Physics at the Nanoscale and applica1ons. Phelma / Grenoble INP and Ins1tut Néel / CNRS

Size: px
Start display at page:

Download "Physics at the Nanoscale and applica1ons. Phelma / Grenoble INP and Ins1tut Néel / CNRS"

Transcription

1 Physics at the Nanoscale and applica1ons Phelma / Grenoble INP and Ins1tut Néel / CNRS

2 Physics at the Nanoscale I Basics of quantum mechanics II Sta1s1cal Physics III Forces at the nanoscale IV Electron tunneling and applica1ons V Quantum electronic transport

3 Scope Density of States Tunnel Current Scanning Tunneling Microscopy and uses in Nanoscience Single Electron Devices M.F. Crommie, C.P. Lutz and D.M. Eigler, Science (1993)

4 Electron Tunneling Coun1ng available energy states Total number of states available N(E) Harmonic Oscillator ½ 3/2 5/2 with spin without spin Energy [hbar.ω] dn/de 0 ½ 3/2 5/2 In average dn/de=1/hbar.ω Energy [hbar.ω] Harmonic Oscillator ( ) E n =!ω n +1/2 dn/de 0 Hydrogen atom Level degeneracy = 2n 2 E n = 13.6eV Energy n 2 E 1 E 2 E 3

5 Electrons in a solid Fermi level T Energy

6 Density of states and Fermi level Energy Fermi energy Temperature Fermi level Energy up to which all states are filled (at T=0).

7 Quantum tunneling Energy Posi9on

8 Graphene Electron Tunneling Density of States examples Semiconductor S. Mar1n et al., Phys. Rev. B 2015 Ge(001) Kubby et al., PRB (1987) Al-Pb tunnel junc1on at 1.6K Superconductor Nobel prize 1973

9 Electron Tunneling The Tunnel effect again Conductor 1 Conductor 2 Conductor 1 Conductor 2 Thin insulator = tunnel barrier I = e P L R exp( d /d 0 ) I = 0 Conductor 1 Conductor 2 Conductor 1 Conductor 2 Situa1on 3 Situa1on 4 Situa1on 1 Situa1on 2 I = 4e P L R I = 3e P L R

10 Energy Electron Tunneling Fermi Golden Rule Filled electronic states Insulator Filled electronic states Tunneling possible? Yes Net current? I = 0 Number of occupied states in 1 Number of occupied states in 2

11 Energy Electron Tunneling Fermi Golden Rule -V ev Filled electronic states Number of occupied states in 1 Insulator Filled electronic states ev I e! P L R Number of occupied states in 2 Tunneling possible? Net current? At T=0 Yes [ ] ρ L (E ev )ρ R (E) f L (E ev ) f R (E) I e! P L R E F +ev E F ρ L (E ev )ρ R (E)dE de

12 Electron Tunneling Tunneling Spectroscopy 3.5k B T V Energy ev Filled electronic states Number of occupied states in 1 Insulator Filled states ev Number of occupied states in 2 Tunneling possible? Net current (At T=0)? I e!p L R If ρ L constant Only at high enough bias E F +ev E F ρ L (E ev )ρ R (E)dE di dv ρ R (E + ev)

13 Superconductor Electron Tunneling Tunneling Spectroscopy Planar Al-Pb tunnel junc1on at 1.6K Nobel prize 1973 Superconduc1ng density of states (theory) o Vacuum PtIr - Al junc1on. Scanning Tunneling Spectroscopy experiment at 80 mk o Local DOS Low Temperatures can be crucial for good spectroscopies

14 Electron Tunneling The inven1on of STM Nobel Prize 1986

15 A benchmark in surface science : the 7x7 surface reconstruc1on of silicon (111) A few years later Omicron and Specs websites

16 Instrumental aspects of STM Mechanical vibra1on isola1on Piezoelectric components for coarse and fine displacement

17 Electron Tunneling The issue with mechanical vibra1ons Experimental STM current fluctua9ons in and out of contact (PtIr 9p on graphene). Ques9on: es1mate the amplitude of mechanical vibra1ons in the setup

