Basic Energy Principles in Stiffness Analysis

 Stephanie Loren Neal
 5 months ago
 Views:
Transcription
1 Basic Energy Principles in Stiffness Analysis StressStrain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting our attention to linear elastic structural response. Further assuming that the material is homogenous and isotropic, we only need to know two of the following three material constants: E = Elastic (or Young s) modulus G = Shear modulus = Poisson ratio Normally, the shear modulus is expressed in terms of the elastic modulus and Poisson ratio as E G ( ) The most widely used civil engineering structural materials, steel and concrete, have uniaxial stressstrain diagrams of the types shown in Fig.. Mild steels yield Fig. : Typical Stress () Strain (e) Curves for (a) Steel and (b) Concrete with a pronounced permanent elongation at a stress ym (Fig.a). High strength steels yield gradually, which requires an arbitrary definition of its yield strength yh, offset criterion. Yield strengths for steel vary from less than 5 MPa to more than 7 MPa. For practical purposes, steel behaves as an ideal material in both tension and compression below the yield or buckling stress. The elastic modulus and Poisson ratio for steel are always close to, MPa and.3, respectively. Concrete is less predictable, but under shortduration compressive stress not greater than u /3 u /, its behavior is reasonably linear such as the commonly used.% 3 4
2 (Fig. b in which typical values for u are: 3 MPa u 5 MPa). An elastic modulus of E =, MPa and Poisson ratio of =.5 are typical for concrete. In using concrete for analysis, the ACI code specifies using the gross cross area properties to perform analyses to determine the force distributions in frame structures, i.e., ignore the reinforcing steel and tension cracking in calculating the force distributions. 5 Work and Energy The principle of conservation of energy is fundamentally important in structural analysis. This principle, expressed as energy or work balance, is applicable to both rigid and deformable structures. Rigid structures only require multiplying the external forces by the respective displacements. Deformable structures also require the summation of the internal stresses acting through the 6 respective deformations. Internal work is called strain energy and must be accounted for in the energy balance. The work dw of a force F acting through a change in displacement d in the direction of F is dw Fd () Over, the total work is W Fd () imiting attention to gradually applied forces, i.e., ignoring inertial forces caused by dynamic loads, and linear elastic response leads to W Fdk d k F F F k (3) 7 8
3 Expanding to a vector of forces and displacements leads to W F { } (4) The special case shown in the right figure: u W F x Fxu v where U= strain energy for the element. Equation (5) is a homogeneous, quadratic polynomial in terms of the local coordinate element displacements {u} or global coordinate element displacement {v}. Expanding (4) for a single element ({F} = [k] {u} or {F} = [K] {v}): W u [k]{u} v [K]{v} U (5) 9 Principle of Virtual Displacements to constructing stiffness equations. In prior chapters we established The principle of virtual the relationships of framework displacements can be stated as analysis directly utilizing the basic If a deformable structure is in conditions of equilibrium and equilibrium and remains in displacement continuity. Henceforth, we will use energy principles, equilibrium while it is subject to a virtual distortion, the external specifically the principle of virtual virtual work done by the external displacements since it permits forces acting on the structure is mathematical manipulations that equal to the internal virtual work are not possible with direct done by the stress resultants. procedures. We restrict our attention to virtual displacements Recall: virtual imaginary, not real, or in essence but not in fact since this principle is applicable 3
4 The principle of virtual displacements is expressed mathematically as W ext = W int (6) F F W ext W where W ext = F = external virtual work (shaded blue area in the figure) and W int = internal virtual work. 3 Equation (6) is based on the conservation of energy principle, i.e. the work done by the external forces going through a virtual displacement equals the work done by the internal forces due to the same virtual displacement. The external virtual work can be generalized to a system of forces as s ext i i (7) i W qdx ( )P 4 The internal virtual work (W int ) is a function of the structure type. Since this course focuses on frame members, only axial and bending deformations will be considered. Axial Deformation Consider the axial force system shown in Fig.. The differential internal virtual work (dw int ) is d( u) dw int Fdx x (8a) dx where u = virtual axial displacement and F x = real axial force. Recalling from your mechanics of materials class that axial strain e x = du/dx and the axial force F x = x A (axial stress times area), (8a) can be rewritten as dw int ex x Adx (8b) Fig. : Axial Deformation 5 Integrating (8b) over the length of 6 the element and substituting 4
5 Hooke s law ( x = Ee x ) leads to W e e dx int x x d( u) du dx (9) dx dx For the beam bending (flexure) case (Fig. 3), the internal virtual work is Wint z Mz dx z EIz dx d ( v) d v () EI dx dx dx where v = virtual transverse displacement; z = d(v)/dx = virtual rotation; M z = real moment about the zaxis; z = d v/dx = curvature strain about the zaxis; and M z = EI k z. Fig. 3: Bending Deformation 7 8 NOTE: A difficulty in applying the principle of virtual displacements is that functions must be assumed or developed for the real and virtual displacement functions in (9) and (). Development of these expressions will follow finite element mechanics, which is covered in a later section. 9 Analytical Solutions Using Principle of Virtual Displacements Consider the simple axial force structure shown in Fig. 4. The real x, u F x, u Fig. 4: Axial Deformation Structure displacement u: u = x/ u The real strain is e x = du/dx = u / Imposing a virtual displacement 5
