Nonreciprocal polarization converter consisting of asymmetric waveguide with ferrimagnetic Ce:YIG

Size: px
Start display at page:

Download "Nonreciprocal polarization converter consisting of asymmetric waveguide with ferrimagnetic Ce:YIG"

Transcription

1 8th International Conference on Numerical Simulation of Optoelectronic Devices Nonreciprocal polarization converter consisting of asymmetric waveguide with ferrimagnetic Ce:YIG Research Center for Advanced Science and Technology, Univ. of Tokyo T. Amemiya, T. Tanemura, and Y. Nakano

2 Introduction Commercially available optical isolators Faraday rotation of the magneto-optical materials (garnets). Conventional bulk isolators are not suitable for monolithic integration with other waveguide-based optical devices.

3 Waveguide-based unilateral devices Waveguide-based unilateral devices enhancement of stability in photonic integrated circuits reduction of cost and size of laser diode package laser diode unilateral device

4 Waveguide isolators studied in recent years Type Material Performance Fabrication Size QPM faraday rotation Nonreciprocal phase shift (NRPS) Nonreciprocal loss (NRL) Ce:YIG/ GaAs/AlGaAs Ce:YIG/ GaInAsP/InP Fe/ GaInAsP/InP < 10 db/mm < 1 mm 30 db/mm 2-4 mm 15 db/mm < 0.5 mm QPM NRPS NRL APL 88, (2006) Appl. Opt. 39, 6158 (2000) APL 88, (2006) JLT 24, 38 (2006)

5 Concept of nonreciprocal polarization converter I. I. By By inserting a NRPC NRPC at at the the output output port port of of a laser, laser, we we can can suppress the the coherent interference between the the lasing lasing light light and and back-reflected light. light. II. II. We We can can also also make make a waveguide isolator isolator by by combining the the NRPC NRPC with with a waveguide polarizer or or mode mode splitter. splitter.

6 Structure of our NRPC Our device has several advantages over other waveguide-based unilateral devices reported so far. Material Performance Fabricatio Over 90 % nonreciprocal n Ce:YIG/ polarization conversion GaInAsP/InP (without electric power) Size < 0.3 mm

7 Basic principle of our NRPC β 1 TE-polarized light β 2 The The values values of of β 1 and 1 andβ 2 are 2 are different between forward and and backward propagations because of of the the magneto-optic transverse Kerr Kerr effect effect induced by by the the ferrimagnetic Ce:YIG.

8 Parameters for Symbol Parameter Value ε 1 Refractive index of InP 3.16 ε 2 Refractive index of GaInAsP 3.4 ε 3 Refractive index of Ce:YIG 2.2 Θ Magneto-optical effect for Ce:YIG (deg/cm) θ Angle of the asymmetric waveguide 53 h Height of the device 1.1 (μm) w Width of the device (μm)

9 Simulation process <x-y plane> With the aid of FDM (full-vector wave equations) (1)Propagation constant for each mode (2)Electric field distribution Optimize the device structure <z-axis> With the aid of vectorially corrected (VC) method Power intensity along light propagation W. P. Huang, JQE 29, 2639 (1993) M. Fontaine, JOSA B 15, 964 (1998)

10 Full-vector wave equations (x-y plane) ε r 0 0 μν Dielectric tensor of each layer ε = 0 εr jα 0 jα ε r Non-magnetic layer 1 1 E + E + ( k ε β ) E + ( ε E ) + ( ε E ) = 0 1st 2nd x x y x 0 r x x x r x x y r y εr εr 1 1 E + E + ( k ε β ) E + ( ε E ) + ( ε E ) = x y y y 0 r y y x r x y y r y εr εr Magnetic layer 1 1 Ψ E + E + ( k ε β ) E + ( ε E ) + ( ε E ) + αωμ ( ) = 0 1st 2nd x x y x 0 r x x x r x x y r y 0 x εr εr εr 1 1 Ψ E + E β E +Λ+ ( ε E ) + ( ε E ) + αωμ ( ) = x y y y y y x r x y y r y 0 y εr εr εr 2 αωε εβ 2 εr β Ψ= [ ( x Ey x yex) x( εrex) y( εrey) Ey] εβ α α α r 0 r k0 k0 k α αβk ε β Λ= ( ) + [ ( ) + ( ) + ] εβ α εβ α r r x Ey x yex x εrex y εrey Ey + k0 r + k0 α