18 x M = difference between 1p and base posi1ons: Electron Tunneling Vibra1on isola1on x M t ( ) = x M0 sin( ωt + ϕ #) base x( t) = x 0 sin( ωt + ϕ) T S = x M0 x 0 = $ & % $ $ 1 ω ' & & ) % % ω # 0 ( ω # ' ) ( ω ' ) ( 2 $ ω ' + & ) % Q # # ( ω 0 2 Driven harmonic oscillator. x ( S t) = x S0 sin( ωt) T = x 0 x S0 = # ω & 1+ % ( $ Qω 0 ' 2 # # 1 ω 2 & & # % ( ω & + % $ $ ω 0 ' ( % ( ' $ Qω 0 ' 2 2 Incoming vibra1ons / mechanical damping. Prac1cal limita1on: f 0 > 2 Hz

19 Need for a double stage mechanical isolation Exercice: a 1 µm rms vibra1on source at 500 Hz perturbs the STM from the outside. Es1mate the transfer amplitude for one or two isola1on stages, and the resul1ng rela1ve 1p-sample distance vibra1on amplitude. (Answer : 300 pm and 1 pm respec1vely)

20 Lead Zirconate Titanates (PZT) 3 T Curie = C, to be used well below. polariza1on process (6 kv/mm, 1h) aligns dipoles along z. Depolariza1on possible if E > 1 kv/mm. T > T Curie - d 31 = 1-3 Å/V d 33 = 2-6 Å/V Before poling During poling Aver O Pb Ti, Zr T < T Curie

21 Piezo-electric scanner tubes L = Ld 31 E z = d 31 L t V X = 0.9d 31 L 2 D t V

22 Experimentalists considera9ons High voltage amplifiers noise? : about 1 mv over 0 to 5 khz. Mechanical resonances? : Elonga1on : f elongation = c 4L Flexion : f flexion = 0.56 D2 + d 2 8 c 4L 2 Temperature dependence of d 13 : a factor 5 to 10 smaller at low temperatures Exercice : propose a tube design that allows a horizontal scan range of 2 µm using a ±100V source at low temperature and has a maximum (f elonga1on, f flexion ). Es1mate the noise in posi1on at room temperature due to the amplifiers. (c = 5000 m/s at low temperature, depolariza1on field 1 kv/mm, d 31 = 1.5 Å/V at room temperature)

23 Contribu1ons of STM to solid state physics Carbon nanotubes : LDOS vs. structure Manipula1ng single atoms and molecules

24 Carbon nanotubes (n,m) defines the tube geometry. n = m : armchair m = 0 : zig-zag n m : chiral Theore1cal predic1on for a chiral nanotube: n - m = 3k : metallic n m 3k : semiconductor

25 CNT imaging chiral CNTs on a Au surface. armchair zig-zag Wildoer et al, Nature (1998)

26 CNT spectroscopy Metallic and semiconduc1ng tubes iden1fied. semiconduc1ng Sta1s1cs agrees with 1/3 of chiral ones being metallic. Energy gap in SC tubes: E gap = 2γa 3d metallic

27 Cu{ng a nanotube Voltage pulse (5 V) in the STM mode. L. C. Venema et al., Appl. Phys. Le. (1997).

28 Atom manipula1on D.M. Eigler and E.K. Schweizer, Nature 344, 524 (1990)

29 Atom manipula1on Clean Ni surface with Xe atoms : UHV necessary Low temperature (4 K) to freeze atom diffusion. Tunnel image at 10 mv/1 na, Atom manipula1on by increasing current up to 16 na.

30 The making of

31 The quantum mirage H.C. Manoharan, C.P. Lutz and D.M. Eigler, Nature 403, 512 (2000)

32 Electron Tunneling Single Electron Devices: Charging Energy Adding an electron to a bulk conductor: E > E F Neglected here repulsive Coulombian interac1on between electrons. Any closed conductor has a charging energy E c = e2 C Promo9ng 1 e - adding 1 e -

33 Electron Tunneling Single Electron devices: Coulomb Blockade Coulomb diamonds in a ver1cal island structure (Delv 98) Coulomb Blockade only effec9ve if k B T < E c

34 Electron Tunneling Single Electron devices: experimental realiza1ons Horizontal 2DEG SET (Stanford) Ver1cal 2DEG SET (Delv & Tokyo) Electromigra1on single gold nanopar1cle SET (Cornell) Shadow evapora1on metallic SET (Helsinki) What is the experimental temperature required for observing Coulomb Blockade in each of the above systems?