6 u results in an external virtual work of W ext = u F x In order to calculate the internal virtual work d( u) du Wint dx dx dx expressions for u and u over the length of the axial deformation structure must be assumed. We will consistently assume the real displacement u: u = (x/) u We will consider various expressions for the virtual displacement to demonstrate the principle of virtual displacements. First, consider u = (x/) u The internal virtual work: u u int W dx u u Equating the external and internal virtual works gives u F x = u (/) u or u = F x / which is exact. Consider next: u = (x/) u The internal virtual work: u u int W xdx u u Which again gives the exact solution: u = F x / astly, consider: u = u sin(x/) 3 The internal virtual work: u x u Wint cos dx u u Which again gives the exact solution: u = F x / These three virtual displacement expressions all resulted in an exact solution since the real displacement solution was exact. If the chosen real displacements 4 6
7 correspond to stresses that identically satisfy the conditions of equilibrium, any form of admissible virtual displacement will suffice to produce the exact solution. Notice the adjective admissible in front of virtual displacement. Admissible means that the chosen function is physically continuous and satisfies all essential boundary conditions, i.e., is appropriately zero at all A = A (x/) Consider next the nonprismatic axial deformation structure of Fig. 5. We will repeat the process considered for Fig. 4 with reference to the geometry of Fig. 5. Considering the first case: u = (x/) u 5 6 supports. F x x, u Fig. 5: Nonprismatic Axial Deformation Structure u x u int W A ( )dx E 3 W u u 4 int Equating the external and internal virtual works leads to 4Fx u 3 Considering the second virtual displacement expression: u = (x/) u leads to u x u int W x dx u u 3 7 Equating the external and internal virtual works leads to 3Fx u Considering the third virtual displacement expression: u = u sin(x/) leads to u x x u int W cos dx u u (.88) u u 8 7
8 Again, equating the external and internal virtual works leads to u.fx NOTE: None of the three solutions match. This is because neither the real or virtual displacements are exact. However, we produced three good approximate solutions. The exact solution for Fig. 5 is u.387fx The principle of virtual displacements has its greatest application in producing approximate solutions. The standard procedure is to adopt a virtual displacement of the same form as the real displacement. Adopting different forms for the real and virtual displacements can lead to unsymmetric stiffness matrices. 9 3 Special Transformations in Analysis Congruent Transformation A matrix triple product in which the premultiplying matrix is the transpose of the postmultiplying matrix, e.g. T T [C] [A] [B][A] or [D] [A][B][A] Significance of the transformation is that [C] and [D] will each be symmetric if [B] is symmetric, which is one of the reasons all our stiffness Contragradience Principal If one transformation is known, e.g., the local to global displacements, the force transformation will be transpose of the displacement transformation provided both sets of forces and displacements are conjugate and vice versa. Such a transformation is known as contragradient (or contragredient) under the stipulated conditions of conjugacy. Conjugate simply means that the forcedisplacement pair only produce work in the matrices were symmetric. 3 3 direction of the displacement. 8
9 For linear analysis, this is always the case when using orthogonal coordinate systems. A good example are the coordinate transformations for a truss member (7.) in which the transformation matrices are rectangular: {u a } = [T a ] {v a } T {F a} [T a] {Q a} cos sin [T a ] cos sin 33 9
CHAPTER 6 BENDING Part 1
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER 6 BENDING Part 11 CHAPTER 6 Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
More informationFlexure: Behavior and Nominal Strength of Beam Sections
4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kipin.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015
More informationCivil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7
Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationInternational Journal of Advanced Engineering Technology EISSN
Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,
More informationFlexuralTorsional Buckling of General ColdFormed Steel Columns with Unequal Unbraced Lengths
Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 2124, 2017 FlexuralTorsional Buckling of General ColdFormed Steel Columns with Unequal
More informationSERVICEABILITY LIMIT STATE DESIGN
CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise
More informationUNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM1(15A01303) Year & Sem: IIB.Tech & ISem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More information2. Mechanics of Materials: Strain. 3. Hookes's Law
Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate
More informationQuestion 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H
Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationParametric analysis and torsion design charts for axially restrained RC beams
Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 127 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.
