Extended Lumped Parameter Model of Resistive Wall Mode and The Effective SelfInductance


 Philippa Rogers
 2 years ago
 Views:
Transcription
1 Extended Lumped Parameter Model of Resistive Wall Mode and The Effective SelfInductance M.Okabayashi, M. Chance, M. Chu* and R. Hatcher A. Garofalo**, R. La Haye*, H. Remeirdes**, T. Scoville*, and T. Strait* Princeton Plasma Physics Laboratory * General Atomics ** Columbia Univeristy "Active Control of MHD Stability: Extension of Performance" Workshop under the auspices of the US/Japan Collaboration at Columbia University, 180 November 00
2 OUTLINE  Extended Lumped Parameter Model and RWM Effective SelfInductance MOTIVATION APPROACH AND ASSUMPTIONS OF EXTENDED LUMPED PARAMETER MODEL  Relation to recent other approaches (models) "RWM EFFECTIVE SELFINDUCTANCE"  Plasma response is conveniently characterized by one parameter APPLICATIONS  Dispersion relation / Initial value time dependent solution  Resonant magnetic braking,  Nonresonant braking,  Resonant Field Amplification
3 MOTIVATION  Develop simple description of RWM stabilization process, useful for qualitative and semiquantitative discussion.  M. Okabayashi, N. Pomphrey and R. Hatcher, N. Fusion. 38(1998) M. Okabayashi et al, EPS 00 (Plasma Phy. and Controlled Fusion in press)  The model to be consistent with MHD analysis models developed by various groups  A. Bondeson and D. Ward, Phys. Rev. Lett. 7 (1994)709  J. Bialek, etal., Phys. of Plasmas, 8 (001) M. Chu et al., (IAEA 00)  R. Fitzpatrick, Phy. Plasmas 9 (00) A. Garofalo, Sherwood meeting (00)
4 RWM AND ITS FEEDBACK CONTROL CAN BE CONSIDERED AS THE n=1 HELICAL INSTABILITY ANALOG TO THE n = 0 VERTICAL INSTABILITY Marginal Stability Parameter Vertical Drift RWM Feedback B r External Equi. Mag. Field Negative Curv. FIXED M t w g t 0 w 1 1 n c Eddy Flux Decay Induced Image Current Displacement Ideal kink Feedback Helical flux Vertical Helical "Mode Rigidity" is the fundamental assumption
5 RWM AND ITS FEEDBACK CONTROL CAN BE CONSIDERED AS THE n=1 HELICAL INSTABILITY ANALOG TO THE n = 0 VERTICAL INSTABILITY Feedback B r Vertical Drift External Equi. Mag. Field Negative Curv. FIXED M t w g t 0 w Marginal Stability Parameter 1 1 n c Eddy Flux Decay Induced Image Current Displacement RWM Ideal kink Feedback Helical flux no wall Limit 100 g Growth Rate without Feedback t 0 w Vertical Position Control g n=0 t w RWM Control = 710 RW M t w Ideal wall Limit g = 4 Vertical Helical Mode Strength Higher elongation "Mode Rigidity" is the fundamental assumption Higher b
6 Approach and Assumptions of Extended Lumped Parameter Model Include essential RWM physics  Pressure balance and Bnormal continuity on plasma surface  Rotation dissipation in adhoc manner, however, consistent with existing theories  Assumptions  Rigid displacement: justifiable based on experiments [M. Okabayashi et al., Phys. Plasmas 8,071(001)]  Cylindrical geometry  One mode excitation  No coupling to other [stable] modes
7 EXTENDED LUMPED PARAMETER RWM MODEL Explicit Usage of Boundary Conditions  on the Plasma Surface, Wall and Coil ( I p, I w, I c )  Independent parameters: plasma skin current, wall current, feedback coil current PLASMA x r M pw M pc M wc I I I p w c plasma passive shell Y active coil
8 EXTENDED LUMPED PARAMETER RWM MODEL Explicit Usage of Boundary Conditions  on the Plasma Surface, Wall and Coil ( I p, I w, I c )  Independent parameters: plasma skin current, wall current, feedback coil current PLASMA x r M pw M pc M wc I I I p w c plasma displacement fixed displacement h 0 approximation (available from experiment) rotational dissipation plasma plasma rotation (1/x r) d(rx r )/dr a (g + i W ) r=a + N f passive shell Pressure Balance and Bnormal Continuity on Plasma Surface toroidal number m  nq Y active coil external Y = S M Y i,j displacement A + + = (mf / g t +f ))(a y '(a )/ m y(a ) + /f) standard mutual inductance j
9 EXTENDED LUMPED PARAMETER RWM MODEL Explicit Usage of Boundary Conditions  on the Plasma Surface, Wall and Coil ( I p, I w, I c )  Independent parameters: plasma skin current, wall current, feedback coil current PLASMA x r M pw M pc M wc I I I p w c plasma displacement rotational dissipation plasma plasma rotation (1/x r) d(rx r )/dr a (g + i W ) r=a + N f passive shell Pressure Balance and Bnormal Continuity on Plasma Surface fixed displacement approximation m  nq Conveniently formulated "RWM effective selfinductance" V =d/dt h 0 L M M eff pw cp M L M wp w wc M M L pc cw c I p I w I c toroidal number active coil external Y = S M Y i,j displacement A + + = (mf / g t +f ))(a y '(a )/ m y(a ) + /f) b = /f 1 n L effi p + M pwi w+ M pci c =0 L eff = (h  b + a(g + inwf)) L 0 n / (h b  + a(g + inwf)) standard mutual inductance 0 Y n standard mutual inductance (f=1 <> no wall limit, b n =1) L eff represents all RWM characteristics currently considered j