11 FDM solution (x-y plane) Using the discrete form of the differential operators, we obtained finite-difference equations for electric field component E x and E y. Ex1,Ey1 Mesh: Mesh width: 50 (nm) Ex81,Ey81 Ex1 Ex2 1st Full-vector equation Ex 6400 = Ey1 Ey 2nd 2 Full-vector equation Ey Ex80, Ey80 Exr,Eyr Ex6400,Ey6400 W. P. Huang, JQE 29, 2639 (1993)

12 Refractive index for orthogonal two modes M Mode1 (Electric field) M Effective refractive index = β / k 0 Mode2 (Electric field)

13 Electric field distributions in our device Mode1 Mode1, E x Mode1, E y x=15 Mode2 Mode2, E x Mode2, E y 10 x x=-5

14 Simulation process <x-y plane> With the aid of FDM method (full-vector wave equations) (1)Propagation constant for each mode (2)Electric field distribution Optimize the device structure <z-axis> With the aid of vectorially corrected (VC) method Power intensity along light propagation W. P. Huang, JQE 29, 2639 (1993) M. Fontaine, JOSA B 15, 964 (1998)

15 Optimizing the device structure (I) Half Beat length π L = β β 1 2 TE-polarized light TE TM Rotation parameter The The necessary conditions for for efficient nonreciprocal conversion Backward half-beat length length is is twice twice as as large large as asforward one. one. Angle Angle φ should should be be almost almost R = A A ε E dxdy r r 2 y ε E dxdy 2 x R=1 φ=45 K. Saitoh et al., JLT 19, 405 (2001)

16 Optimizing the device structure (II) To To achieve achieve an an effective effective nonreciprocareciprocal conversion, conversion, non- (I)The (I)The half-beat half-beat length length for for backward backward light light must must be be twice twice as as large large as as that that for for forward. forward. (II)The (II)The rotation rotation parameter parameter R should should be be near near We optimized structure of the device. w = 1.0 μm, h = 1.1 μm

17 Simulation process <x-y plane> With the aid of FDM method (full-vector wave equations) (1)Propagation constant for each mode (2)Electric field distribution Optimize the device structure <z-axis> With the aid of vectorially corrected (VC) method Power intensity along light propagation W. P. Huang, JQE 29, 2639 (1993) M. Fontaine, JOSA B 15, 964 (1998)

18 Power intensity along light propagation TE mode TM mode uz () = ( β1 β2 ) 1 exp iz 1 R+ exp R M. Fontaine, JOSA B 14, 1444 (1997) M. Fontaine, JOSA B 15, 964 (1998) ( iz β1 β2 ) Device Device length: length: 0.27mm 0.27mm Nonreciprocal Nonreciprocal polarization polarization conversion: conversion: 92% 92% Forward Forward light: light: TE TE TE TE Backward Backward light: light: TE TM TE TM

19 Summary We proposed a nonreciprocal TE-TM polarization converter for avoiding the problems caused by undesired reflections of light in photonic integrated circuits. Material Performance Size Ce:YIG/ GaInAsP/InP 93 % nonreciprocal polarization conversion Forward: TE TE Backward: TE TM 0.27 mm

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

Photonic crystal laser threshold analysis using 3D FDTD with a material gain model

Photonic crystal laser threshold analysis using 3D FDTD with a material gain model Photonic crystal laser threshold analysis using 3D FDTD with a material gain model Adam Mock and John O'Brien Microphotonic Device Group University of Southern California July 14, 2009 Session: ITuD6 Integrated

More information

Quadratic nonlinear interaction

Quadratic nonlinear interaction Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION Progress In Electromagnetics Research, PIER 103, 393 401, 2010 A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION Y. C. Shi Centre

