Stationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control


 Ezra Fletcher
 1 years ago
 Views:
Transcription
1 Stationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J. R. Ferron, 1 C. M. Greenfield, 1 R. J. Jayakumar, 2 R. J. LaHaye, 1 E. A. Lazarus, 3 C. C. Petty, 1 and M. R. Wade 3 1General Atomics, San Diego, California, USA 2Lawrence Livermore National Laboratory, Livermore, California, USA 3Oak Ridge National Laboratory, Oak Ridge Tennessee, USA 4Princeton Plasma Physics Laboratory, Princeton New Jersey, USA 5Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 2th IAEA Fusion Energy Conference Vilamoura, Portugal 16 November 24 Paper EX/P27 QTYUIOP P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 1
2 Summary & Observations: Fully noninductive, high performance (normalized), high bootstrap fraction, stationary current plasmas have been sustained in DIIID without transformer assistance. I p 625 ka, β p β N 3.3, H 89P 3, f bs.8, q The total current evolves as expected for a bootstrapcurrentdominated plasma; current sustainment is favored by high density, high β p, and low l i. For a range of initial values, the plasma current evolves toward a single value. As the current profile evolves toward lower l i confinement gradually improves (principally particles). This correlates with a change in ELM character (become less grassy) and reduced Mirnov activity. Lower l i may be leading to higher stability limits (with a wall). P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 2a
3 The current and stored energy are limited by a relaxation oscillation involving repetitive growth and collapse of an ITB at large minor radius. Higher power increases the frequency of these events. The collapse is due to an ideal MHD mode, with peelingballooning characteristics. The ITB collapse changes the equilibrium and can lead to undesirable contact with the wall. In a fusion plasma it will lead to fluctuations in fusion power. Without transformer control, the total current is very sensitive to minor changes in boundary conditions. Use of the transformer as a control tool may be necessary even for steadystate operation. The stationarity of the current on the magnetic time scale, the recovery of the plasma from ITB collapse events, and the tendency with time toward more stable behavior is promising for future steadystate operation. P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 2b
4 Context: Steadystate, advanced tokamak, burning plasmas require ~1% bootstrap current. However very little is known about the characteristics and behavior of fully noninductive, high bootstrap fraction plasmas. ADVANCED TOKAMAK NONLINEAR TRANSPORT COUPLINGS transformer source of poloidal flux auxiliary current drive auxiliary heating auxiliary angular momentum external internal J cd αparticle heating Σ V loop J ohm J bs bootstrap current p, T, n, v profiles fast heat & momentum transport loop (blue) conductivity profile magnetic flux diffusion heat, particle, & momentum fluxes B pol transport coefficients turbulent & neoclassical profiles and transport coefficients couple red & blue loops slow magnetic flux transport loop (red) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 3a
5 The properties of small tokamaks are entirely determined by external drives (green lines). In present tokamaks, the internal heat and momentum feedback loop (blue) competes with external sources, but the total current and current profile remain dominated by external drives. In a steadystate burning plasma all external controls will be weak and the plasma will assume entirely selfconsistent profiles of J, n, T, and V. P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 3b
6 Key Questions: What are the selfconsistent n, T, J, and V profiles that the plasma wants? What are the beta limits associated with these profiles and what are the betalimiting processes? What is the maximum current that can be sustained? Are these limits consistent with the expected fusion power production? Are these conditions dynamically stable? (I.e., if perturbed, does the plasma return to the same state?) What control methods are needed and what controls are possible? P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 4