10 EXTENDED LUMPED PARAMETER RWM MODEL Explicit Usage of Boundary Conditions  on the Plasma Surface, Wall and Coil ( I p, I w, I c )  Independent parameters: plasma skin current, wall current, feedback coil current PLASMA x r M pw M pc M wc I I I p w c plasma displacement rotational dissipation plasma plasma rotation (1/x r) d(rx r )/dr a (g + i W ) r=a + N f passive shell Pressure Balance and Bnormal Continuity on Plasma Surface fixed displacement approximation m  nq Conveniently formulated "RWM effective selfinductance" V =d/dt h 0 L M M eff pw cp M L M wp w wc M M L pc cw c I p I w I c toroidal number active coil external Y = S M Y i,j displacement A + + = (mf / g t +f ))(a y '(a )/ m y(a ) + /f) b = /f 1 n L effi p + M pwi w+ M pci c =0 L eff = (h  b + a(g + inwf)) L 0 n / (h b  + a(g + inwf)) standard mutual inductance 0 Y n standard mutual inductance magnetic decay index N''z + Br_ext =0 : vertical instability (f=1 <> no wall limit, b n =1) L eff represents all RWM characteristics currently considered j
11 Extended Lumped Parameter Model kinetic dissipation RWM Dispersion Relation Dispersion Relation with Extended Lumped Parameter Model Expresses Explicitly Geomertical Elements plasma beta wall time constant geometrical term [ c ( g + iw) + a(g +iw) +h  b ) ](g + t 1 k n )  g [c ( g + iw) + a( g + iw) + h  b  ] (M / L L ) =0 w k n pw w p 0 0 M = (r /r ) m ij i j
12 Extended Lumped Parameter Model kinetic dissipation RWM Dispersion Relation Dispersion Relation with Extended Lumped Parameter Model Expresses Explicitly Geomertical Elements plasma beta wall time constant [ c ( g + iw) + a(g +iw) +h  b ) ](g + t 1 k n )  g [c ( g + iw) + a( g + iw) + h  b  ] (M / L L ) =0 w k n pw w p 0 0 Fitzpatrick's " Simple Model of RWM... in Phys. Plasmas 9(00)3459 geometrical term M = (r /r ) m ij i j kinetic plasma beta dissipation* wall time constant* geometrical term
13 ñ Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in tokamaks ñ IAEA Meeting, Lyon, France, October 14 to 19, 00 GENERAL FORMULATION INCLUDING PLASMA ROTATION AND DISSIPATION (M. CHU IAEA 00) The ìresistive wall modeî can be described in terms of circuits on the resisitive wall driven by the plasma or the external coils (7) The plasma responds to the magnetic field B lw on the resistive wall through the relationship The response of the RWM to the coil currents is therefore (8) (9)
14 Schematics of RWM Feedback Analysis with Toroidal Geometry Resistive Wall Thin Shell Approximation Plasma Surface Resistive Shell (eigen modes) Active Coil ï Introducing "skin current stream fluction" I w : j = Z x I w d(zz w ) ï normal magnetic field continuity dy /dn () = dy /dn (+) = Bn Helical Displacement Ip (t) C wp, C pw, y p y w B p  B w I w + y w + B w C wc I c ï Ampere's Law: Y(+)  Y() = I w ï Faraday's Law [h I w ] = (d /dt (B n ), assuming z = 1 s s B n I w z B n I w (q,f) can be expanded in eigenmodes PEST / VACUUM ds Green's theorem  + Green's theorem Resistive Shell
15 Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in tokamaks IAEA Meeting, Lyon, France, October 14 19, 00 THE LUMPED PARAMETER MODEL AND RFA (M.CHU, IAEA00) For the least stable resistive wall mode and assuming the matrix elements of the energy and dissipation factors are constants, we arrive at a lumped parameter equation the total RWM field at wall external helical current (10) where A is the 'complex amplification factor'. Note that A = 1 in the absence of plasma potential energy with ideal wall d W IW (W) + aiw A = (11) d W (W) + aiw nw potential energy without wall In this equation we see that the dissipation on the wall and the dissipation is the plasma are separated 1. 'No External Coil': homogeneous equation, dissipation in plasma and the resistive wal (1). 'Steady State with External Coil': inhomogeneous equation. dissipation in plasma (13)
16 dw FORMULATION AND LUMPED PARAMETER MODEL M. Chu Formulation (IAEA 00) Extended Lumped Parameter Model growth rate total Bfield on wall 1/A = d W (W) + aiw nw d W (W) + aiw iw resonant field amplification