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

Surface Plasmon Isolator based on Nonreciprocal Coupling. Abstract

Surface Plasmon Isolator based on Nonreciprocal Coupling. Abstract APS/123-QED Surface Plasmon Isolator based on Nonreciprocal Coupling Juan Montoya, Krishnan Parameswaren, Joel Hensley, and Mark Allen Physical Sciences Incorporated 20 New England Business Center, Andover,

More information

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals PRAMANA c Indian Academy of Sciences Vol. 70, No. 1 journal of January 2008 physics pp. 153 161 Modelling and design of complete photonic band gaps in two-dimensional photonic crystals YOGITA KALRA and

More information

Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays

Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays Miguel Levy and Pradeep Kumar Department of Physics, Michigan Technological University, Houghton, Michigan 49931 ABSTRACT We show that

More information

GRATING CLASSIFICATION

GRATING CLASSIFICATION GRATING CLASSIFICATION SURFACE-RELIEF GRATING TYPES GRATING CLASSIFICATION Transmission or Reflection Classification based on Regime DIFFRACTION BY GRATINGS Acousto-Optics Diffractive Optics Integrated

More information

Supplementary Information

Supplementary Information S1 Supplementary Information S2 Forward Backward Forward Backward Normalized to Normalized to Supplementary Figure 1 Maximum local field ratio and transmission coefficient. Maximum local field ratio (green

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory Materials with Engineered Dispersion for the Enhancement of Light-Matter Interactions 10 January 2013 Ilya Vitebskiy, AFRL/RYDP Integrity Service Excellence SUBTOPIC 1 Nonreciprocal

More information

Resonant modes and laser spectrum of microdisk lasers. N. C. Frateschi and A. F. J. Levi

Resonant modes and laser spectrum of microdisk lasers. N. C. Frateschi and A. F. J. Levi Resonant modes and laser spectrum of microdisk lasers N. C. Frateschi and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111 ABSTRACT

More information

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff CHARLES R. BOYD, JR. Microwave Applications Group, Santa Maria, California, U. S. A. ABSTRACT Unlike conventional waveguides, lossless

More information

Optical isolator based on the electro-optic effect in periodically poled lithium niobate with the addition of a half domain

Optical isolator based on the electro-optic effect in periodically poled lithium niobate with the addition of a half domain Optical isolator based on the electro-optic effect in periodically poled lithium niobate with the addition of a half domain Lei Shi, Linghao Tian, and Xianfeng Chen* Department of Physics, The State Key

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA

Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA Michael J. Connelly and Li-Qiang Guo Optical Communications Research Group, Department of Electronic and

More information

Band Edge Effects and Normal Mode Propagation in Waveguide Magnetophotonic Crystals

Band Edge Effects and Normal Mode Propagation in Waveguide Magnetophotonic Crystals J. Magn. Soc. Jpn., 3, 561-566 (26) Band Edge Effects and Normal Mode Propagation in Waveguide Magnetophotonic Crystals M. Levy, R. Li *, A. A. Jalali and X. Huang Physics Department, Michigan

More information

A Dielectric Invisibility Carpet

A Dielectric Invisibility Carpet A Dielectric Invisibility Carpet Jensen Li Prof. Xiang Zhang s Research Group Nanoscale Science and Engineering Center (NSEC) University of California at Berkeley, USA CLK08-09/22/2008 Presented at Center

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Sourangsu Banerji Department of Electronics & Communication Engineering, RCC Institute of Information

More information

Back to basics : Maxwell equations & propagation equations

Back to basics : Maxwell equations & propagation equations The step index planar waveguide Back to basics : Maxwell equations & propagation equations Maxwell equations Propagation medium : Notations : linear Real fields : isotropic Real inductions : non conducting

More information

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method 214 J. Opt. Soc. Am. A/ Vol. 23, No. 8/ August 26 Wang et al. Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method Qian Wang, Gerald Farrell, and Yuliya Semenova