More informationEnhancing Prediction Accuracy In Sift Theory
18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department
More informationBending of Simply Supported Isotropic and Composite Laminate Plates
Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto GutierrezMiravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,
More informationIntroduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.
Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. BernoulliEuler Beams.
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More informationSANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS
SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATECSP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS
More informationLecture 8: Flexibility Method. Example
ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and
More informationTHE USE OF DYNAMIC RELAXATION TO SOLVE THE DIFFERENTIAL EQUATION DESCRIBING THE SHAPE OF THE TALLEST POSSIBLE BUILDING
VII International Conference on Textile Composites and Inflatable Structures STRUCTURAL MEMBRANES 2015 E. Oñate, K.U.Bletzinger and B. Kröplin (Eds) THE USE OF DYNAMIC RELAXATION TO SOLVE THE DIFFERENTIAL
More informationChapter 6: Mechanical Properties of Metals. Dr. Feras Fraige
Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness
More informationBeam Bending Stresses and Shear Stress
Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance
More informationPLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder
16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders
More informationRECURSIVE DIFFERENTIATION METHOD FOR BOUNDARY VALUE PROBLEMS: APPLICATION TO ANALYSIS OF A BEAMCOLUMN ON AN ELASTIC FOUNDATION
Journal of Theoretical and Applied Mechanics, Sofia, 2014, vol. 44, No. 2, pp. 57 70 RECURSIVE DIFFERENTIATION METHOD FOR BOUNDARY VALUE PROBLEMS: APPLICATION TO ANALYSIS OF A BEAMCOLUMN ON AN ELASTIC
More informationBehavior and Modeling of Existing Reinforced Concrete Columns
Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What
More informationCOURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.)
Narvik University College (Høgskolen i Narvik) EXAMINATION TASK COURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.) CLASS: Master students in Engineering Design
More informationStiffness Matrices, Spring and Bar Elements
CHAPTER Stiffness Matrices, Spring and Bar Elements. INTRODUCTION The primary characteristics of a finite element are embodied in the element stiffness matrix. For a structural finite element, the stiffness
More informationENCE 455 Design of Steel Structures. III. Compression Members
ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:
More informationCORRELATING OFFAXIS TENSION TESTS TO SHEAR MODULUS OF WOODBASED PANELS
CORRELATING OFFAXIS TENSION TESTS TO SHEAR MODULUS OF WOODBASED PANELS By Edmond P. Saliklis 1 and Robert H. Falk ABSTRACT: The weakness of existing relationships correlating offaxis modulus of elasticity
More informationSTRUCTURAL ANALYSIS CHAPTER 2. Introduction
CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify
More informationLarge deflection analysis of planar solids based on the Finite Particle Method
yuying@uiuc.edu 10 th US National Congress on Computational Mechanics Large deflection analysis of planar solids based on the Finite Particle Method 1, 2 Presenter: Ying Yu Advisors: Prof. Glaucio H. Paulino
More informationUnit 15 Shearing and Torsion (and Bending) of Shell Beams
Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering
More informationMECHANICS OF SOLIDS Credit Hours: 6
MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second
More informationDETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1
PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 1, PP. 125 148 (2002) DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 Nándor LIEGNER Department of Highway and Railway Engineering
More informationThe 5rd International Conference on. COMEC OCTOBER 2013, Brasov, Romania
The 5rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2013 24 25 OCTOBER 2013, Brasov, Romania THEORETICAL STUDIES AND EXPERIMENTAL RESEARCH FOR THE INCREASE OF THE
More informationACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY THE SUPERPOSITION METHOD
Journal of Sound and Vibration (1999) 219(2), 265 277 Article No. jsvi.1998.1874, available online at http://www.idealibrary.com.on ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY
More informationGeometrydependent MITC method for a 2node isobeam element
Structural Engineering and Mechanics, Vol. 9, No. (8) 33 Geometrydependent MITC method for a node isobeam element PhillSeung Lee Samsung Heavy Industries, Seocho, Seoul 37857, Korea HyuChun Noh
More informationStructural Analysis III Compatibility of Displacements & Principle of Superposition
Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2dimensional structures
More informationMECH 344/X Machine Element Design
1 MECH 344/X Machine Element Design Time: M 14:4517:30 Lecture 2 Contents of today's lecture Introduction to Static Stresses Axial, Shear and Torsional Loading Bending in Straight and Curved Beams Transverse
More informationDamage detection of damaged beam by constrained displacement curvature
Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 22 (2008) 1111~1120 www.springerlink.com/content/1738494x Damage detection of damaged beam by constrained displacement
More informationDesign of reinforced concrete sections according to EN and EN
Design of reinforced concrete sections according to EN 199211 and EN 19922 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420511
More informationAvailable online at ScienceDirect. Procedia Engineering 172 (2017 )
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 172 (2017 ) 1093 1101 Modern Building Materials, Structures and Techniques, MBMST 2016 Iterative Methods of BeamStructure Analysis
More informationFinite element modelling of structural mechanics problems
1 Finite element modelling of structural mechanics problems Kjell Magne Mathisen Department of Structural Engineering Norwegian University of Science and Technology Lecture 10: Geilo Winter School  January,
More informationMECHANICAL PROPERTIES OF SOLIDS
Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small nonzero constant value. 9. The maximum load a wire
More informationstructural analysis Excessive beam deflection can be seen as a mode of failure.
Structure Analysis I Chapter 8 Deflections Introduction Calculation of deflections is an important part of structural analysis Excessive beam deflection can be seen as a mode of failure. Extensive glass
More informationChapter 13 ELASTIC PROPERTIES OF MATERIALS
Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions
More information4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support
4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between
More informationUnderstand basic stressstrain response of engineering materials.
Module 3 Constitutive quations Learning Objectives Understand basic stressstrain response of engineering materials. Quantify the linear elastic stressstrain response in terms of tensorial quantities
More informationName (Print) ME Mechanics of Materials Exam # 3 Date: December 9, 2013 Time: 7:00 9:00 PM Location: EE 129 & EE170
Name (Print) (Last) (First) Instructions: ME 323  Mechanics of Materials Exam # 3 Date: December 9, 2013 Time: 7:00 9:00 PM Location: EE 129 & EE170 Circle your lecturer s name and your class meeting
More informationNonlinear Analysis of Reinforced Concrete Shells Subjected to Impact Loads
Transactions of the 7 th International Conference on Structural Mechanics in Reactor Technology (SMiRT 7) Prague, Czech Republic, August 7, 00 Paper # J0 Nonlinear Analysis of Reinforced Concrete Shells
More informationThe Frictional Regime
The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation
More informationMechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total
Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the
More information999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01
DESCRIPTION Nonlinear static (pushover) analysis will be performed on a railroad bridge bent using several methods to determine its ultimate lateral deflection capability. 1. SAP2000 Nonlinear with axialmoment
More informationPLAXIS. Scientific Manual
PLAXIS Scientific Manual 2016 Build 8122 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction 5 2 Deformation theory 7 2.1 Basic equations of continuum deformation 7 2.2 Finite element discretisation 8 2.3
More informationLINEAR AND NONLINEAR SHELL THEORY. Contents
LINEAR AND NONLINEAR SHELL THEORY Contents Straindisplacement relations for nonlinear shell theory Approximate straindisplacement relations: Linear theory Small strain theory Small strains & moderate
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The SlopeDeflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods
More informationTHE BENDING STIFFNESSES OF CORRUGATED BOARD
AMDVol. 145/MDVol. 36, Mechanics of Cellulosic Materials ASME 1992 THE BENDING STIFFNESSES OF CORRUGATED BOARD S. Luo and J. C. Suhling Department of Mechanical Engineering Auburn University Auburn,
More informationBridge deck modelling and design process for bridges
EURussia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twingirder bridge according to Eurocode 4 Laurence Davaine
More informationAnalysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements
Acta Mech. Sin. (2016) 32(2):295 300 DOI 10.1007/s1040901505342 RESEARCH PAPER Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements V. H. Carneiro 1
More informationModeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of OneDimensional of Laminated Theory
. FloresDomínguez Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS odeling of the Bending Stiffness of a Bimaterial Beam by the Approimation of OneDimensional of Laminated
More informationSection Downloads. Section Downloads. Handouts & Slides can be printed. Other documents cannot be printed Course binders are available for purchase
Level II: Section 04 Simplified Method (optional) Section Downloads Section Downloads Handouts & Slides can be printed Version.0 Other documents cannot be printed Course binders are available for purchase
More informationPressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials
Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected
More informationTorsion Stresses in Tubes and Rods
Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is
More informationUNITII MOVING LOADS AND INFLUENCE LINES
UNITII MOVING LOADS AND INFLUENCE LINES Influence lines for reactions in statically determinate structures influence lines for member forces in pinjointed frames Influence lines for shear force and bending
More informationCOORDINATE TRANSFORMATIONS
COORDINAE RANSFORMAIONS Members of a structural system are typically oriented in differing directions, e.g., Fig. 17.1. In order to perform an analysis, the element stiffness equations need to be expressed
More informationChapter 13 Elastic Properties of Materials
Chapter 13 Elastic Properties of Materials GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and
More informationDISTRIBUTION OF STRESS IN GROUNDSUPPORTED SLABS
Structural Concrete Software System TN207_sog_stresses_10 122005 DISTRIBUTION OF STRESS IN GROUNDSUPPORTED SLABS Bijan O Aalami 1 This Technical Note describes the distribution of stress in groundsupported
More information3D Bernoulli Beams within Akantu
3D Bernoulli Beams within Akantu Semester Project Fall 2011 Fabian Barras Professor JeanFrançois Molinari Supervisors Seyedeh Mohadeseh Taheri Mousavi Guillaume Anciaux Nicolas Richart Computational
More information6. NONLINEAR PSEUDOSTATIC ANALYSIS OF ADOBE WALLS
6. NONLINEAR PSEUDOSTATIC ANALYSIS OF ADOBE WALLS Blondet et al. [25] carried out a cyclic test on an adobe wall to reproduce its seismic response and damage pattern under inplane loads. The displacement
More informationFlexural Analysis of Deep Aluminum Beam
Journal of Soft Computing in Civil Engineering 1 (018) 7184 journal homepage: http://www.jsoftcivil.com/ Fleural Analysis of Deep Aluminum Beam P. Kapdis 1, U. Kalwane 1, U. Salunkhe 1 and A. Dahake
More informationLAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS
XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds
More informationTheory and Analysis of Structures
7 Theory and nalysis of Structures J.Y. Richard iew National University of Singapore N.E. Shanmugam National University of Singapore 7. Fundamental Principles oundary Conditions oads and Reactions Principle
More informationContinuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms
Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive
More informationUNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE
UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE Tesi di laurea Magistrale in Ingegneria Civile Curriculum Strutture
More informationFinite Element Modeling of an Aluminum Tricycle Frame
Finite Element Modeling of an Aluminum Tricycle Frame A. Rodríguez, B. Chiné*, and J. A. Ramírez Costa Rica Institute of Technology, School of Materials Science and Engineering, Cartago, Costa Rica *Corresponding
More informationChapter 3: Stress and Equilibrium of Deformable Bodies
Ch3StressEquilibrium Page 1 Chapter 3: Stress and Equilibrium of Deformable Bodies When structures / deformable bodies are acted upon by loads, they build up internal forces (stresses) within them to
More informationFinite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix)
Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix) Nikhil J. Chaudhari 1 Post Graduate Student Department of Mechanical Engineering Veermata Jijabai Technological Institute
More informationFracture Mechanics of Composites with Residual Thermal Stresses
J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate
More informationMathematics FINITE ELEMENT ANALYSIS AS COMPUTATION. What the textbooks don't teach you about finite element analysis. Chapter 3
Mathematics FINITE ELEMENT ANALYSIS AS COMPUTATION What the textbooks don't teach you about finite element analysis Chapter 3 Completeness and continuity: How to choose shape functions? Gangan Prathap
More information1.050 Content overview Engineering Mechanics I Content overview. Selection of boundary conditions: Euler buckling.