17 dw FORMULATION AND LUMPED PARAMETER MODEL M. Chu Formulation (IAEA 00) Extended Lumped Parameter Model growth rate total Bfield on wall tw I p + [L / ( L  M pw / L w )] t I p = 0 eff eff L = (h  b + iw) L / (h  b  + iw) eff 0 n p 0 n 1/A = d W (W) + aiw nw d W (W) + aiw iw resonant field amplification
18 dw FORMULATION AND LUMPED PARAMETER MODEL M. Chu Formulation (IAEA 00) Extended Lumped Parameter Model growth rate total Bfield on wall t I p w + [L / ( L  M pw / L w )] t I p = 0 eff eff gt w L = (h  b + iw) L / (h  b  + iw) eff 0 n p 0 n 1/A = d W (W) + aiw nw d W (W) + aiw iw  marginal stability b ( no wall limit) gt = 0 <> L =0 : h = b w eff n.w  Ideal wall limit gt = infinity > ( L ( b )  M L ) = 0 w eff I.w pw w 0 (b gt = n.w  b n + iaw) (b  b )/ () w (b  b + iaw) n.w I.w I.w n resonant field amplification
19 dw FORMULATION AND LUMPED PARAMETER MODEL M. Chu Formulation (IAEA 00) Extended Lumped Parameter Model growth rate total Bfield on wall t I p w + [L / ( L  M pw / L w )] t I p = 0 eff eff gt w L = (h  b + iw) L / (h  b  + iw) eff 0 n p 0 n 1/A = d W (W) + aiw nw d W (W) + aiw iw  marginal stability b ( no wall limit) gt = 0 <> L =0 : h = b w eff n.w  Ideal wall limit gt = infinity > ( L ( b )  M L ) = 0 w eff I.w pw w 0 resonant field amplification (b gt = n.w  b n + iaw) (b  b )/ () w (b  b + iaw) n.w I.w I.w n normalization constant
20 dw FORMULATION AND LUMPED PARAMETER MODEL M. Chu Formulation (IAEA 00) Extended Lumped Parameter Model growth rate total Bfield on wall t I p w + [L / ( L  M pw / L w )] t I p = 0 eff eff gt w L = (h  b + iw) L / (h  b  + iw) eff 0 n p 0 n 1/A = d W (W) + aiw nw d W (W) + aiw iw  marginal stability b ( no wall limit) gt = 0 <> L =0 : h = b w eff n.w  Ideal wall limit gt = infinity > ( L ( b )  M L ) = 0 w eff I.w pw w 0 resonant field amplification (b gt = n.w  b + iaw) (b  b )/ () w (b  b + iaw) n.w I.w I.w L I + M I + M I =0 eff p pw w pc c normalization constant I = p M pc L eff I c
21 RWM Time Evolution with Extended Lumped Parameter Model Plus Angular Momentum Balance  Example(1): Magnetic Braking (Rotation slowing down with increasing mode amplitude) Steady target RWM amplitude coil current or error field W / t = (W  W) /t  C Im[dI p (t) di (t) )] 0 m vis c. momentum conf. time ~1/ a ( g + iw) > 1/(iaW) known as rotation dissipation "induction motor model"
22 RWM Time Evolution with Extended Lumped Parameter Model Plus Angular Momentum Balance  Example(1): Magnetic Braking (Rotation slowing down with increasing mode amplitude) Steady target RWM amplitude coil current or error field W / t = (W  W) /t  C Im[dI p (t) di (t) )] 0 m vis c. momentum conf. time ~1/ a ( g + iw) > 1/(iaW) known as rotation dissipation "induction motor model" Experiment with Various External Fields C Coil79 (A) (khz) Reduced static n=1 error field Critical Rotation for onset of RWM n=1b r (gauss) Time (ms)
23 RWM Time Evolution with Extended Lumped Parameter Model Plus Angular Momentum Balance  Example(1): Magnetic Braking (Rotation slowing down with increasing mode amplitude) Steady target RWM amplitude coil current or error field W / t = (W  W) /t  C Im[dI p (t) di (t) )] 0 m vis c. momentum conf. time ~1/ a ( g + iw) > 1/(iaW) known as rotation dissipation "induction motor model" C Coil79 (A) Critical Rotation for onset of RWM n=1b r (gauss) Experiment with Various External Fields (khz) Reduced static n=1 error field Time (ms) 0. (khz) 0.0 Ip (arb) Extended Lumped Parameter Model Simulation 1.6 Magnitude of External Field: 0.8,1.0,1., 1.4,1.8 (arb.) ROTATION Time (ms) AMPLITUDE
24 RWM Time Evolution with Extended Lumped Parameter Model Plus Angular Momentum Balance  Example() : Active Magnetic Braking (Regulated rotation slowing down using mode amplitude controlled by feedback) Steady target RWM amplitude coil current momentum conf. time W / t = (W  W) /t  C Im[dI(t) p (di(t) + di(t) )] 0 m vis c.fb c.pre.pro di(t) = G / ( 1  G )di(t) p fb fb c.pre.pro feedback gain
25 RWM Time Evolution with Extended Lumped Parameter Model Plus Angular Momentum Balance  Example() : Active Magnetic Braking (Regulated rotation slowing down using mode amplitude controlled by feedback) Steady target RWM amplitude coil current momentum conf. time W / t = (W  W) /t  C Im[dI(t) p (di(t) + di(t) )] 0 m vis c.fb c.pre.pro di(t) = G / ( 1  G )di(t) p fb fb c.pre.pro preprogrammed coil current Simulation Actual coil current feedback gain Plasma rotation Mode amplitude time [t w ]