More information

Analysis of waveguides coupling in Photonic Crystal Power-Splitter

Analysis of waveguides coupling in Photonic Crystal Power-Splitter International Research Journal of Applied and Basic Sciences 204 Available online at www.irjabs.com ISSN 225-838X / Vol, 8 (9): 259-264 Science Explorer Publications Analysis of waveguides coupling in

More information

Full Vectorial Analysis of the Tapered Dielectric Waveguides and Their Application in the MMI Couplers

Full Vectorial Analysis of the Tapered Dielectric Waveguides and Their Application in the MMI Couplers Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 Full Vectorial Analysis of the Tapered Dielectric Waveguides

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Design of Integrated Polarization Beam Splitter with Liquid Crystal

Design of Integrated Polarization Beam Splitter with Liquid Crystal Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2006-01-01 Design of Integrated Polarization Beam Splitter with Liquid Crystal Qian Wang Gerald Farrell

More information

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane Optimum Access Waveguide Width for 1xN Multimode Interference Couplers on Silicon Nanomembrane Amir Hosseini 1,*, Harish Subbaraman 2, David Kwong 1, Yang Zhang 1, and Ray T. Chen 1,* 1 Microelectronic

More information

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Introduction to Optoelectronic Device Simulation by Joachim Piprek NUSOD 5 Tutorial MA Introduction to Optoelectronic Device Simulation by Joachim Piprek Outline:. Introduction: VCSEL Example. Electron Energy Bands 3. Drift-Diffusion Model 4. Thermal Model 5. Gain/Absorption

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information

EVALUATION of the modal characteristics of an optical

EVALUATION of the modal characteristics of an optical JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 5, MAY 2005 1947 Implicit Yee-Mesh-Based Finite-Difference Full-Vectorial Beam-Propagation Method Junji Yamauchi, Member, IEEE, Member, OSA, Takanori Mugita,

More information

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES Progress In Electromagnetics Research, PIER 22, 197 212, 1999 A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES M. Akbari, M. Shahabadi, and K. Schünemann Arbeitsbereich Hochfrequenztechnik Technische

More information

Metal-Dielectric Photonic Multilayers for Beam Control

Metal-Dielectric Photonic Multilayers for Beam Control Metal-Dielectric Photonic Multilayers for Beam Control Andrey Chabanov 1,2 1 Department of Physics and Astronomy University of Texas at San Antonio 2 AFRL/RY, WPAFB Funded by AFOSR (Program Director Dr.

More information

Progress In Electromagnetics Research B, Vol. 1, , 2008

Progress In Electromagnetics Research B, Vol. 1, , 2008 Progress In Electromagnetics Research B Vol. 1 09 18 008 DIFFRACTION EFFICIENCY ENHANCEMENT OF GUIDED OPTICAL WAVES BY MAGNETOSTATIC FORWARD VOLUME WAVES IN THE YTTRIUM-IRON-GARNET WAVEGUIDE COATED WITH

More information

by applying two pairs of confocal cylindrical lenses

by applying two pairs of confocal cylindrical lenses Title:Design of optical circulators with a small-aperture Faraday rotator by applying two pairs of confocal Author(s): Yung Hsu Class: 2nd year of Department of Photonics Student ID: M0100579 Course: Master

More information

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC WAVEGUIDES Chin-ping Yu (1) and Hung-chun Chang (2) (1) Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei,

More information

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall Due on Nov 20, 2014 by 5:00 PM School of Electrical and Computer Engineering, Cornell University ECE 533: Semiconductor Optoelectronics Fall 14 Homewor 8 Due on Nov, 14 by 5: PM This is a long -wee homewor (start early). It will count

More information

Optical isolation based on Faraday-like effect in periodically poled lithium niobate with odd number of domains tailed with a semi-domain

Optical isolation based on Faraday-like effect in periodically poled lithium niobate with odd number of domains tailed with a semi-domain 730 J. Opt. Soc. Am. B / Vol. 31, No. 4 / April 2014 Li et al. Optical isolation based on Faraday-like effect in periodically poled lithium niobate with odd number of domains tailed with a semi-domain

More information

Lecture 23: Basic Properties of Dividers and Couplers.