35 Electron Tunneling Single Electron devices: be er transistors? Drawbacks: o State of the art nanofab required. Mass produc1on impossible at present. o (Very) Low temperatures necessary o Resis1ve (R > h/2e 2 = 12.9 kω). Advantages: o conductance changes over a very narrow gate voltage range huge swing. o Can be fast (>GHz). o Func1onali1es beyond classical electronics

36 Conclusions o Single Electron Tunneling: a tool for spectroscopy o STM sensi1ve to both topography and density of states. Extremely fine and constraining measurements : z 1pm, usually high vacuum, some1mes low temperatures, mechanical mobility, A door to the nanoworld : local DOS, local manipula1on o Single Electron Devices: from basic physics to new promising logic devices.

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

(Scanning Probe Microscopy)

(Scanning Probe Microscopy) (Scanning Probe Microscopy) Ing-Shouh Hwang (ishwang@phys.sinica.edu.tw) Institute of Physics, Academia Sinica, Taipei, Taiwan References 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett.

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Coulomb blockade in metallic islands and quantum dots

Coulomb blockade in metallic islands and quantum dots Coulomb blockade in metallic islands and quantum dots Charging energy and chemical potential of a metallic island Coulomb blockade and single-electron transistors Quantum dots and the constant interaction

More information

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Reference: #1 C. R. Brundle, C. A. Evans, S. Wilson, "Encyclopedia of Materials Characterization", Butterworth-Heinemann, Toronto (1992),

More information

Final exam. Introduction to Nanotechnology. Name: Student number:

Final exam. Introduction to Nanotechnology. Name: Student number: 1 Final exam. Introduction to Nanotechnology Name: Student number: 1. (a) What is the definition for a cluster size-wise? (3%) (b) Calculate the energy separation near the Fermi surface of a metallic cluster

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

Chapter 2 Scanning probes microscopes instrumentation. Chapter 2 Scanning probes microscopes instrumentation. 2.1: Tips. STM tips: requirements

Chapter 2 Scanning probes microscopes instrumentation. Chapter 2 Scanning probes microscopes instrumentation. 2.1: Tips. STM tips: requirements Chapter Objective: learn the general techniques that are essential for SPM. Chapter.1: Tips STM tips: requirements Geometry: Need for atomically-sharp apex for atomic resolution on a flat surface, rest

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy A scanning tunneling microscope (STM) is an instrument for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Quantized Electrical Conductance of Carbon nanotubes(cnts)

Quantized Electrical Conductance of Carbon nanotubes(cnts) Quantized Electrical Conductance of Carbon nanotubes(cnts) By Boxiao Chen PH 464: Applied Optics Instructor: Andres L arosa Abstract One of the main factors that impacts the efficiency of solar cells is

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Imaging of Quantum Confinement and Electron Wave Interference

Imaging of Quantum Confinement and Electron Wave Interference : Forefront of Basic Research at NTT Imaging of Quantum Confinement and lectron Wave Interference Kyoichi Suzuki and Kiyoshi Kanisawa Abstract We investigated the spatial distribution of the local density

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007 Microscopy and Spectroscopy with Tunneling Electrons STM Sfb Kolloquium 23rd October 2007 The Tunnel effect T ( E) exp( S Φ E ) Barrier width s Barrier heigth Development: The Inventors 1981 Development:

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) http://ww2.sljus.lu.se/staff/rainer/spm.htm Scanning Probe Microscopy (FYST42 / FAFN30) Scanning Probe Microscopy (SPM) overview & general principles March 23 th, 2018 Jan Knudsen, room K522, jan.knudsen@sljus.lu.se

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

Probing Molecular Electronics with Scanning Probe Microscopy

Probing Molecular Electronics with Scanning Probe Microscopy Probing Molecular Electronics with Scanning Probe Microscopy Mark C. Hersam Assistant Professor Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 Ph: 847-491-2696,

More information

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and SCANNING TUNNELING MICROSCOPE Brief history: Heinrich Rohrer and Gerd K. Binnig, scientists at IBM's Zurich Research Laboratory in Switzerland, are awarded the 1986 Nobel Prize in physicss for their work

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

IMAGING TECHNIQUES IN CONDENSED MATTER PHYSICS SCANNING TUNNELING AND ATOMIC FORCE MICROSCOPES

IMAGING TECHNIQUES IN CONDENSED MATTER PHYSICS SCANNING TUNNELING AND ATOMIC FORCE MICROSCOPES 1 IMAGING TECHNIQUES IN CONDENSED MATTER PHYSICS SCANNING TUNNELING AND ATOMIC FORCE MICROSCOPES 2 WHY THIS TOPIC? STM and AFM images are ubiquitous in condensed matter physics. It is important to understand

