Plasma Stability in Tokamaks and Stellarators

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Plasma Stability in Tokamaks and Stellarators"

Transcription

1 Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1- May 006

2 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston, A. Hubbard, R. Lahaye, J. Menard, H. Neilson, M. Okabayashi, E. J. Strait, S. Sabbagh, T. Taylor, M. Zarnstorff,

3 MHD EQUILIBRIUM AND STABILITY MHD Equilibrium requires: p = J x B MHD sets β limit Loss of equilibrium Sources of free-energy for instability: Magnetic: B /µ o Pressure: nt Three primary limiting β phenomena: Long Wavelength Ideal Modes: n = 0, 1,, 3 Short Wavelength Ideal Modes: n Long Wavelength Resistive Modes: n = 1, Magnetic Reconnection: E + v x B = ηj

4 β LIMITING MODES: LOW-n Must deal with long wavelength modes Shift & Tilt: n = 0 and 1 Kink: n = 1 n=0 mode: in tokamaks is solved with wall stabilization & active feedback control n=1 kink mode: limits determined to 10% to 0%. Tokamaks: solutions in hand using plasma rotation & active control. Stellarators: external magnetic field transform may allow sufficiently high beta below kink limit.

5 β LIMITING MODES: HIGH-n Must deal with short wavelength ballooning/interchange modes, n Limits well understood and with 10% to 0% accuracy compared with experiments Controlled by plasma shape and magnetic shear profile:

6 β LIMITING MODES: TEARING MODES Must deal with long wavelength resistive tearing modes, n = 1,, Magnetic field line puncture plot showing island structure Tearing Modes: In tokamaks: stabilized by current profile control and active control with local ECH. In stellarators: controlled by tailoring external transform.

7 A COMPACT STEADY STATE TOKAMAK REQUIRES OPERATION AT HIGH β N P fus γ ε cur Q ss = eff β N B 3 aκ P CD nq ( 1 ξ A q β ) N β Power Density T ε 1 + κ DIII D NATIONAL FUSION FACILITY SAN DIEGO Current Limit q* = 4 Advanced Pressure Conventional Tokamak Limit Tokamak β N = 5 β N = 3.5 Equilibrium Limit εβ p Bootstrap Current High power density high β T Large bootstrap fraction high β p Steady state high β N β N power density bootstrap current ( 1 + κ β T β p )β N β N = β T /(I/aB) 130 0/TST/wj

8 PRIMARY LIMITING MODE IN MAGNETIC CONFINEMENT SYSTEMS: LOW-n Kink Long wavelength global MHD modes driven by pressure & current gradient: Shift & Tilt: n = 0 and 1 Kink: n = 1 Classic Instability: Ideal conducting wall on plasma boundary stabilizes the kink mode by freezing magnetic flux value on wall surface. Resistive conducting wall stabilization fails on magnetic field soak-through time scale: τ w

9 perturbed magnetic energy δw = 1 3 d x {ε c δb + ε c ( B ) (ξ δb) p Foundation of Kink Mode Stability Built on Energy Principle δw Stability Analysis 1957 Bernstein, Frieman, Kruskal, Kulsrud o } + ( ξ)(ξ p o ) + γp ( ξ) o pressure driven - destabilizing 1 δw = d x ε c δb current driven - destabilizing o plasma compression 3 o v vacuum perturbed magnetic energy If δw + δw < 0 mode is unstable p v

10 BASIC KINK MODE Long wavelength mode driven by pressure & current gradient Cylindrical k ~ π/l Toroidal: low n = 1 Unstable when δw p + δw v < 0 Dispersion Relation: γ K + δw p + δw v = 0, where K is kinetic fluid mass Define Γ = [δw p + δw v]/k ~ [v Alfvén /L]

11 IDEAL WALL STABILIZES THE KINK MODE Ideal wall traps field in vacuum region and restoring force stabilizes the kink EXTERNAL Kink: Unstable when δw p + δw d v < 0 Note: δw d v > δw v Dispersion Relation: γ - Γ + [δw d v-δw v]/k = 0 Critical Wall Distance, d c, where kink stable for d < d c : simple [δw d v-δw v]/k parameterization with d: γ - Γ [1 d c /d]/k = 0

12 KINK MODE IS STABILIZED BY IDEAL WALL 0 = γ Γ (1 d c) } Ideal Stability d γ / Γ ideal mode stable Ideal Instability γ Γ ideal mode unstable Plasma-Wall Separation, d/d c /GAN/rs

13 RESISTIVE WALL LEAKS STABILIZING FIELD: τ W Stabilizing field decays resistively on wall time scale τ w ~ L/R: dψ w /dt = - ψ w /τ w Quadratic kink: γ - Γ [1-d c /d] = 0 coupled to slow flux diffusion γψ w = - ψ w /τ w : τ w >> τ Alfvén Cubic Dispersion Relation with new slow root the RWM: γ - Γ [1-(d c /d) γτ w /(γτ w + 1)] = 0