Lecture 23: Basic Properties of Dividers and Couplers. Whites, EE 48/58 Lecture 23 age of 9 Lecture 23: Basic roperties of Dividers and Couplers. For the remainder of this course we re going to investigate a plethora of microwave devices and circuits both

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells

High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells High Performance Phase and Amplitude Modulators Based on GaInAsP Stepped Quantum Wells H. Mohseni, H. An, Z. A. Shellenbarger, M. H. Kwakernaak, and J. H. Abeles Sarnoff Corporation, Princeton, NJ 853-53

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE318S Fundamentals of Optics Final Exam April 16, 2007 Exam Type: D (Close-book + two double-sided aid sheets + a non-programmable

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Design and simulation of a high power single mode 1550 nm InGaAsP VCSELs

Design and simulation of a high power single mode 1550 nm InGaAsP VCSELs Design and simulation of a high power single mode 1550 nm InGaAsP VCSELs Rahim Faez 1,AzamMarjani 2, and Saeid Marjani 3a) 1 Department of Electrical Engineering, Sharif University of Technology, Tehran,

More information

Electric field enhancement in metallic and multilayer dielectric gratings

Electric field enhancement in metallic and multilayer dielectric gratings Electric field enhancement in metallic and multilayer dielectric gratings B. W. Shore, M. D. Feit, M. D. Perry, R. D. Boyd, J. A. Britten, R. Chow, G. E. Loomis Lawrence Livermore National Laboratory,

More information

Advanced techniques Local probes, SNOM

Advanced techniques Local probes, SNOM Advanced techniques Local probes, SNOM Principle Probe the near field electromagnetic field with a local probe near field probe propagating field evanescent Advanced techniques Local probes, SNOM Principle

More information

All-optical isolator under arbitrary linearly polarized fundamental wave in an optical superlattice

All-optical isolator under arbitrary linearly polarized fundamental wave in an optical superlattice All-optical isolator under arbitrary linearly polarized fundamental wave in an optical superlattice Liang Yuan, 1 Jianhong Shi, 1,2 and Xianfeng Chen 1,3 1 Department of Physics; The State Key Laboratory

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

Thermal lensing in high power ridge waveguide lasers. H. Wenzel, M. Dallmer and G. Erbert

Thermal lensing in high power ridge waveguide lasers. H. Wenzel, M. Dallmer and G. Erbert Thermal lensing in high power ridge waveguide lasers H. Wenzel, M. Dallmer and G. Erbert Outline motivation and laser structure experimental results theoretical model simulation results conclusions Motivation

More information

arxiv: v1 [physics.optics] 20 Feb 2008

arxiv: v1 [physics.optics] 20 Feb 2008 Transpose symmetry of the Jones Matrix and topological phases Rajendra Bhandari arxiv:080.771v1 [physics.optics] 0 Feb 008 Raman Research Institute, Bangalore 560 080, India. email: bhandari@rri.res.in

More information

Polarization control of defect modes in threedimensional woodpile photonic crystals

Polarization control of defect modes in threedimensional woodpile photonic crystals Polarization control of defect modes in threedimensional woodpile photonic crystals Michael James Ventura and Min Gu* Centre for Micro-Photonics and Centre for Ultrahigh-bandwidth Devices for Optical Systems,

More information

FDTD Modelling and Experimental Verification of FWM in Semiconductor Micro-Resonators

FDTD Modelling and Experimental Verification of FWM in Semiconductor Micro-Resonators Karlsruhe FDTD Modelling and Experimental Verification of FWM in Semiconductor Micro-Resonators Masafumi Fujii*, Christian Koos, Christopher Poulton**, Juerg euthold, Wolfgang Freude Institute for High-Frequency