7 Slow Evolution (on the Current Profile Evolution Time Scale) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 5
8 Best Case (So Far): Fully noninductive plasma. Current is stationary (on average). limit cycle behavior (relaxation oscillations) at high heating power (on transport time scale).. Confinement gradually improves (on magnetic time scale). P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 6a
9 I p (MA). d/dt (transformer current) = density (12 m 3) PNB (MW) neutrons/s (x 1 14) Dα (arb) (8ms smooth) (8ms smooth) Te() (kev) Ti() (kev) t (s) β (%) t (s) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 6b
10 Longterm (Slow) Profile Evolution: Central (ρ <.6) density and electron temperature rise. Ion temperature and toroidal rotation increase across entire plasma. Pressure peaking is low, and doesn't change during pulse. Current profile broadens l i decreases, q & q min rise. Improvement is correlated with a change in the character of MHD fluctuations as seen on the Mirnov loops. P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 7a
11 .8 profiles at 1.97 s & 5.1 s ne (12 m 3) Te (kev). Jll MA/m Ωφ (krad/s) ρ 1 Ti (kev) ρ 4 2 q ρ.8 1. P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 7b
12 Parameter Improvement Over 2.5 s: parameter ±.5 s s ratio n e (1^2) T e (kev) T i (kev) H 89P H 98y p()/ p β p β N W (MJ) q min l i τ E (ms) Energy and particle confinement improve slowly (on current profile relaxation time scale). Mainly better particle confinement. Current profile broadens. β N H 89 ~ 81, but with q 95 ~ 1, β N H/q2 is a factor of 45 below ITER baseline. Similar operation at q 95 ~ 5 requires β N ~ 6 (2x current, same f bs, β p ). P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 8
13 Improving Confinement & Broadening Current Profile Leads to Higher Bootstrap Current 3.5 6*l i β p, β N.6 Ip Ibs+Inbcd 2. q, qmin 4*l i 4.4 Ibs t (s) q profile monotonic or slightly reversed 3.2 (βn reaches 6 li) Inbcd current (MA) t (s) (fbs > 8% for >.5 s) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 9
14 Bootstrap & NBCD Calculated From Measured ne, Te, Ti, and Zeff Profiles Agree With Total Current Profile From EFIT.8 J (MA/m2).6 Jbs+Jnbcd.4.2 Jbs J Jnbcd ρ fbs.84 fnbcd.2 accounts for total within uncertainty of experiment and model. Bootstrap alignment =.71 BSA = 1 J = J B /B T dv n e T e dv n e T e J J boot J (measure of RF power needed to drive nonbootstrap current) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 1
15 Good and Poor Confinement Phases of these Discharges Correlate With Different Mirnov and Dα Signals 2 ms smooth β T (%) Poor confinement corresponds to small, rapid ELMs and large rms db/dt Good confinement corresponds to fewer, larger ELMs and smaller, more coherent db/dt..56 I p (MA) l i Detailed characterization of differences and determination of reason for transition to better confinement is work to be done t (s).55 P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 11a
16 4 poor confinement at 4. s good confinement at 4. s db/dt (T/s) db/dt (T/s) 5e15 Dα Dα ITB collapse time P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 11b
17 later transition P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 11c
18 earlier transition P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 11d
19 Parametric Variations P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 12
20 Higher Density Gives Higher Bootstrap Current density (12 m 3) Ip (MA).45 fbs t (s) The total noninductive current and the bootstrap fraction both depend strongly on the plasma density. Three discharges prepared identically except for differing initial (prelh) density. With increasing density, the bootstrap fraction increases, and the rate of decay of the total current is reduced. Note also that variations in the total current are closely correlated with variations in the density, even on a short time scale. P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 13
21 Current Converges to a Single Value From a Range of Starting Points current (MA) Ip (25ms avg) t (s) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 14
22 Relaxation Oscillation Limit Cycle of ITB, Energy and Current P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 15