14 KINK MODE GROWTH IS SLOWED BY RESISTIVE WALL 0 = ( γ τ γ Γ 1 d w ) c d γ τ w + 1 } Ideal Stability } Resistive Wall γ / Γ Real ω 0 γ τ w 1 Resistive Wall Mode ideal mode unstable Plasma-Wall Separation, d/d c Resistive wall mode (RWM) is unstable Mode structure similar to ideal external kink Mode grows slowly: γ ~ τ 1 w /GAN/rs

15 RWM STABILIZED IN DIII-D BY ROTATION FOR MANY WALL-TIMES, τ W Normalized plasma pressure, β N, exceeds no-wall stability limit by up to 40% n = 1 mode grows (γ ~ 1/τ W ) after toroidal rotation at q = 3 surface has decreased below ~1 khz /GAN/rs

16 ROTATION AND DISSIPATION CAN STABILIZE RWM Rotation Doppler shift: γ γ + iω where Ω is plasma rotation. Dissipation represented by friction loss (γ + iω)ν, where form of ν still being actively studied by theory community: (γ + iω) - Γ [1-(d c /d) γτ w /(γτ w + 1)] + (γ + iω)ν = 0 (as shown in Chu, et al. Phys. Plasma 1995; consistent with numerical result of Bondeson & Ward, PRL 1994) Cubic Dispersion Relation with three roots: in region where d < d c new slow RWM root can be damped with fast stable kink mode roots tied to rotating plasma with usual ordering: τ w -1 << Ω << v Alfvén /L Why is RWM Slow Root Stabilized? kink energy release < dissipation loss of RWM slowed by wall in flowing plasma

17 γ / Γ KINK MODE GROWTH IS SLOWED BY RESISTIVE WALL AND STABILIZED BY PLASMA ROTATION (γ + iω) Γ 0 = + } Ideal Stability Stable Gap ω τ w 1 Resistive Wall Mode Plasma Mode γ Γ Plasma-Wall Separation, d/d c Γ (d c /d)γ τ w γ τ w + 1 } Resistive Wall + (γ + iω) ν DIS } Plasma Dissipation Resistive wall mode (RWM) is unstable Mode structure similar to ideal external kink Mode grows slowly: γ ~ τ 1 w Dissipation + rotation stabilizes RWM Mode nearly stationary: ω ~ τw 1 << Ω plasma /GAN/rs

18 SUSTAINED ROTATION ABOVE CRITICAL VALUE RELIABLE OPERATION ABOVE THE NO-WALL LIMIT β N Feedback control of NBI power keeps β N below stability limit (107603) 1 no wall β N (.4l i) 0 1 Rotation (khz) at q~ Time (ms) No other large scale instabilities encountered (NTM, n= RWM,... ) Ideal n=1 kink observed at the wall-stabilized β limit Toroidal Angle δb p β N ~ β no-wall N β = 3.7% τ g ~ 300 µs << τ wall DIII D NATIONAL FUSION FACILITY SAN DIEGO Time (ms) T rot ~1 ms < τ wall 58 0/EJS/wj

19 MARS PREDICTIONS OF Ω crit τ A IN QUALITATIVE AGREEMENT WITH MEASUREMENTS ON DIII-D AND JET sound wave In DIII-D Ω crit τ A ~ 0.0 with weak β dependence In JET Ω crit τ A ~ with weak β dependence Both damping models predict Ω crit within a factor of

20 MODE FREQUENCY AND DAMPING CANNOT BE FIT SIMULTANEOUSLY Growth rate γ RWM τ W experiment(ωτ ~0.0) A kinetic sound wave (κ = 0.5) Mode rotation frequency ω RWM τ W Both damping models predict γ too low RWM Kinetic damping predicts mode frequency ω RWM Further work on damping [e.g. neoclassical viscosity] models being explored DIII D NATIONAL FUSION FACILITY S A N D I E G O C β

21 NSTX provides crucial data for understanding the dissipation mechanisms that allow rotational stabilization of the RWM Insight from drift-kinetic theory: Trapped-particle effects at finite ε significantly weaken ion Landau damping, but Toroidal inertia enhancement modifies eigenfunction when Ω φ / ω A > 1/4q (Columbia Univ.) Experimental Ω crit / ω A suggests scaling ε / q why? Is dissipation localized to resonant surfaces, or more global? Addressing questions above w/ NSTX / DIII-D similarity experiments, and hi-res CHERS ST has uniquely high ω sound / ω A distinguish between ω s and ω A scaling NSTX DIII-D shifted & scaled 1.1 Needed for predicting control requirements for RWM stabilization in ITER & CTF 13