.050 Content overview.050 Engineering Mechanics I Lecture 34 How things fail and how to avoid it Additional notes energy approach I. Dimensional analysis. On monsters, mice and mushrooms Lectures 3. Similarity
More informationDruckerPrager yield criterion application to study the behavior of CFRP confined concrete under compression
XXXVII IAHS World ongress on Housing October 6 9, 00, Santander, Spain DruckerPrager yield criterion application to study the behavior of FRP confined concrete under compression Salvador Ivorra, Ramón
More informationLab Exercise #3: Torsion
Lab Exercise #3: Prelab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round
More informationAalto University School of Engineering
Aalto University School of Engineering Kul4.4 Ship Structural Design (P) ecture 6  Response of Webframes, Girders and Grillages Kul4.4 Ship Structures Response ecture 5: Tertiary Response: Bending
More informationGeneric Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, Department of Winter 1292011 Generic
More informationMATERIAL ELASTIC ANISOTROPIC command
MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The
More informationMASTER'S THESIS. Robustness Analysis of Welding Simulations by Using Design of Experiments. Pirjo Koivuniemi. Luleå University of Technology
MASTER'S THESIS 28:1 CIV Robustness Analysis of Welding Simulations by Using Design of Experiments Pirjo Koivuniemi Luleå University of Technology MSc Programmes in Engineering Engineering Physics Department
More informationADVANCED DESIGN OF GLASS STRUCTURES
ADVANCED DESIGN OF GLASS STRUCTURES Lecture L13 Design of compressed members Viorel Ungureanu / Martina Eliášová European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and
More informationProf. Dr. Zahid Ahmad Siddiqi BEAM COLUMNS
BEA COLUNS Beam columns are structural members that are subjected to a combination of bending and axial stresses. The structural behaviour resembles simultaneousl to that of a beam and a column. ajorit
More informationA RATIONAL BUCKLING MODEL FOR THROUGH GIRDERS
A RATIONAL BUCKLING MODEL FOR THROUGH GIRDERS (Hasan Santoso) A RATIONAL BUCKLING MODEL FOR THROUGH GIRDERS Hasan Santoso Lecturer, Civil Engineering Department, Petra Christian University ABSTRACT Buckling
More informationCh 7 Summary  POLYNOMIAL FUNCTIONS
Ch 7 Summary  POLYNOMIAL FUNCTIONS 1. An opentop box is to be made by cutting congruent squares of side length x from the corners of a 8.5 by 11inch sheet of cardboard and bending up the sides. a)
More informationASSESSMENT OF DYNAMICALLY LOADED CRACKS IN FILLETS
ASSESSMENT OF DNAMICALL LOADED CRACKS IN FILLETS Uwe Zencker, Linan Qiao, Bernhard Droste Federal Institute for Materials Research and Testing (BAM) 12200 Berlin, Germany email: zencker@web.de Abstract
More informationPacific Earthquake Engineering Research Center
Pacific Earthquake Engineering Research Center Analytical and Experimental Study of FiberReinforced Elastomeric Isolators James M. Kelly Shakhzod M. Takhirov Department of Civil and Environmental Engineering
More informationARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13
ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem
More informationPROPOSED SATSANG HALL TECHNICAL REPORT
PROPOSED SATSANG HALL  VERTICAL STRIP V1 1  ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite
More informationTHE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS
EUROSTEEL 2002, Coimbra, 1920 September 2002, p.987996 THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS Fernando C. T. Gomes 1 ABSTRACT The Eurocode 3 proposes a classification of beamtocolumn
More informationEFFECT OF A CRACK ON THE DYNAMIC STABILITY OF A FREE}FREE BEAM SUBJECTED TO A FOLLOWER FORCE
Journal of Sound and
More information= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200
Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength
More informationCOMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS
6 th International Conference Computational Mechanics and Virtual Engineering COMEC 15 1516 October 15, Braşov, Romania COMPUER AIDED DESIGN IN CASE OF HE LAMINAED COMPOSIE MAERIALS Camelia Cerbu ransilvania
More informationUnified Quiz M4 May 7, 2008 M  PORTION
9:0010: 00 (last four digits) 32141 Unified Quiz M4 May 7, 2008 M  PORTION Put the last four digits of your MIT ID # on each page of the exam. Read all questions carefully. Do all work on that question
More information