26 RWM Time Evolution with Extended Lumped Parameter Model Plus Angular Momentum Balance  Example() : Active Magnetic Braking (Regulated rotation slowing down using mode amplitude controlled by feedback) Steady target RWM amplitude coil current momentum conf. time W / t = (W  W) /t  C Im[dI(t) p (di(t) + di(t) )] 0 m vis c.fb c.pre.pro di(t) = G / ( 1  G )di(t) p fb fb c.pre.pro preprogrammed coil current Simulation Actual coil current n1tc1curr Preprogrammed coil current feedback gain Experiment c79f Actual coil current Plasma rotation Plasma rotation cernrott6 I D Mode amplitude L > amplitude from MPID (Larry s matrix) Mode amplitude time [t w ] time (ms)
27 STABLE REGIME PREDICTED BY EXTENDED LUMPED PARAMETER MODEL IS CONSISTENT WITH EXPERIMENTALLY ACHIEVED PARAMETERS ideal wall limit bn / (.4 li) no wall limit Unstable Expected with Extended Lumped Parameter Model /106530/10653/ High bn shots in FY 00 * Steady State High bn Equilibrium used for RFA study time Toroidal Rotation (km/s) 008/MHDWKSP/00
28 RFA AMPLITUDE AND PHASE SHIFT INCREASE WITH INCREASE OF b n TO MARGINAL STABILITY b n db r at wall (G) Field component on /1 surface (G) n = 1 (plasma response only) No wall beta limit stable Time (ms) gt w Damping rate Unstable Marginal stability nowall b n /b n Amplitude 0.0 Toroidal phase shift Mode amplitude (degrees) DIII D NATIONAL FUSION FACILITY SAN DIEGO noise level nowall nowall b n /b n b n /b n 1760/jy
29 1.0 s /S Fitting deviation COMPARISON OF MODEL AND OBSERVATIONS SHOWS THAT DAMPING OF RFA ARISES FROM ROTATIONAL DISSIPATION Fit of Dissipation Coeff. Best Fit A h o =1.3 =1.4 = Dissipation coeff a/t Mode amplitude noise level Observed Plasma Response to Amplitude (degrees) Toroidal phase shift 0.0 Damping Rate gt w Best fit to the model with the dissipation parameter a /t =5. Mode amplitude (arb.) Amplitude 0.0 A EXP MODEL Toroidal phase shift g t W nowall b n / b n nowall b / n bn dissipation / damping rate : a W f/ g t ª exp w nowall b n / bn DIII D NATIONAL FUSION FACILITY SAN DIEGO
30 Modeling of Feedback and Rotation Stabilization of the Resistive Wall Mode in tokamaks IAEA Meeting, Lyon, France, October 14 19, 00 COMPARISON OF LUMPED PARAMETER MODEL WITH EXPERIMENT amplitude (model) phase (model) amplitude (model) amplitude (observed) phase (model) phase (observed) N N (arb) amplitude (observed) A = phase (observed) [d W (W=0) + ew ] + aiw IW [d W (W=0)+ ew ] + aiw nw Qualitative agreement is also obtained by using the present lumped parameter model with different forms for A. This indicates more details should be included in future comparisons (14) 700/JY
31 SUMMARY Extended Lumped Parameter Model includes the essence of RWM physics The present approach is consistent with other approaches Comparison with experimental results provides semiquantitative discussion of the present RWM understandings.
Resistive Wall Mode Control in DIIID
Resistive Wall Mode Control in DIIID by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil
More informationRESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS
RESISTIVE WALL MODE STABILIZATION RESEARCH ON STATUS AND RECENT RESULTS by A.M. Garofalo1 in collaboration with J. Bialek,1 M.S. Chance,2 M.S. Chu,3 T.H. Jensen,3 L.C. Johnson,2 R.J. La Haye,3 G.A. Navratil,1
More informationRWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENTTHEORY COMPARISONS AND IMPLICATIONS FOR ITER
GA A24759 RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENTTHEORY COMPARISONS AND IMPLICATIONS FOR ITER by A.M. GAROFALO, J. BIALEK, M.S. CHANCE, M.S. CHU, D.H. EDGELL, G.L. JACKSON, T.H. JENSEN, R.J.
More informationEffects of Noise in Time Dependent RWM Feedback Simulations
Effects of Noise in Time Dependent RWM Feedback Simulations O. KatsuroHopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY USA) Building
More informationDIII D. by M. Okabayashi. Presented at 20th IAEA Fusion Energy Conference Vilamoura, Portugal November 1st  6th, 2004.
Control of the Resistive Wall Mode with Internal Coils in the Tokamak (EX/31Ra) Active Measurement of Resistive Wall Mode Stability in Rotating High Beta Plasmas (EX/31Rb) by M. Okabayashi Presented
More informationThe Effects of Noise and Time Delay on RWM Feedback System Performance
The Effects of Noise and Time Delay on RWM Feedback System Performance O. KatsuroHopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,
More informationSTABILIZATION OF THE RESISTIVE WALL MODE IN DIII D BY PLASMA ROTATION AND MAGNETIC FEEDBACK
GA A24014 STABILIZATION OF THE RESISTIVE WALL MODE IN DIII D BY PLASMA ROTATION AND MAGNETIC FEEDBACK by M. Okabayashi, J. Bialek, M.S. Chance, M.S. Chu, E.D. Fredrickson, A.M. Garofalo, R. Hatcher, T.H.