22 FEEDBACK LOGIC FOR RWM FEEDBACK STABILIZATION Smart Shell Explicit Mode Control Feedback cancels the radial flux from MHD mode at wall sensor Feedback cancels the flux from MHD mode at plasma surface /GAN/rs

23 DIII D INTERNAL CONTROL COILS ARE PREDICTED TO PROVIDE STABILITY AT HIGHER BETA Inside vacuum vessel: Faster time response for feedback control Closer to plasma: more efficient coupling Internal Coils (I-coils) /GAN/rs

24 FEEDBACK WITH I-COILS IN DIII-D INCREASES STABLE PLASMA PRESSURE TO NEAR IDEAL-WALL LIMIT VALEN code prediction Normalized Growth Rate γτ w No Feedback Ideal kink VALEN code: - DCON MHD stability - 3D geometry of vacuum vessel and coil geometry Resistive Wall Mode: Open loop growth rate τ w is the vacuum vessel flux diffusion time (~ 3.5 ms) 0 0. No-Wall Limit 0.4 C β Ideal-Wall Limit DIII D NATIONAL FUSION FACILITY S A N D I E G O 69-04/MO/jy

25 FEEDBACK WITH I-COILS IN DIII-D INCREASES STABLE PLASMA PRESSURE TO NEAR IDEAL-WALL LIMIT C-coil stabilizes slowly growing RWMs Normalized Growth Rate γτ w No-Wall Limit No Feedback External C-coils Accessible with External C-coils 0.4 C β 0.6 Ideal kink Ideal-Wall Limit External C-Coil: - Control fields must penetrate wall - Induced eddy currents reduce feedback τ w is the vacuum vessel flux diffusion time (~3.5 ms) DIII D NATIONAL FUSION FACILITY S A N D I E G O 69-04/MO/jy

26 I-coil stabilizes RWMs with growth rate 10 times faster than C-coils Normalized Growth Rate γτ w FEEDBACK WITH I-COILS IN DIII-D INCREASES STABLE PLASMA PRESSURE TO NEAR IDEAL-WALL LIMIT No-Wall Limit No Feedback External C-coils Internal I-coils Accessible with External C-coils 0.4 C β 0.6 Accessible with Internal I-coils Ideal kink Ideal-Wall Limit Internal I-Coils: - Improved coil/plasma coupling - Improved spatial match to RWM field structure τ w is the vacuum vessel flux diffusion time (~3.5 ms) DIII D NATIONAL FUSION FACILITY S A N D I E G O 69-04/MO/jy

27 FEEDBACK EFFICACY DEMONSTRATED BY GATING OFF THE GAIN FOR 0 MS AT TIME OF EXPECTED RWM ONSET (gauss) Feedback Gain β N n=1 δb r Time (ms) Without feedback, slow Ip ramp rate (0.5 MA/s) destabilizes slowly growing RWM With feedback, beta collapse avoided (cm) 1 0 Relative Displacement (SXR) n=1 mode starts up during feedback off period, stabilized after feedback is turned back on (ka) Feedback Current (C79) Feedback OFF 1530 Time (ms) n=1 mode detected on poloidal field probes and SXR arrays, decoupled from driver coils DIII D NATIONAL FUSION FACILITY S A N D I E G O

28 FEEDBACK WITH INTERNAL CONTROL COILS HAS ACHIEVED HIGH C β AT ROTATION BELOW CRITICAL LEVEL PREDICTED BY MARS Trajectories of plasma discharge in rotation versus C β No feedback plasma approaches limit and disrupts ideal wall limit C β C-coil feedback plasma crosses limit & reaches higher pressure no wall limit 1.0 Unstable (without feedback) C-COIL MARS prediction Stable (without feedback) NO FEEDBACK time Rotation (km/s) DIII D NATIONAL FUSION FACILITY S A N D I E G O 69-04/MO/jy

29 FEEDBACK WITH INTERNAL CONTROL COILS HAS ACHIEVED HIGH C β AT ROTATION BELOW CRITICAL LEVEL PREDICTED BY MARS With near zero Rotation, Cβ is near the maximum set by existing control system characteristics: bandwidth & processing time delay ideal wall 1.0 limit I-coil feedback plasma reaches near zero rotation C β Unstable MARS prediction Stable (without feedback) MARS /VALEN prediction with measured amplifier time response for zero rotation no wall limit I-COIL ZERO ROTATION C-COIL NO FEEDBACK time Rotation (km/s) DIII D NATIONAL FUSION FACILITY S A N D I E G O 69-04/MO/jy