More information

REFLECTION AND REFRACTION AT A SINGLE INTERFACE

REFLECTION AND REFRACTION AT A SINGLE INTERFACE REFLECTION AND REFRACTION AT A SINGLE INTERFACE 5.1 THE BEHAVIOUR OF LIGHT AT A DIELECTRIC INTERFACE The previous Chapters have been concerned with the propagation of waves in empty space or in uniform,

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Distributed-Feedback Lasers

Distributed-Feedback Lasers Distributed-Feedback Lasers Class: Integrated Photonic Devices Tie: Fri. 8:00a ~ 11:00a. Classroo: 資電 06 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Wavelength Dependence of Bragg Reflections Free-Space Bragg

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Local normal-mode coupling and energy band splitting in elliptically birefringent onedimensional

Local normal-mode coupling and energy band splitting in elliptically birefringent onedimensional A. A. Jalali and M. Levy Vol. 25 No. 1/January 2008/J. Opt. Soc. Am. B 119 Local normal-mode coupling and energy band splitting in elliptically birefringent onedimensional magnetophotonic crystals Amir

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes Tooth-shaped plasmonic waveguide filters with nanometeric sizes Xian-Shi LIN and Xu-Guang HUANG * Laboratory of Photonic Information Technology, South China Normal University, Guangzhou, 510006, China

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Nonlinear optics with quantum-engineered intersubband metamaterials

Nonlinear optics with quantum-engineered intersubband metamaterials Nonlinear optics with quantum-engineered intersubband metamaterials Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin 1 Mid-infrared and THz photonics Electronics

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Magnetoplasmonics: fundamentals and applications

Magnetoplasmonics: fundamentals and applications Antonio García-Martín http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas Magnetoplasmonics: fundamentals and applications

More information

Terahertz isolator based on magneto-microstructure

Terahertz isolator based on magneto-microstructure Invited Paper Terahertz isolator based on magneto-microstructure Sai. Chen, Fei. Fan, and Sheng-Jiang. Chang * Institute of Modern Optics, Nankai University, Tianjin 300071, China * Email: sjchang@nankai.edu.cn

More information

Interferometric model for phase analysis in fiber couplers

Interferometric model for phase analysis in fiber couplers Interferometric model for phase analysis in fiber couplers Xiaojun Fang, Richard O. Claus, and Guy Indebetouw An interferometric model is proposed to estimate the phase differences in lossless, strongly

More information

Jones calculus for optical system

Jones calculus for optical system 2/14/17 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Jones calculus for optical system T. Johnson Key concepts in the course so far What is meant by an electro-magnetic response? What characterises

More information

Plasmonic nanoguides and circuits

Plasmonic nanoguides and circuits Plasmonic nanoguides and circuits Introduction: need for plasmonics? Strip SPPs Cylindrical SPPs Gap SPP waveguides Channel plasmon polaritons Dielectric-loaded SPP waveguides PLASMOCOM 1. Intro: need

More information

Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides

Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides Paolo Pintus 1,2, 1 Scuola Sant Anna, via Moruzzi 1, 56124 Pisa, Italy 2 CNIT Photonic Networks National Laboratory,

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Dielectric Slab Waveguide

Dielectric Slab Waveguide Chapter Dielectric Slab Waveguide We will start off examining the waveguide properties of a slab of dielectric shown in Fig... d n n x z n Figure.: Cross-sectional view of a slab waveguide. { n, x < d/

More information

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of Supplementary Figures Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of bulk SrTiO 3. The normalized high-energy reflectivity (0.5 35 ev) of SrTiO 3 is compared to the

More information

What is a mode in few mode fibers?: Proposal of MIMOfree mode division multiplexing using true eigenmodes

What is a mode in few mode fibers?: Proposal of MIMOfree mode division multiplexing using true eigenmodes LETTER IEICE Electronics Express, Vol.13, No.18, 1 1 What is a mode in few mode fibers?: Proposal of MIMOfree mode division multiplexing using true eigenmodes Yasuo Kokubun 1a), Tatsuhiko Watanabe, Seiya