More information

Building blocks for nanodevices

Building blocks for nanodevices Building blocks for nanodevices Two-dimensional electron gas (2DEG) Quantum wires and quantum point contacts Electron phase coherence Single-Electron tunneling devices - Coulomb blockage Quantum dots (introduction)

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Physics 2203, Fall 2011 Modern Physics

Physics 2203, Fall 2011 Modern Physics Physics 2203, Fall 2011 Modern Physics. Friday, Nov. 2 nd, 2012. Energy levels in Nitrogen molecule Sta@s@cal Physics: Quantum sta@s@cs: Ch. 15 in our book. Notes from Ch. 10 in Serway Announcements Second

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R. A vast time bubble has been projected into the future to the precise moment of the end of the universe. This is, of course, impossible. --D. Adams, The Hitchhiker s Guide to the Galaxy There is light at

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Spatially resolving density-dependent screening around a single charged atom in graphene

Spatially resolving density-dependent screening around a single charged atom in graphene Supplementary Information for Spatially resolving density-dependent screening around a single charged atom in graphene Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu,

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Tunneling transport. Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5

Tunneling transport. Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5 unneling transport Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5 Electron transport properties l e : electronic mean free path l φ : phase coherence length λ F : Fermi wavelength ecture Outline Important

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) CHEM53200: Lecture 9 Scanning Probe Microscopy (SPM) Major reference: 1. Scanning Probe Microscopy and Spectroscopy Edited by D. Bonnell (2001). 2. A practical guide to scanning probe microscopy by Park

More information

Electron confinement in metallic nanostructures

Electron confinement in metallic nanostructures Electron confinement in metallic nanostructures Pierre Mallet LEPES-CNRS associated with Joseph Fourier University Grenoble (France) Co-workers : Jean-Yves Veuillen, Stéphane Pons http://lepes.polycnrs-gre.fr/

More information

CHARACTERIZATION AND MANIPULATION OF NANOSTRUCTURES BY A SCANNING TUNNELING MICROSCOPE

CHARACTERIZATION AND MANIPULATION OF NANOSTRUCTURES BY A SCANNING TUNNELING MICROSCOPE Mater.Phys.Mech. Characterization and 4 (2001) manipulation 29-33 of nanostructures by a scanning tunneling microscope 29 CHARACTERIZATION AND MANIPULATION OF NANOSTRUCTURES BY A SCANNING TUNNELING MICROSCOPE

More information

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Anjan K. Gupta Physics Department, I. I. T Kanpur ICTS-GJ, IITK, Feb 2010 Acknowledgements

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

3.1 Electron tunneling theory

3.1 Electron tunneling theory Scanning Tunneling Microscope (STM) was invented in the 80s by two physicists: G. Binnig and H. Rorher. They got the Nobel Prize a few years later. This invention paved the way for new possibilities in

More information

Lecture 13: Barrier Penetration and Tunneling

Lecture 13: Barrier Penetration and Tunneling Lecture 13: Barrier Penetration and Tunneling nucleus x U(x) U(x) U 0 E A B C B A 0 L x 0 x Lecture 13, p 1 Today Tunneling of quantum particles Scanning Tunneling Microscope (STM) Nuclear Decay Solar

More information

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

672 Advanced Solid State Physics. Scanning Tunneling Microscopy 672 Advanced Solid State Physics Scanning Tunneling Microscopy Biao Hu Outline: 1. Introduction to STM 2. STM principle & working modes 3. STM application & extension 4. STM in our group 1. Introduction

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Addition 1. Shear Stack Piezoelectric Elements and Shear Effect Basics

Addition 1. Shear Stack Piezoelectric Elements and Shear Effect Basics 120 Addition 1 Shear Stack Piezoelectric Elements and Shear Effect Basics Introduction The STM scanner built up in this work is a Besocke type scanner (see room temperature STM instrumental chapter). The

More information

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0.