30 FEEDBACK WITH INTERNAL CONTROL COILS HAS ACHIEVED HIGH C β AT ROTATION BELOW CRITICAL LEVEL PREDICTED BY MARS Combination of low rotation and feedback reaches C β is the ideal wall-limits ideal wall limit 1.0 Unstable I-COIL MARS prediction Stable (without feedback) C β MARS /VALEN prediction with measured power supply time response for zero rotation no wall limit I-COIL ZERO ROTATION C-COIL NO FEEDBACK time Rotation (km/s) DIII D NATIONAL FUSION FACILITY S A N D I E G O 69-04/MO/jy

31 RWM FEEDBACK ASSISTS IN EXTENDING β n ~4 ADVANCED TOKAMAK DISCHARGE MORE THAN 1 SECOND 4.0 βn Feedback current (ka) Plasma Rotation (km/s) n=1 δb p Mode Amplitude (gauss) 0.0 F.B on No Feedback No Feedback With Feedback Estimated no-wall limit / Feedback coil current amplitude With Feedback Time (ms) DIII D NATIONAL FUSION FACILITY S A N D I E G O High performance plasma approaches β ~ 6% Without feedback plasma disrupts due to RWM 69-04/MO/jy

32 RWM Stabilization Has Opened New High Performance Regimes Above the No-Wall Stability Limit Simultaneous feedback control of error fields and RWM Additional ECCD power in FY06 will help sustain high q min New divertor will help density control at high triangularity β T (%) β N 6l i 4l i Time (ms) Pressure (10 5 Pa) J (A/cm ) Safety Factor ρ DIII D NATIONAL FUSION FACILITY /EJS/rs

33 Applying Internal RWM Feedback Coils to the Port Plugs in ITER Increases β limit for n = 1 from β N =.5 to ~ 4 RWM Coil Concept for ITER VALEN Analysis Columbia University Baseline RWM coils located outside TF coils Internal RWM coils would be located inside No-wall limit the vacuum vessel behind shield module 7 RWM Coils mounted behind the BSM in but inside the vacuum vessel on the every other port except NBI ports. removable port plugs. (assumes 9 ms time constant for each BSM) Integration and Engineering feasibility of internal RWM coils is under study.

34 NCSX Compact Stellarator Low-n Stability Stellarators provide external magnetic field transform aiming at: Steady state without current drive. Kink stable at sufficiently high pressure (β > 4%) without feedback control or rotation drive. Compact Stellarators (CS) improve on previous designs. Magnetic quasi-symmetry: good confinement. link to tokamak physics. Lower aspect ratio. 3-Period NCSX Plasma and Coil Design

35 NCSX Stability Modeling Predicts Kink Stability up to 6% PIES Free-Boundary Equilibrium at β = 4.1%

36 W7AS: β 3.4 % : Quiescent, Quasi-stationary (100 m-3) <!> (%) Power (MW) (A.U.) <!> 540 ne Mirnov Ḃ P NB 1 P rad Time (s) MCZ B = 0.9 T, iota vac 0.5 Almost quiescent high- β phase, MHD-activity in early medium-β phase In general, β not limited by any detected MHD-activity. I P = 0, but there can be local currents Similar to High Density H-mode (HDH) Similar β>3.4% plasmas achieved with B = T with either NBI-alone, or combined NBI + OXB ECH heating. Much higher than predicted β limit ~ %

37 Current-carrying Systems are Subject to Reconnection Tearing Modes Normal magnetic shear Safety Factor 6 4 MSE data 3/ Reverse magnetic shear Minor radius (r/a) 1.0 A rational field line can be an O point around which islands form. (- j for normal shear, + j for reverse shear)

38 Pressure-driven Bootstrap Current is a Boon and a Bane - In the presence of a pressure gradient, trapped particles entrain a parallel bootstrap current. A neoclassical effect, i.e. collisional, but including nonlocal orbit effects. - May allow steady-state operation of axisymmetric toroidal systems. - Drives neoclassical tearing modes in normal shear regions due to current depletion in the magnetic islands. µ 0 dw 1.! nc dt = #" + a L 1$ 1 q % & L p ' ) ( w w + w c *., - a &i % & g($) ' + w 3 ) ( L q L p *, + Ohmic current Bootstrap current Polarization current Finite transport correction

39 Theory Accurately Predicts Growth of Neoclassical Tearing Modes (NTM) W (cm) 5 R = 3m, T e ~ 5keV Magnetic 4 3 Theory ECE 1 4MW NBI Time (s) w (cm) R = 1m, T e ~ 1keV time (s)! p(meas) Shot Measured Island Width (cm) 0. 0 Island Width Predicted by Neoclassical Theory (cm) ! p(meas) Bootstrap current + normal shear drives NTM s. - Agrees to factor of ~ with neoclassical resistivity, over a wide range of plasma parameters. - Important challenge to theory of magnetic reconnection. - Reverse shear stabilizes NTM s, as predicted. - Strong implications for toroidal system optimization.