23 Stored Energy and Current Are Limited by a Relaxation Oscillation Ip (MA) diamag (arb) With increased NB heating power, neither the stored energy nor the current increase significantly. Both W and I p show intervals of rapid increase, terminated by a very fast drop. The time between events is 1's of ms These events tend to become smaller as the discharge evolves. 4 PNB (MW) (4ms avg) t (s) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 16
24 Relaxation Oscillation on the Transport Time Scale Ip (MA) diamag Collapse is associated with a very large Dα pulse in the divertor region The Dα pulse is often, but not always preceeded by an ELM Dα 1 db/dt (T/s) t (s) 8 The MHD has not yet been examined in detail. ITB occurs at large minor radius. After collapse, profiles recover to their previous values. P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 17
25 Profiles Show Internal Transport Barrier Collapses and Recovers ne (12 m 3) 1 4 Te (kev). 12 J (MA/m2) khz 1 khz Ωφ (krad/s) ρ Ti (kev) ρ 3.9 s s 4.25 s 8 4 q ρ P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 18
26 During Recovery, Ion Thermal Conductivity Improves Throughout Plasma Core 1 ρ = Evaluate χ i with TRANSP using measured profiles. Average over ρ =.2 zones. χ i (m2/s) χ i improves uniformly from center outward t (s) P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 19
27 Initial Ideal MHD Analysis Re(ξ ψ) 1..5 q=3 q= m=4 m=3 m=2 m=6 m=5 m=7 m=8 GATO ideal stability analysis of indicates an unstable mode with peelingballooning character. (Sum of poloidal harmonics peaks at edge, even though largest single harmonic is at radius of max p'.) ψ P. A. Politzer IAEA 2th FEC 3Nov4 EX/P27 2
STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIIID WITHOUT INDUCTIVE CURRENT CONTROL
th IAEA Fusion Energy Conference Vilamoura, Portugal, to 6 November IAEACN6/EX/P7 STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIIID WITHOUT INDUCTIVE CURRENT CONTROL P.A. POLITZER, A.W. HYATT, T.C.
More informationProgress Toward High Performance SteadyState Operation in DIII D
Progress Toward High Performance SteadyState Operation in DIII D by C.M. Greenfield 1 for M. Murakami, 2 A.M. Garofalo, 3 J.R. Ferron, 1 T.C. Luce, 1 M.R. Wade, 1 E.J. Doyle, 4 T.A. Casper, 5 R.J. Jayakumar,
More informationDependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges
Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges by J.R. Ferron with T.C. Luce, P.A. Politzer, R. Jayakumar, * and M.R. Wade *Lawrence Livermore
More informationELMs and Constraints on the HMode Pedestal:
ELMs and Constraints on the HMode Pedestal: A Model Based on PeelingBallooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,
More informationGA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID
GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,
More informationLocalized Electron Cyclotron Current Drive in DIII D: Experiment and Theory
Localized Electron Cyclotron Current Drive in : Experiment and Theory by Y.R. LinLiu for C.C. Petty, T.C. Luce, R.W. Harvey,* L.L. Lao, P.A. Politzer, J. Lohr, M.A. Makowski, H.E. St John, A.D. Turnbull,
More informationDIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by
UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN Presented by C.M. GREENFIELD for J.C. DeBOO, T.C. LUCE, B.W. STALLARD, E.J. SYNAKOWSKI, L.R. BAYLOR,3 K.H. BURRELL, T.A. CASPER, E.J.
More informationTHE DIII D PROGRAM THREEYEAR PLAN
THE PROGRAM THREEYEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is wellaligned
More informationDevelopment in DIII D Tokamak Hybrid Operation Scenarios
Development in Tokamak Hybrid Operation Scenarios by R.J. Jayakumar in collaboration with M.R. Wade, T.C. Luce, P.A. Politzer, A.W. Hyatt, J.R. Ferron, C.M. Greenfield, E.H. Joffrin, M. Murakami, C.C.
More informationPROGRESS TOWARDS SUSTAINMENT OF ADVANCED TOKAMAK MODES IN DIIIÐD *
PROGRESS TOWARDS SUSTAINMENT OF ADVANCED TOKAMAK MODES IN DIIIÐD * B.W. RICE, K.H. BURRELL, J.R. FERRON, C.M. GREENFIELD, G.L. JACKSON, L.L. LAO, R.J. LA HAYE, T.C. LUCE, B.W. STALLARD, E.J. STRAIT, E.J.
More informationComputational Study of NonInductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid
1st IAEA TM, First Generation of Fusion Power Plants Design and Technology , Vienna, July 57, 25 Computational Study of NonInductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid Y.