More informationDynamical plasma response of resistive wall modes to changing external magnetic perturbations a
PHYSICS OF PLASMAS VOLUME 11, NUMBER 5 MAY 2004 Dynamical plasma response of resistive wall modes to changing external magnetic perturbations a M. Shilov, b) C. Cates, R. James, A. Klein, O. KatsuroHopkins,
More informationDynamical plasma response of resistive wall modes to changing external magnetic perturbations
Dynamical plasma response of resistive wall modes to changing external magnetic perturbations M. Shilov, C. Cates, R. James, A. Klein, O. KatsuroHopkins, Y. Liu, M. E. Mauel, D. A. Maurer, G. A. Navratil,
More informationPrinceton Plasma Physics Laboratory. Multimode analysis of RWM feedback with the NMA Code
Princeton Plasma Physics Laboratory Multimode analysis of RWM feedback with the NMA Code M. S. Chance, M.Okabayashi, M. S. Chu 12 th Workshop on MHD Stability Control: Improved MHD Control Configurations
More informationEffect of an error field on the stability of the resistive wall mode
PHYSICS OF PLASMAS 14, 022505 2007 Effect of an error field on the stability of the resistive wall mode Richard Fitzpatrick Institute for Fusion Studies, Department of Physics, University of Texas at Austin,
More informationResistive Wall Mode Observation and Control in ITERRelevant Plasmas
Resistive Wall Mode Observation and Control in ITERRelevant Plasmas J. P. Levesque April 12, 2011 1 Outline Basic Resistive Wall Mode (RWM) model RWM stability, neglecting kinetic effects Sufficient for
More informationGA A26242 COMPREHENSIVE CONTROL OF RESISTIVE WALL MODES IN DIIID ADVANCED TOKAMAK PLASMAS
GA A26242 COMPREHENSIVE CONTROL OF RESISTIVE WALL MODES IN DIIID ADVANCED TOKAMAK PLASMAS by M. OKABAYASHI, I.N. BOGATU, T. BOLZONELLA, M.S. CHANCE, M.S. CHU, A.M. GAROFALO, R. HATCHER, Y. IN, G.L. JACKSON,
More informationEffect of Resonant and Nonresonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas
1 EX/53Ra Effect of Resonant and Nonresonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas H. Reimerdes 1), A.M. Garofalo 2), E.J. Strait 2), R.J. Buttery 3), M.S. Chu 2), Y. In 4),
More informationRWM Control in FIRE and ITER
RWM Control in FIRE and ITER Gerald A. Navratil with Jim Bialek, Allen Boozer & Oksana KatsuroHopkins MHD Mode Control Workshop University of TexasAustin 35 November, 2003 OUTLINE REVIEW OF VALEN MODEL
More informationModeling of active control of external magnetohydrodynamic instabilities*
PHYSICS OF PLASMAS VOLUME 8, NUMBER 5 MAY 2001 Modeling of active control of external magnetohydrodynamic instabilities* James Bialek, Allen H. Boozer, M. E. Mauel, and G. A. Navratil Department of Applied
More informationModeling of resistive wall mode and its control in experiments and ITER a
Modeling of resistive wall mode and its control in experiments and ITER a Yueqiang Liu b Department of Applied Mechanics, EURATOM/VR Fusion Association, Chalmers University of Technology, Göteborg, Sweden
More informationGA A26247 EFFECT OF RESONANT AND NONRESONANT MAGNETIC BRAKING ON ERROR FIELD TOLERANCE IN HIGH BETA PLASMAS
GA A26247 EFFECT OF RESONANT AND NONRESONANT MAGNETIC BRAKING ON ERROR FIELD TOLERANCE IN HIGH BETA PLASMAS by H. REIMERDES, A.M. GAROFALO, E.J. STRAIT, R.J. BUTTERY, M.S. CHU, Y. In, G.L. JACKSON, R.J.
More informationRequirements for Active Resistive Wall Mode (RWM) Feedback Control
Requirements for Active Resistive Wall Mode (RWM) Feedback Control Yongkyoon In 1 In collaboration with M.S. Chu 2, G.L. Jackson 2, J.S. Kim 1, R.J. La Haye 2, Y.Q. Liu 3, L. Marrelli 4, M. Okabayashi
More informationPlasma Stability in Tokamaks and Stellarators
Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1 May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,
More informationMAGNETIC FIELD ERRORS: RECONCILING MEASUREMENT, MODELING AND EMPIRICAL CORRECTIONS ON DIII D
MAGNETIC FIELD ERRORS: RECONCILING MEASUREMENT, MODELING AND EMPIRICAL CORRECTIONS ON DIII D by M.J. Schaffer, T.E. Evans, J.L. Luxon, G.L. Jackson, J.A. Leuer, J.T. Scoville Paper QP1.76 Presented at
More informationGA A27444 PROBING RESISTIVE WALL MODE STABILITY USING OFFAXIS NBI
GA A27444 PROBING RESISTIVE WALL MODE STABILITY USING OFFAXIS NBI by J.M. HANSON, F. TURCO M.J. LANCTOT, J. BERKERY, I.T. CHAPMAN, R.J. LA HAYE, G.A. NAVRATIL, M. OKABAYASHI, H. REIMERDES, S.A. SABBAGH,
More informationGlobal Mode Control and Stabilization for Disruption Avoidance in Highβ NSTX Plasmas *
1 EX/P807 Global Mode Control and Stabilization for Disruption Avoidance in Highβ NSTX Plasmas * J.W. Berkery 1, S.A. Sabbagh 1, A. Balbaky 1, R.E. Bell 2, R. Betti 3, J.M. Bialek 1, A. Diallo 2, D.A.
More informationResistive wall mode stabilization by slow plasma rotation in DIIID tokamak discharges with balanced neutral beam injection a
PHYSICS OF PLASMAS 14, 056101 2007 Resistive wall mode stabilization by slow plasma rotation in DIIID tokamak discharges with balanced neutral beam injection a E. J. Strait, b A. M. Garofalo, c G. L.