40 Replacing Bootstrap Current in Islands Stabilizes Neoclassical Tearing Modes ECCD Steerable Electron Cyclotron Current Drive wave launcher. ITER will have ECCD for NTM control.

41 DIII D Demonstrates NTM Active Stabilization with ECCD P NB (MW) Current 10 (MA) P NB (MW) ~ B (n = 1) (G) EC Power (MW) High beta is achieved with preemptive stabilization of the /1 NTM Stable operation at the no-wall beta limit for >1 s Div. D α (au) 4 l i β N ECCD is applied before the mode appears Real-time tracking of the q= surface maintains current drive alignment Tearing mode appears promptly when ECCD is removed B (T) Time (ms) DIII D NATIONAL FUSION FACILITY

42 ECCD in ITER Can Reduce the m/n=/1 NTM Island Cross-machine bench marking... R.J. La Haye, et.al., submitted to Nuclear Fusion Locking condition from 0-D model w 3 w ω 0 τ A0 a (1 + 0 a)= * 14 1 τ w τ E0 Island growth rate (τ R /r) dw/dt ITER, m/n=/1, β N = 1.84 NO ECCD Unstable Region 1 MW ECCD No Modulation (K 1 = 0.38, F=1) NO ECCD Saturated Island (if Beta Maintained and if Mode Does Not Lock) m/n=/1 Island full width w (cm) 1 MW ECCD 50/50 Modulation (K 1 = 0.74, F = 0.5) DIII D ITER...τ w = ms (J. Bialek)...f 0 = khz (A. Polevoi)...τ E0 = s (J. Cordey)...τ A0 = μs (Y. Gribov)... w = a lock w 5 cm in ITER to lock w 10 cm at f 0 = 1.4 khz 53-05/RJL/jy

43 Key Open Issues in Stability Advanced Tokamak Spherical Torus Low-n Kink: Rotation Stabilization Physics & Scaling Scale Active Feedback to ITER - n = 1,, Coil Modularity & Failure of Mode Rigidity Low-n Tearing: NTM Active Control Requirements for ITER Quantitative Theory: Seeding physics, island rotation, ECCD localization & modulation, small island modeling Compact Stellarator Low-n Kink: Validate no-wall high-beta kink limits Rotation effects in QS equilibria Low-n Tearing: NTM control with external magnetic transform + large bootstrap current Magnetic Island control as β and Ip vary.

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance

Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance M.Okabayashi, M. Chance, M. Chu* and R. Hatcher A. Garofalo**, R. La Haye*, H. Remeirdes**, T. Scoville*, and T.

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

DIII D Research in Support of ITER

DIII D Research in Support of ITER Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 13-18, 28 DIII-D Research Has Made Significant Contributions in the Design

More information

Neoclassical Tearing Modes

Neoclassical Tearing Modes Neoclassical Tearing Modes O. Sauter 1, H. Zohm 2 1 CRPP-EPFL, Lausanne, Switzerland 2 Max-Planck-Institut für Plasmaphysik, Garching, Germany Physics of ITER DPG Advanced Physics School 22-26 Sept, 2014,

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was

More information

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

More information

Supported by. Role of plasma edge in global stability and control*

Supported by. Role of plasma edge in global stability and control* NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Tokamak/Helical Configurations Related to LHD and CHS-qa

Tokamak/Helical Configurations Related to LHD and CHS-qa 9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 21-23, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHS-qa

More information

The Advanced Tokamak: Goals, prospects and research opportunities

The Advanced Tokamak: Goals, prospects and research opportunities The Advanced Tokamak: Goals, prospects and research opportunities Amanda Hubbard MIT Plasma Science and Fusion Center with thanks to many contributors, including A. Garafolo, C. Greenfield, C. Kessel,

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations 1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science

More information

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment 1 EXS/P2-07 Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment R.J. Fonck 1), D.J. Battaglia 2), M.W. Bongard 1), E.T. Hinson 1), A.J. Redd 1), D.J.

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is and Stability of Field-Reversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 92186-5608 P.O. APS Annual APS Meeting of the Division of Plasma Physics

More information

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,

More information

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

More information

Modeling of active control of external magnetohydrodynamic instabilities*

Modeling of active control of external magnetohydrodynamic instabilities* PHYSICS OF PLASMAS VOLUME 8, NUMBER 5 MAY 2001 Modeling of active control of external magnetohydrodynamic instabilities* James Bialek, Allen H. Boozer, M. E. Mauel, and G. A. Navratil Department of Applied

More information

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 4 January 2010 / Accepted

More information

Toroidal confinement of non-neutral plasma. Martin Droba

Toroidal confinement of non-neutral plasma. Martin Droba Toroidal confinement of non-neutral plasma Martin Droba Contents Experiments with toroidal non-neutral plasma Magnetic surfaces CNT and IAP-high current ring Conclusion 2. Experiments with toroidal non-neutral