More information1999 RESEARCH SUMMARY
1999 RESEARCH SUMMARY by S.L. Allen Presented to DIII D Program Advisory Committee Meeting January 2 21, 2 DIII D NATIONAL FUSION FACILITY SAN DIEGO 3 /SLA/wj Overview of Physics Results from the 1999
More informationTimedependent Modeling of Sustained Advanced Tokamak Scenarios
Timedependent Modeling of Sustained Advanced Tokamak Scenarios T. A. Casper, L. L. LoDestro and L. D. Pearlstein LLNL M. Murakami ORNL L.L. Lao and H.E. StJohn GA We are modeling timedependent behavior
More informationIMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIIID HIGH PERFORMANCE DISCHARGES
IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIIID HIGH PERFORMANCE DISCHARGES by L.L. LAO, J.R. FERRON, E.J. STRAIT, V.S. CHAN, M.S. CHU, E.A. LAZARUS, TIC. LUCE, R.L. MILLER,
More informationAdvanced Tokamak Research in JT60U and JT60SA
I07 Advanced Tokamak Research in and JT60SA A. Isayama for the JT60 team 18th International Toki Conference (ITC18) December 912, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development
More informationProgress in Modeling of ARIES ACT Plasma
Progress in Modeling of ARIES ACT Plasma And the ARIES Team A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, General Atomics H. St John, G. Staebler C. Kessel Princeton Plasma Physics Laboratory
More informationResistive Wall Mode Control in DIIID
Resistive Wall Mode Control in DIIID by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil
More informationGA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME
GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.
More informationTransport Improvement Near Low Order Rational q Surfaces in DIII D
Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink
More informationEvolution of BootstrapSustained Discharge in JT60U
EX14 Evolution of BootstrapSustained Discharge in JT60U Y. Takase, a S. Ide, b Y. Kamada, b H. Kubo, b O. Mitarai, c H. Nuga, a Y. Sakamoto, b T. Suzuki, b H. Takenaga, b and the JT60 Team a University
More informationGA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIIID
GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIIID by E.J. DOYLE, J.C. DeBOO, T.A. CASPER, J.R. FERRON, R.J. GROEBNER, C.T. HOLCOMB, A.W. HYATT, G.L. JACKSON, R.J. LA HAYE, T.C. LUCE, G.R.
More informationOptimization of Stationary HighPerformance Scenarios
Optimization of Stationary HighPerformance Scenarios Presented by T.C. Luce National Fusion Program Midterm Review Office of Fusion Energy Science Washington, DC September, 6 QTYUIOP 86/TCL/rs Strategy
More informationHIGH PERFORMANCE EXPERIMENTS IN JT60U REVERSED SHEAR DISCHARGES
HIGH PERFORMANCE EXPERIMENTS IN JTU REVERSED SHEAR DISCHARGES IAEACN9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,
More informationQTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.
LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 16th IAEA Fusion Conference
More informationEvolution of BootstrapSustained Discharge in JT60U
1 Evolution of BootstrapSustained Discharge in JT60U Y. Takase 1), S. Ide 2), Y. Kamada 2), H. Kubo 2), O. Mitarai 3), H. Nuga 1), Y. Sakamoto 2), T. Suzuki 2), H. Takenaga 2), and the JT60 Team 1)
More informationEVIDENCE FOR ANOMALOUS EFFECTS ON THE CURRENT EVOLUTION IN TOKAMAK OPERATING SCENARIOS
GA A25580 EVIDENCE FOR ANOMALOUS EFFECTS ON THE CURRENT EVOLUTION IN TOKAMAK OPERATING SCENARIOS by T.A. CASPER, R.J. JAYAKUMAR, S.L. ALLEN, C.T. HOLCOMB, M.A. MAKOWSKI, L.D. PEARLSTEIN, H.L. BERK, C.M.