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0. a Press down b Retract D RG S c d 2 µm Recess 2 µm.5 µm Supplementary Figure 1 CNT mechanical transfer (a) Schematics showing steps of pressing down and retracting during the transfer of the CNT from the

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES

DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES Johannes Lischner Imperial College London LISCHNER GROUP AT IMPERIAL COLLEGE LONDON Theory and simulation of materials: focus on

More information

Surface Studies by Scanning Tunneling Microscopy

Surface Studies by Scanning Tunneling Microscopy Surface Studies by Scanning Tunneling Microscopy G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel IBM Zurich Research Laboratory, 8803 Ruschlikon-ZH, Switzerland (Received by Phys. Rev. Lett. on 30th April,

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions Hervé Courtois Néel Institute, CNRS and Université Joseph Fourier, Grenoble, France with L. Pascal, H.

More information

Scanning tunneling microscopy

Scanning tunneling microscopy IFM The Department of Physics, Chemistry and Biology Lab 72 in TFFM08 Scanning tunneling microscopy NAME PERS. - NUMBER DATE APPROVED Rev. Dec 2006 Ivy Razado Aug 2014 Tuomas Hänninen Contents 1 Introduction

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires

Supplementary Information. Characterization of nanoscale temperature fields during electromigration of nanowires Supplementary Information Characterization of nanoscale temperature fields during electromigration of nanowires Wonho Jeong,, Kyeongtae Kim,, *, Youngsang Kim,, Woochul Lee,, *, Pramod Reddy Department

More information

Local spectroscopy. N. Witkowski W. Sacks

Local spectroscopy. N. Witkowski W. Sacks Local spectroscopy N. Witkowski W. Sacks Outlook 1. STM/STS theory elements a. history of STM and basic idea b. tunnel effect c. STM/STS 2. Technology a. STM design : vibration and thermal drift b. STM

More information

STD : 12 TH GSEB PART A. 1. An electric dipole is placed in a uniform field. The resultant force acting on it...

STD : 12 TH GSEB PART A. 1. An electric dipole is placed in a uniform field. The resultant force acting on it... STD : 1 TH PHYSICS RJ VISION PVT. LTD. (MOST STABLE & INNOVATIVE INSTITUTE) GSEB COURSE NAME: 1 TH Total Marks : 100 Time : 3 hrs PART A Multiple Choice uestions : 1. An electric dipole is placed in a

More information

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise

Fig. 8.1 : Schematic for single electron tunneling arrangement. For large system this charge is usually washed out by the thermal noise Part 2 : Nanostuctures Lecture 1 : Coulomb blockade and single electron tunneling Module 8 : Coulomb blockade and single electron tunneling Coulomb blockade and single electron tunneling A typical semiconductor

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Scanning Tunneling Microscopy. Wei-Bin Su, Institute of Physics, Academia Sinica

Scanning Tunneling Microscopy. Wei-Bin Su, Institute of Physics, Academia Sinica Scanning Tunneling Microscopy Wei-Bin Su, Institute of Physics, Academia Sinica Tunneling effect Classical physics Field emission 1000 ~ 10000 V E V metal-vacuum-metal tunneling metal metal Quantum physics

More information

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

Bonds and Wavefunctions. Module α-1: Visualizing Electron Wavefunctions Using Scanning Tunneling Microscopy Instructor: Silvija Gradečak

Bonds and Wavefunctions. Module α-1: Visualizing Electron Wavefunctions Using Scanning Tunneling Microscopy Instructor: Silvija Gradečak 3.014 Materials Laboratory December 8 th 13 th, 2006 Lab week 4 Bonds and Wavefunctions Module α-1: Visualizing Electron Wavefunctions Using Scanning Tunneling Microscopy Instructor: Silvija Gradečak OBJECTIVES

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

Noncontact-AFM (nc-afm)

Noncontact-AFM (nc-afm) Noncontact-AFM (nc-afm) Quantitative understanding of nc-afm A attractive interaction Δf Resonance frequency: f 0 Width of resonance curve (FWHM): Γ Γ+ΔΓ Γ Q-factor: Q π f Γ = 0 f 0 f Conservative forces

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Electrical Properties

Electrical Properties Electrical Properties Electrical Conduction R Ohm s law V = IR I l Area, A V where I is current (Ampere), V is voltage (Volts) and R is the resistance (Ohms or ) of the conductor Resistivity Resistivity,

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in Pisa, Italy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

Introduction to Scanning Tunneling Microscopy

Introduction to Scanning Tunneling Microscopy Introduction to Scanning Tunneling Microscopy C. JULIAN CHEN IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York New York Oxford OXFORD UNIVERSITY PRESS 1993 CONTENTS List

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information