More information

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

More information

Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak

Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7-/8// Modelling of the penetration process of externally applied helical magnetic perturbation

More information

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University

More information

arxiv: v1 [physics.plasm-ph] 11 Mar 2016

arxiv: v1 [physics.plasm-ph] 11 Mar 2016 1 Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasm-ph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and

More information

Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain

Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain arxiv:146.5245v1 [physics.plasm-ph] 2 Jun 214 D. P. Brennan and J. M. Finn June 23, 214 Department of Astrophysical

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Kazuo TOI CHS & LHD Experimental Group National Institute for Fusion Science Toki 59-5292, Japan Special contributions from:

More information

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory. SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction

More information

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General

More information

Phase ramping and modulation of reflectometer signals

Phase ramping and modulation of reflectometer signals 4th Intl. Reflectometry Workshop - IRW4, Cadarache, March 22nd - 24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,

More information

Stellarators and the path from ITER to DEMO

Stellarators and the path from ITER to DEMO Stellarators and the path from ITER to DEMO Allen H. Boozer Department of Applied Physics and Applied Mathematics Columbia University, New York, NY 10027 (Dated: May 26, 2008) A demonstration of fusion

More information

Saturated ideal modes in advanced tokamak regimes in MAST

Saturated ideal modes in advanced tokamak regimes in MAST Saturated ideal modes in advanced tokamak regimes in MAST IT Chapman 1, M-D Hua 1,2, SD Pinches 1, RJ Akers 1, AR Field 1, JP Graves 3, RJ Hastie 1, CA Michael 1 and the MAST Team 1 EURATOM/CCFE Fusion

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

q(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5

q(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5 EX/P-1 MHD issues in Tore Supra steady-state fully non-inductive scenario P Maget 1), F Imbeaux 1), G Giruzzi 1), V S Udintsev ), G T A Huysmans 1), H Lütjens 3), J-L Ségui 1), M Goniche 1), Ph Moreau

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

ELM control with RMP: plasma response models and the role of edge peeling response

ELM control with RMP: plasma response models and the role of edge peeling response ELM control with RMP: plasma response models and the role of edge peeling response Yueqiang Liu 1,2,3,*, C.J. Ham 1, A. Kirk 1, Li Li 4,5,6, A. Loarte 7, D.A. Ryan 8,1, Youwen Sun 9, W. Suttrop 10, Xu

More information

Fast Secondary Reconnection and the Sawtooth Crash

Fast Secondary Reconnection and the Sawtooth Crash Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEA-IRFM, Saint-Paul-lez-Durance (France) 2 Université de Lorraine, Institut Jean Lamour UMR-CNRS 7198, Nancy

More information

Multimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER

Multimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER 1 IT/P6-8 Multimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER R. J. Buttery 1), S. Gerhardt ), A. Isayama 3), R. J. La Haye 4), E. J. Strait 4), D. P. Brennan 5), P. Buratti 6), D.

More information

Gyrokinetic Transport Driven by Energetic Particle Modes

Gyrokinetic Transport Driven by Energetic Particle Modes Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)

More information

Macroscopic Stability of High β N MAST Plasmas

Macroscopic Stability of High β N MAST Plasmas 1 EXS/P5-4 Macroscopic Stability of High β N MAST Plasmas I.T. Chapman 1), R.J. Akers 1), L.C. Appel 1), N.C. Barratt 2), M.F. de Bock 1,7), A.R. Field 1), K.J. Gibson 2), M.P. Gryaznevich 1), R.J. Hastie

More information

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team* ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado

More information

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment E. T. Hinson J. L. Barr, M. W. Bongard, M. G. Burke, R. J. Fonck, J. M. Perry, A. J. Redd,

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

Significance of MHD Effects in Stellarator Confinement

Significance of MHD Effects in Stellarator Confinement Significance of MHD Effects in Stellarator Confinement A. Weller 1, S. Sakakibara 2, K.Y. Watanabe 2, K. Toi 2, J. Geiger 1, M.C. Zarnstorff 3, S.R. Hudson 3, A. Reiman 3, A. Werner 1, C. Nührenberg 1,

More information

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, P. Maget 1, N. Mellet 1, G. Dif-Pradalier 1, G. Latu 1, C. Passeron

More information

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D GA A271 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LIN-LIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER AUGUST 2001 DISCLAIMER This

More information

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport 1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193 Japan

More information

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012 Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty

More information

Tokamak Fusion Basics and the MHD Equations

Tokamak Fusion Basics and the MHD Equations MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

More information

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center C-Mod Core Transport Program Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly

More information

D- 3 He HA tokamak device for experiments and power generations

D- 3 He HA tokamak device for experiments and power generations D- He HA tokamak device for experiments and power generations US-Japan Fusion Power Plant Studies Contents University of Tokyo, Japan January -, 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism,

More information

CHAPTER 8 PERFORMANCE-LIMITING MAGNETOHYDRODYNAMICS IN JET

CHAPTER 8 PERFORMANCE-LIMITING MAGNETOHYDRODYNAMICS IN JET CHAPTER 8 PERFORMANCE-LIMITING MAGNETOHYDRODYNAMICS IN JET R. J. BUTTERY* and T. C. HENDER EURATOM0UKAEA Fusion Association, Culham Science Centre Abingdon, Oxfordshire OX14 3DB, United Kingdom Received

More information

Analytical Study of RWM Feedback Stabilisation with Application to ITER

Analytical Study of RWM Feedback Stabilisation with Application to ITER CT/P- Analytical Study of RWM Feedback Stabilisation with Application to ITER Y Gribov ), VD Pustovitov ) ) ITER International Team, ITER Naka Joint Work Site, Japan ) Nuclear Fusion Institute, Russian

More information

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015 Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all

More information

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia

More information

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries 1 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),

More information

arxiv: v2 [physics.plasm-ph] 24 Jul 2017

arxiv: v2 [physics.plasm-ph] 24 Jul 2017 Rotation and Neoclassical Ripple Transport in ITER E. J. Paul Department of Physics, University of Maryland, College Park, MD 20742, USA arxiv:1703.06129v2 [physics.plasm-ph] 24 Jul 2017 M. Landreman Institute

More information

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared

More information

Initial Experimental Program Plan for HSX

Initial Experimental Program Plan for HSX Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UW-Madison HSX Plasma Laboratory Team The Helically

More information

Sawtooth Control. J. P. Graves CRPP, EPFL, Switzerland. FOM Instituut voor Plasmafysica Rijnhuizen, Association EURATOM-FOM, The Netherlands

Sawtooth Control. J. P. Graves CRPP, EPFL, Switzerland. FOM Instituut voor Plasmafysica Rijnhuizen, Association EURATOM-FOM, The Netherlands Sawtooth Control J. P. Graves CRPP, EPFL, Switzerland B. Alper 1, I. Chapman 2, S. Coda, M. de Baar 3, L.-G. Eriksson 4, R. Felton 1, D. Howell 2, T. Johnson 5, V. Kiptily 1, R. Koslowski 6, M. Lennholm

More information

DT Fusion Power Production in ELM-free H-modes in JET

DT Fusion Power Production in ELM-free H-modes in JET JET C(98)69 FG Rimini and e JET Team DT Fusion ower roduction in ELM-free H-modes in JET This document is intended for publication in e open literature. It is made available on e understanding at it may

More information

Linjin Zheng, Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO)

Linjin Zheng, Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) International Sherwood Fusion Theory Conference, Austin, May 2-4, 2011 Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) Linjin Zheng, M. T. Kotschenreuther,

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

The performance of improved H-modes at ASDEX Upgrade and projection to ITER

The performance of improved H-modes at ASDEX Upgrade and projection to ITER EX/1-1 The performance of improved H-modes at ASDEX Upgrade and projection to George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany G. Tardini 1, C. Forest 2, O. Gruber 1, P. Mc Carthy

More information

PHYSICS DESIGN FOR ARIES-CS

PHYSICS DESIGN FOR ARIES-CS PHYSICS DESIGN FOR ARIES-CS L. P. KU, a * P. R. GARABEDIAN, b J. LYON, c A. TURNBULL, d A. GROSSMAN, e T. K. MAU, e M. ZARNSTORFF, a and ARIES TEAM a Princeton Plasma Physics Laboratory, Princeton University,

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation

More information

Observation of tearing mode deceleration and locking due to eddy currents induced in a conducting shell

Observation of tearing mode deceleration and locking due to eddy currents induced in a conducting shell PHYSICS OF PLASMAS VOLUME 11, NUMBER 5 MAY 2004 Observation of tearing mode deceleration and locking due to eddy currents induced in a conducting shell B. E. Chapman Department of Physics, University of

More information

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas 1 On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas Lj. Nikolić and M.M. Škorić Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade 11001, Serbia and Montenegro ljnikoli@tesla.rcub.bg.ac.yu

More information

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade 1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans

More information

Fusion Nuclear Science (FNS) Mission & High Priority Research

Fusion Nuclear Science (FNS) Mission & High Priority Research Fusion Nuclear Science (FNS) Mission & High Priority Research Topics Martin Peng, Aaron Sontag, Steffi Diem, John Canik, HM Park, M. Murakami, PJ Fogarty, Mike Cole ORNL 15 th International Spherical Torus