More informationCSA$9 k067s~ STUDY OF THE RESISTIVE WALL MODE IN DIIID GAMA22921 JULY 1998
STUDY OF THE RESISTIVE WALL MODE IN DIIID GAMA22921 CSA$9 k067s~ by A.M. GAROFALO, J. BIALEK, M.S. CHU, E.D. FREDRICKSON, R.J. GROEBNER, R.J. La HAYE, L.L. LAO, G.A. NAVRATIL, B.W. RICE, S.A. SABBAGH,
More informationResistive Wall Mode Stabilization and Plasma Rotation Damping Considerations for Maintaining High Beta Plasma Discharges in NSTX
1 EXS/55 Resistive Wall Mode Stabilization and Plasma Rotation Damping Considerations for Maintaining High Beta Plasma Discharges in NSTX S.A. Sabbagh 1), J.W. Berkery 1), J.M. Bialek 1), R.E. Bell ),
More informationAdvances in Global MHD Mode Stabilization Research on NSTX
1 EX/51 Advances in Global MHD Mode Stabilization Research on NSTX S.A. Sabbagh 1), J.W. Berkery 1), R.E. Bell 2), J.M. Bialek 1), S.P. Gerhardt 2), J.E. Menard 2), R. Betti 3), D.A. Gates 2), B. Hu 3),
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationResponse of a Resistive and Rotating Tokamak to External Magnetic Perturbations Below the Alfven Frequency
Response of a Resistive and Rotating Tokamak to External Magnetic Perturbations Below the Alfven Freuency by M.S. Chu In collaboration with L.L. Lao, M.J. Schaffer, T.E. Evans E.J. Strait (General Atomics)
More informationProgress Toward High Performance SteadyState Operation in DIII D
Progress Toward High Performance SteadyState Operation in DIII D by C.M. Greenfield 1 for M. Murakami, 2 A.M. Garofalo, 3 J.R. Ferron, 1 T.C. Luce, 1 M.R. Wade, 1 E.J. Doyle, 4 T.A. Casper, 5 R.J. Jayakumar,
More informationDependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges
Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges by J.R. Ferron with T.C. Luce, P.A. Politzer, R. Jayakumar, * and M.R. Wade *Lawrence Livermore
More informationRWM Control Code Maturity
RWM Control Code Maturity Yueqiang Liu EURATOM/CCFE Fusion Association Culham Science Centre Abingdon, Oxon OX14 3DB, UK Work partly funded by UK EPSRC and EURATOM. The views and opinions expressed do
More informationNIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997
NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU General Atomics Nimrod Project Review Meeting July 21 22, 1997 Work supported by the U.S. Department of Energy under Grant DEFG0395ER54309 and Contract
More informationInteraction of scrapeoff layer currents with magnetohydrodynamical instabilities in tokamak plasmas
Interaction of scrapeoff layer currents with magnetohydrodynamical instabilities in tokamak plasmas Richard Fitzpatrick Institute for Fusion Studies Department of Physics University of Texas at Austin
More informationThree Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research
1 TH/P910 Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research S. Günter, M. GarciaMunoz, K. Lackner, Ph. Lauber, P. Merkel, M. Sempf, E. Strumberger, D. Tekle and
More informationINTERACTION OF AN EXTERNAL ROTATING MAGNETIC FIELD WITH THE PLASMA TEARING MODE SURROUNDED BY A RESISTIVE WALL
INTERACTION OF AN EXTERNAL ROTATING MAGNETIC FIELD WITH THE PLASMA TEARING MODE SURROUNDED BY A RESISTIVE WALL S.C. GUO* and M.S. CHU GENERAL ATOMICS *Permanent Address: Consorzio RFX, Padova, Italy **The
More information Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation 
15TH WORKSHOP ON MHD STABILITY CONTROL: "USJapan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 1517, 17, 2010 LHD experiments relevant to Tokamak MHD control  Effect
More informationMHD Linear Stability Analysis Using a Full Wave Code
USJapan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto
More informationAnalytical Study of RWM Feedback Stabilisation with Application to ITER
CT/P Analytical Study of RWM Feedback Stabilisation with Application to ITER Y Gribov ), VD Pustovitov ) ) ITER International Team, ITER Naka Joint Work Site, Japan ) Nuclear Fusion Institute, Russian
More informationA simple model of the resistive wall mode in tokamaks
A simple model of the resistive wall mode in tokamaks Richard Fitzpatrick Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin TX 78712 (February 18, 2003) A simple
More informationControl of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain
Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain arxiv:146.5245v1 [physics.plasmph] 2 Jun 214 D. P. Brennan and J. M. Finn June 23, 214 Department of Astrophysical
More informationStationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control
Stationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J.
More informationSupported by. Role of plasma edge in global stability and control*
NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U
More informationMHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELMfree QH and RMP Discharges
MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELMfree QH and RMP Discharges P.B. Snyder 1 Contributions from: H.R. Wilson 2, D.P. Brennan 1, K.H.
More informationGA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIIID
GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIIID by A. WINGEN, N.M. FERRARO, M.W. SHAFER, E.A. UNTERBERG, T.E. EVANS, D.L. HILLIS, and P.B. SNYDER JULY 2014 DISCLAIMER This report was
More informationSimulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD
1 Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD Y. Todo 1), N. Nakajima 1), M. Osakabe 1), S. Yamamoto 2), D. A. Spong 3) 1) National Institute for Fusion Science,
More informationELMs and Constraints on the HMode Pedestal:
ELMs and Constraints on the HMode Pedestal: A Model Based on PeelingBallooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,
More informationThe Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation
The Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation P. W. Terry 1), R. Gatto 1), R. Fitzpatrick 2), C.C. Hegna 3), and G. Fiksel 1) 1) Department of Physics, University
More informationFormation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )
Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 3110102, Japan 1) University
More informationAdvanced Tokamak Research in JT60U and JT60SA
I07 Advanced Tokamak Research in and JT60SA A. Isayama for the JT60 team 18th International Toki Conference (ITC18) December 912, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development
More informationDynamic Resonant Error Field Correction with CCOIL and ICOIL in the DIIID device
Dynamic Resnant Errr Field Crrectin with CCOIL and ICOIL in the DIIID device M. Okabayashi, M.S. Chance, R, Hatcher, J. Manickam P P P L, J. Bialek, A.M. Garfal, G.A. Navratil, H. Reimerdes, C lumbia
More informationDesign calculations for fast plasma position control in Korea Superconducting Tokamak Advanced Research
Fusion Engineering and Design 45 (1999) 101 115 Design calculations for fast plasma position control in Korea Superconducting Tokamak Advanced Research Hogun Jhang a, *, C. Kessel b, N. Pomphrey b, S.C.
