

Saveetha Engineering College, Thandalam, Chennai. Department of Physics. First Semester. Ph6151 Engineering Physics I (NOV/DEC 2014) Saveetha Engineering College, Thandalam, Chennai. Department of Physics First Semester Ph6151 Engineering Physics I (NOV/DEC 2014) Part A (Questions and Answers) 1. Distinguish between Crystalline and

More information

Thermal and nonlinear optical studies of newly synthesized EDOT based bent-core and hockey-stick like liquid crystals

Thermal and nonlinear optical studies of newly synthesized EDOT based bent-core and hockey-stick like liquid crystals Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic supplementary information:

More information

Holographic Characterization of Agglomerates in CMP Slurries

Holographic Characterization of Agglomerates in CMP Slurries Holographic Characterization of Agglomerates in CMP Slurries Total Holographic Characterization (THC) Comparison of THC to other technologies Dynamic Light Scattering (DLS) Scanning Electron Microscopy

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

All Silica Fiber (Low & High OH) Anhydroguide (AFS) & Superguide (SFS)

All Silica Fiber (Low & High OH) Anhydroguide (AFS) & Superguide (SFS) (AFS) & (SFS) Silica / Polyimide or Acrylate Coated Nylon or Tefzel Coated guide s Silica / fibers are primarily used in photonics applications where individual or bundled large core (> 5µm) multimode

More information

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT I. Objective: To study the Pockels electro-optic (EO) effect, and the property of light propagation in anisotropic medium, especially polarization-rotation effects.

More information

1, 2, 3, 4, 6, 14, 17 PS1.B

1, 2, 3, 4, 6, 14, 17 PS1.B Correlations to Next Generation Science Standards Physical Science Disciplinary Core Ideas PS-1 Matter and Its Interactions PS1.A Structure and Properties of Matter Each atom has a charged substructure

More information

Professor Stuart Bunt 217

Professor Stuart Bunt 217 Professor Stuart Bunt 217 Traditional Anatomy Phrenology, the study of bumps on the skull. Measuring brain weights and size (still being done..see the fuss about Einstein s brain). Little link between

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

MP5: Soft Matter: Physics of Liquid Crystals

MP5: Soft Matter: Physics of Liquid Crystals MP5: Soft Matter: Physics of Liquid Crystals 1 Objective In this experiment a liquid crystal display (LCD) is built and its functionality is tested. The light transmission as function of the applied voltage

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

Micro-Flow in a bundle of micro-pillars. A. Keißner, Ch. Brücker

Micro-Flow in a bundle of micro-pillars. A. Keißner, Ch. Brücker Micro-Flow in a bundle of micro-pillars A. Keißner, Ch. Brücker Institute of Mechanics and Fluid Dynamics, University of Freiberg, TU Freiberg, Germany, Email: armin.keissner@imfd.tu-freiberg.de Abstract

More information

28. Fourier transforms in optics, part 3

28. Fourier transforms in optics, part 3 28. Fourier transforms in optics, part 3 Magnitude and phase some examples amplitude and phase of light waves what is the spectral phase, anyway? The Scale Theorem Defining the duration of a pulse the

More information

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography 4. Functional OCT Dr. Gereon Hüttmann / 2009 Doppler OCT (D-OCT) & Polarizationsensitive OCT (PS-OCT) Photonics II, by

More information

34. Even more Interference Effects

34. Even more Interference Effects 34. Even more Interference Effects The Fabry-Perot interferometer Thin-film interference Anti-reflection coatings Single- and multi-layer Advanced topic: Photonic crystals Natural and artificial periodic

More information

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics J Moger and C P Winlove Relating Structure to Function Biochemistry Raman microspectrometry Surface enhanced Raman spectrometry (SERS)

More information

On the possibility to create a prototype of laser system for space debris movement control on the basis of the 3-meter telescope.

On the possibility to create a prototype of laser system for space debris movement control on the basis of the 3-meter telescope. OJC «RPC «Precision Systems and Instruments», Moscow, Russia A. Alexandrov, V. Shargorodskiy On the possibility to create a prototype of laser system for space debris movement control on the basis of the

More information

RESEARCH ON STUDY OF CONCENTRATION DEPENDENCE OF REFRACTIVE INDEX OF OIL USING A NOVEL TECHNIQUE

RESEARCH ON STUDY OF CONCENTRATION DEPENDENCE OF REFRACTIVE INDEX OF OIL USING A NOVEL TECHNIQUE RESEARCH ON STUDY OF CONCENTRATION DEPENDENCE OF REFRACTIVE INDEX OF OIL USING A NOVEL TECHNIQUE Department of Physics, Mid Western University, Campus of Science and Technology email:dhakaldharma605@gmail.com

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

Unified School District of De Pere Physics Benchmarks

Unified School District of De Pere Physics Benchmarks Content Standards: A. Students will understand that among the science disciplines, there are unifying themes: systems, order, organization, and interactions; evidence, models, and explanations; constancy,

More information

Phase Sensitive Faraday Rotation in. and various Diamagnetic liquid Samples

Phase Sensitive Faraday Rotation in. and various Diamagnetic liquid Samples Phase Sensitive Faraday Rotation in TERBIUM GALLIUM GARNET crystal and various Diamagnetic liquid Samples Supervisor: Dr. Saadat Anwar Siddiqi Co-Supervisor: Dr. Muhammad Sabieh Anwar Presented by: Aysha

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm.

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. TC [66 marks] This question is about a converging (convex) lens. A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. (i) Deduce the magnification

More information