More information

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^ Tokamak operation at low q and scaling toward a fusion machine R. Paccagnella^ Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy ^ and Istituto Gas Ionizzati del Consiglio Nazionale

More information

DIII D INTEGRATED PLASMA CONTROL SOLUTIONS FOR ITER AND NEXT- GENERATION TOKAMAKS

DIII D INTEGRATED PLASMA CONTROL SOLUTIONS FOR ITER AND NEXT- GENERATION TOKAMAKS GA A25808 DIII D INTEGRATED PLASMA CONTROL SOLUTIONS FOR ITER AND NEXT- GENERATION TOKAMAKS by D.A. HUMPHREYS, J.R. FERRON, A.W. HYATT, R.J. La HAYE, J.A. LEUER, B.G. PENAFLOR, M.L. WALKER, A.S. WELANDER,

More information

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università

More information

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado

More information

The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions

The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions P.B. Snyder 1, T.H. Osborne 1, M.N.A. Beurskens 2, K.H. Burrell 1, R.J. Groebner 1, J.W. Hughes 3, R. Maingi

More information

MHD Equilibrium and Stability of Tokamaks and RFP Systems with 3D Helical Cores

MHD Equilibrium and Stability of Tokamaks and RFP Systems with 3D Helical Cores 15th Workshop on MHD Stability Control, Madison, WI, USA, November 15-17, 21 MHD Equilibrium and Stability of Tokamaks and FP Systems with 3D Helical Cores W. A. Cooper Ecole Polytechnique Fédérale de

More information

Flow dynamics and plasma heating of spheromaks in SSX

Flow dynamics and plasma heating of spheromaks in SSX Flow dynamics and plasma heating of spheromaks in SSX M. R. Brown and C. D. Cothran, D. Cohen, J. Horwitz, and V. Chaplin Department of Physics and Astronomy Center for Magnetic Self Organization Swarthmore

More information

MST and the Reversed Field Pinch. John Sarff

MST and the Reversed Field Pinch. John Sarff MST and the Reversed Field Pinch John Sarff APAM Columbia University Sep 19, 2014 Outline Tutorial-level review of tearing stability, magnetic relaxation, and transport in the RFP Ion-related physics topics

More information

HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden

HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS Paul Garabedian and Geoffrey McFadden 1. Summary Runs of the NSTAB equilibrium and stability code show there are many 3D solutions of the advanced

More information

generalfusion Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop

generalfusion Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop Aaron Froese, Charlson Kim, Meritt Reynolds, Sandra Barsky, Victoria Suponitsky, Stephen Howard, Russ Ivanov, Peter O'Shea,

More information

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO 21 st IAEA Fusion Energy Conference Chengdu, China Oct. 16-21, 2006 DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO R. Maingi 1, A. Kirk 2, T. Osborne 3, P. Snyder 3, S. Saarelma 2, R. Scannell

More information

ICRH Experiments on the Spherical Tokamak Globus-M

ICRH Experiments on the Spherical Tokamak Globus-M 1 Experiments on the Spherical Tokamak Globus-M V.K.Gusev 1), F.V.Chernyshev 1), V.V.Dyachenko 1), Yu.V.Petrov 1), N.V.Sakharov 1), O.N.Shcherbinin 1), V.L.Vdovin 2) 1) A.F.Ioffe Physico-Technical Institute,

More information

Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration

Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration D.A. Kaltsas and G.N. Throumoulopoulos Department of Physics, University of Ioannina, GR 451 10 Ioannina,

More information

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak M. Garcia-Munoz M. A. Van Zeeland, S. Sharapov, Ph. Lauber, J. Ayllon, I. Classen, G. Conway, J. Ferreira,

More information

Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald

Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald Rotation and zonal flows in stellarators Per Helander Wendelsteinstraße 1, 17491 Greifswald Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos What is a stellarator? In a tokamak

More information

Models for Global Plasma Dynamics

Models for Global Plasma Dynamics Models for Global Plasma Dynamics F.L. Waelbroeck Institute for Fusion Studies, The University of Texas at Austin International ITER Summer School June 2010 Outline 1 Models for Long-Wavelength Plasma

More information

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015 Review of Theory Papers at 14 th IAEA technical meeting on Engertic Particles in Magnetic Confinement systems Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna,

More information

M. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2

M. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2 P1.015 Nonlinear Modeling Benchmarks of Forced Magnetic Reconnection with NIMROD and M3D-C1 M. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2 1 Department of Engineering

More information

Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory Princeton Plasma Physics Laboratory PPPL-4239 PPPL-4239 Computation of Three Dimensional Tokamak and Spherical Torus Equilibria Jong-kyu Park, Allen H. Boozer, and Alan H. Glasser (Preprint) May 27 Prepared

More information