More informationNonSolenoidal Plasma Startup in
NonSolenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APSDPP, Nov. 2, 28 1 PointSource DC Helicity Injection Provides Viable NonSolenoidal Startup Technique
More informationPlasma Response Control Using Advanced Feedback Techniques
Plasma Response Control Using Advanced Feedback Techniques by M. Clement 1 with J. M. Hanson 1, J. Bialek 1 and G. A. Navratil 1 1 Columbia University Presented at 59 th Annual APS Meeting Division of
More informationEffect of ideal kink instabilities on particle redistribution
Effect of ideal kink instabilities on particle redistribution H. E. Ferrari1,2,R. Farengo1, P. L. GarciaMartinez2, M.C. Firpo3, A. F. Lifschitz4 1 Comisión Nacional de Energía Atómica, Centro Atomico
More informationControl of linear modes in cylindrical resistive MHD with a resistive wall, plasma rotation, and complex gain
Control of linear modes in cylindrical resistive MHD with a resistive wall, plasma rotation, and complex gain Dylan Brennan 1 and John Finn 2 contributions from Andrew Cole 3 1 Princeton University / PPPL
More informationA New Resistive Response to 3D Fields in Low Rotation Hmodes
in Low Rotation Hmodes by Richard Buttery 1 with Rob La Haye 1, Yueqiang Liu 2, Bob Pinsker 1, Jongkyu Park 3, Holger Reimerdes 4, Ted Strait 1, and the DIIID research team. 1 General Atomics, USA 2
More informationEffects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal
Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.
More informationA method for calculating active feedback system to provide vertical position control of plasma in a tokamak
PRAMANA c Indian Academy of Sciences Vol. 68, No. 4 journal of April 2007 physics pp. 591 602 A method for calculating active feedback system to provide vertical position control of plasma in a tokamak
More informationCurrent Drive Experiments in the HITII Spherical Tokamak
Current Drive Experiments in the HITII Spherical Tokamak T. R. Jarboe, P. Gu, V. A. Izzo, P. E. Jewell, K. J. McCollam, B. A. Nelson, R. Raman, A. J. Redd, P. E. Sieck, and R. J. Smith, Aerospace & Energetics
More informationGA A27910 THE SINGLEDOMINANT MODE PICTURE OF NONAXISYMMETRIC FIELD SENSITIVIITY AND ITS IMPLICATIONS FOR ITER GEOMETRIC TOLERANCES
GA A279 THE SINGLEDOMINANT MODE PICTURE OF NONAXISYMMETRIC FIELD SENSITIVIITY AND ITS IMPLICATIONS FOR ITER by C. PAZSOLDAN, K.H. BURRELL, R.J. BUTTERY, J.S. DEGRASSIE, N.M. FERRARO, A.M. GAROFALO,
More informationFirst Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIIID MatchedShape Plasmas
1 PD/11 First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIIID MatchedShape Plasmas R. Nazikian 1, W. Suttrop 2, A. Kirk 3, M. Cavedon 2, T.E. Evans
More informationIMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIIID HIGH PERFORMANCE DISCHARGES
IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIIID HIGH PERFORMANCE DISCHARGES by L.L. LAO, J.R. FERRON, E.J. STRAIT, V.S. CHAN, M.S. CHU, E.A. LAZARUS, TIC. LUCE, R.L. MILLER,
More informationKSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta
1 THS/P205 KSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta Y.S. Park 1), S.A. Sabbagh 1), J.W. Berkery 1), J.M. Bialek 1), Y.M. Jeon 2), S.H. Hahn 2), N. Eidietis
More informationD.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin  Madison 1500 Engineering Drive Madison, WI 53706
D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin  Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current
More informationDIII D Research in Support of ITER
Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 1318, 28 DIIID Research Has Made Significant Contributions in the Design
More informationDIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH
DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK
More informationCharacterization and Forecasting of Unstable Resistive Wall Modes in NSTX and NSTXU *
1 EX/P434 Characterization and Forecasting of Unstable Resistive Wall Modes in NSTX and NSTXU * J.W. Berkery 1, S.A. Sabbagh 1, Y.S. Park 1, R.E. Bell 2, S.P. Gerhardt 2, C.E. Myers 2 1 Department of
More informationDIII D. by F. Turco 1. New York, January 23 rd, 2015
Modelling and Experimenting with ITER: the MHD Challenge by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, F. Carpanese 3, C. PazSoldan 2, C.C. Petty 2, T.C. Luce 2, W.M. Solomon 4,
More informationOn the physics of shear flows in 3D geometry
On the physics of shear flows in 3D geometry C. Hidalgo and M.A. Pedrosa Laboratorio Nacional de Fusión, EURATOMCIEMAT, Madrid, Spain Recent experiments have shown the importance of multiscale (longrange)
More informationHighlights from (3D) Modeling of Tokamak Disruptions
Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly
More informationActive MHD Control Needs in Helical Configurations
Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2, A. Reiman 1, and the W7AS Team and NBIGroup. 1 Princeton Plasma
More informationINTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS
INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS A. Ishizawa and N. Nakajima National Institute for Fusion Science F. L. Waelbroeck, R. Fitzpatrick, W. Horton Institute for Fusion Studies, University
More informationLinjin Zheng, Infernal Modes at Tokamak H mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO)
International Sherwood Fusion Theory Conference, Austin, May 24, 2011 Infernal Modes at Tokamak H mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) Linjin Zheng, M. T. Kotschenreuther,
More informationW.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA
INTRINSICALLY STEADY STATE TOKAMAKS K.C. SHAING, A.Y. AYDEMIR, R.D. HAZELTINE Institute for Fusion Studies, The University of Texas at Austin, Austin TX 78712 USA W.A. HOULBERG Oak Ridge National Lab.,