More information

arxiv: v1 [cond-mat.mes-hall] 9 Mar 2016

arxiv: v1 [cond-mat.mes-hall] 9 Mar 2016 Dynamically controllable graphene three-port arxiv:1603.02936v1 [cond-mat.mes-hall] 9 Mar 2016 circulator Victor Dmitriev, Wagner Castro,, and Clerisson Nascimento Department of Electrical Engineering,

More information

OPTICAL COMMUNICATIONS

OPTICAL COMMUNICATIONS L21-1 OPTICAL COMMUNICATIONS Free-Space Propagation: Similar to radiowaves (but more absorption by clouds, haze) Same expressions: antenna gain, effective area, power received Examples: TV controllers,

More information

Effects of transverse mode coupling and optical confinement factor on gallium-nitride based laser diode

Effects of transverse mode coupling and optical confinement factor on gallium-nitride based laser diode Effects of transverse mode coupling and optical confinement factor on gallium-nitride based laser diode Jin Xiao-Ming( ) a)b), Zhang Bei( ) a) Dai Tao( ) a), and Zhang Guo-Yi( ) a) a) School of Physics

More information

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Grading Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Maximum total = 39 points Pass if total >= 20 points Fail if total

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

OPTICAL computing and signal processing require isolation

OPTICAL computing and signal processing require isolation IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 50, NO. 8, AUGUST 2014 633 Mode Converter Optical Isolator Based on Dual Negative Refraction Photonic Crystal Walid Aroua, Fathi AbdelMalek, Shyqyri Haxha, Senior

More information

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J. TECHCON 98 Las Vegas, Nevada September 9-11, 1998 MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL Ron L. Kinder and Mark J. Kushner Department of

More information

Design and optimization of a monolithically integratable InP-based optical waveguide isolator

Design and optimization of a monolithically integratable InP-based optical waveguide isolator Vanwolleghem et al. Vol. 24, No. 1/January 2007/J. Opt. Soc. Am. B 1 Design and optimization of a monolithically integratable InP-based optical waveguide isolator Mathias Vanwolleghem, Philippe Gogol,

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Mid-term exam on Monday, March 6 th Review Properties of light

More information

Sub-wavelength electromagnetic structures

Sub-wavelength electromagnetic structures Sub-wavelength electromagnetic structures Shanhui Fan, Z. Ruan, L. Verselegers, P. Catrysse, Z. Yu, J. Shin, J. T. Shen, G. Veronis Ginzton Laboratory, Stanford University http://www.stanford.edu/group/fan

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Mid-term exam will be on Feb 27 th, 2PM, room 307 (open books/notes)

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements No class Monday, Feb 26 Mid-term exam will be on Feb 28 th

More information

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19) Observation of Brewster's effect fo Titleelectromagnetic waves in metamateri theory Author(s) Tamayama, Y; Nakanishi, T; Sugiyama Citation PHYSICAL REVIEW B (2006), 73(19) Issue Date 2006-05 URL http://hdl.handle.net/2433/39884

More information

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13 Optics and Optical Design Chapter 6: Polarization Optics Lectures 11-13 Cord Arnold / Anne L Huillier Polarization of Light Arbitrary wave vs. paraxial wave One component in x-direction y x z Components

More information

Chapter 6. Polarization Optics

Chapter 6. Polarization Optics Chapter 6. Polarization Optics 6.1 Polarization of light 6. Reflection and refraction 6.3 Optics of anisotropic media 6.4 Optical activity and magneto-optics 6.5 Optics of liquid crystals 6.6 Polarization

More information

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 551 Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Y. Y. Li, P. F. Gu, M. Y. Li,

More information

Infrared carpet cloak designed with uniform silicon grating structure

Infrared carpet cloak designed with uniform silicon grating structure Infrared carpet cloak designed with uniform silicon grating structure Xiaofei Xu, Yijun Feng, Yu Hao, Juming Zhao, Tian Jiang Department of Electronic Science and Engineering, Nanjing Univerisity, Nanjing,

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Ashim Kumar Saha (D3) Supervisor: Prof. Toshiaki Suhara Doctoral Thesis Defense Quantum Engineering Design Course Graduate

More information