More informationAC loop voltages and MHD stability in RFP plasmas
AC loop voltages and MHD stability in RFP plasmas K. J. McCollam, D. J. Holly, V. V. Mirnov, J. S. Sar, D. R. Stone UWMadison 54rd Annual Meeting of the APSDPP October 29th  November 2nd, 2012 Providence,
More informationEnergeticIonDriven MHD Instab. & Transport: Simulation Methods, V&V and Predictions
EnergeticIonDriven MHD Instab. & Transport: Simulation Methods, V&V and Predictions 7th APTWG Intl. Conference 58 June 2017 Nagoya Univ., Nagoya, Japan Andreas Bierwage, Yasushi Todo 14.1MeV 10 kev
More informationOverview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations
Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER
More informationTHE DIII D PROGRAM THREEYEAR PLAN
THE PROGRAM THREEYEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is wellaligned
More informationEFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY*
EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* by K.H. BURRELL Presented at the Transport Task Force Meeting Annapolis, Maryland April 3 6, 22 *Work supported by U.S. Department of Energy
More informationActive and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod
Active and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J
More informationFeedback stabilization of the resistive shell mode in a tokamak fusion reactor
Feedback stabilization of the resistive shell mode in a tokamak fusion reactor Institute for Fusion Studies, Department of Physics, The University of Texas at Austin, Austin, Texas 78712 Received 16 September
More informationPerformance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK
Performance limits Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 24) Previously... In the last few
More informationTwo Fluid Dynamo and EdgeResonant m=0 Tearing Instability in Reversed Field Pinch
1 Two Fluid Dynamo and EdgeResonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of WisconsinMadison, Madison,
More informationStability of the resistive wall mode in HBTEP plasmas
Stability of the resistive wall mode in HBTEP plasmas Richard Fitzpatrick and James Bialek Citation: Physics of Plasmas (1994present) 13, 072512 (2006); doi: 10.1063/1.2245542 View online: http://dx.doi.org/10.1063/1.2245542
More informationGA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS
GA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS by T.C. LUCE, G.L. JACKSON, T.W. PETRIE, R.I. PINSKER, W.M. SOLOMON, F. TURCO, N. COMMAUX, J.R. FERRON, A.M. GAROFALO,
More informationEnergetic Particle Physics in Tokamak Burning Plasmas
Energetic Particle Physics in Tokamak Burning Plasmas presented by C. Z. (Frank) Cheng in collaboration with N. N. Gorelenkov, G. J. Kramer, R. Nazikian, E. Fredrickson, Princeton Plasma Physics Laboratory
More informationCurrentdriven instabilities
Currentdriven instabilities Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 21 st February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously In the last
More informationEvaluation of CT injection to RFP for performance improvement and reconnection studies
Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi
More informationElectron temperature barriers in the RFXmod experiment
Electron temperature barriers in the RFXmod experiment A. Scaggion Consorzio RFX, Padova, Italy Tuesday 5 th October 2010 ADVANCED PHYSICS LESSONS 27/09/2010 07/10/2010 IPP GARCHING JOINT EUROPEAN RESEARCH
More informationarxiv: v1 [physics.plasmph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD selforganization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasmph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
More informationComparison of plasma breakdown with a carbon and ITERlike wall
Comparison of plasma breakdown with a carbon and ITERlike wall P.C. de Vries, A.C.C. Sips, H.T. Kim, P.J. Lomas, F. Maviglia, R. Albanese, I. Coffey, E. Joffrin, M. Lehnen, A. Manzanares, M. O Mulane,
More information0 Magnetically Confined Plasma
0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field
More informationTheory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing
Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic
More informationPlasma Current, Position and Shape Control June 2, 2010
, Position and Shape Control June 2, 2010 June 2, 2010  ITER International Summer School 2010 Control 1 in collaboration with CREATE and EFDAJET PPCC contributors 1 CREATE, Università di Napoli Federico
More informationNoninductive plasma startup and current profile modification in Pegasus spherical torus discharges
Noninductive plasma startup and current profile modification in Pegasus spherical torus discharges Aaron J. Redd for the Pegasus Team 2008 Innovative Confinement Concepts Workshop Reno, Nevada June 2427,
More informationOscillatingField CurrentDrive Experiment on MST
OscillatingField CurrentDrive Experiment on MST K. J. McCollam, J. K. Anderson, D. J. Den Hartog, F. Ebrahimi, J. A. Reusch, J. S. Sarff, H. D. Stephens, D. R. Stone University of WisconsinMadison D.
More informationThe FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is
and Stability of FieldReversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 921865608 P.O. APS Annual APS Meeting of the Division of Plasma Physics
More informationGA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER
GA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was
More informationExperimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA
Experimental Investigations of Magnetic Reconnection J Egedal MIT, PSFC, Cambridge, MA Coronal Mass Ejections Movie from NASA s Solar Dynamics Observatory (SDO) Space Weather The Solar Wind affects the
More information