More informationGA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS
GA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS by T.C. LUCE, G.L. JACKSON, T.W. PETRIE, R.I. PINSKER, W.M. SOLOMON, F. TURCO, N. COMMAUX, J.R. FERRON, A.M. GAROFALO,
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationINTERNAL TRANSPORT BARRIERS WITH
INTERNAL TRANSPORT BARRIERS WITH COUNTERNEUTRAL BEAM INJECTION IN C.M. GREENFIELD, E.J. SYNAKOWSKI, K.H. BURRELL, M.E. AUSTIN, D.R. BAKER, L.R. BAYLOR, T.A. CASPER, J.C. DeBOO, E.J. DOYLE, D. ERNST, J.R.
More informationGA A26242 COMPREHENSIVE CONTROL OF RESISTIVE WALL MODES IN DIIID ADVANCED TOKAMAK PLASMAS
GA A26242 COMPREHENSIVE CONTROL OF RESISTIVE WALL MODES IN DIIID ADVANCED TOKAMAK PLASMAS by M. OKABAYASHI, I.N. BOGATU, T. BOLZONELLA, M.S. CHANCE, M.S. CHU, A.M. GAROFALO, R. HATCHER, Y. IN, G.L. JACKSON,
More informationA Hybrid Inductive Scenario for a Pulsed Burn RFP Reactor with QuasiSteady Current. John Sarff
A Hybrid Inductive Scenario for a Pulsed Burn RFP Reactor with QuasiSteady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 2628, 2007 The RFP fusion development
More informationPROGRESS TOWARDS SUSTAINMENT OF INTERNAL TRANSPORT BARRIERS IN DIIID
PROGRESS TOWARDS SUSTAINMENT OF INTERNAL TRANSPORT BARRIERS IN DIIID by B.W. RICE, J.R. FERRON, K.H. BURRELL, T.A. CASPER, C.M. GREENFIELD, G.L. JACKSON, T.C. LUCE, R.L. MILLER, B.W. STALLARD, E.J. SYNAKOWSKI,
More informationNIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997
NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU General Atomics Nimrod Project Review Meeting July 21 22, 1997 Work supported by the U.S. Department of Energy under Grant DEFG0395ER54309 and Contract
More informationDIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH
DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK
More informationDIII D. by M. Okabayashi. Presented at 20th IAEA Fusion Energy Conference Vilamoura, Portugal November 1st  6th, 2004.
Control of the Resistive Wall Mode with Internal Coils in the Tokamak (EX/31Ra) Active Measurement of Resistive Wall Mode Stability in Rotating High Beta Plasmas (EX/31Rb) by M. Okabayashi Presented
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationSTABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK
GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This
More informationEffects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER
Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione EuratomENEA sulla Fusione, C.R.
More informationGA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D
GA A271 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LINLIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER AUGUST 2001 DISCLAIMER This
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationAdvances in the Physics Basis of the Hybrid Scenario on DIIID
Advances in the Physics Basis of the Hybrid Scenario on DIIID C.C. Petty 1), W.P. West 1), J.C. DeBoo 1), E.J. Doyle 2), T.E. Evans 1), M.E. Fenstermacher 3), M. Groth 3), J.R. Ferron 1), G.R. McKee 4),
More informationDIII D Research in Support of ITER
Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 1318, 28 DIIID Research Has Made Significant Contributions in the Design
More informationGA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIIID
GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIIID by A. WINGEN, N.M. FERRARO, M.W. SHAFER, E.A. UNTERBERG, T.E. EVANS, D.L. HILLIS, and P.B. SNYDER JULY 2014 DISCLAIMER This report was
More informationPredicting the Rotation Profile in ITER
Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton
More informationGA A26474 SYNERGY IN TWOFREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIIID
GA A26474 SYNERGY IN TWOFREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIIID by R.I. PINSKER, W.W. HEIDBRINK, M. PORKOLAB, F.W. BAITY, M. CHOI, J.C. HOSEA, and Y. ZHU JULY 2009 DISCLAIMER This
More informationSTUDY OF ADVANCED TOKAMAK PERFORMANCE USING THE INTERNATIONAL TOKAMAK PHYSICS ACTIVITY DATABASE
INTERNATIONAL ATOMIC ENERGY AGENCY 20th IAEA Fusion Energy Conference Vilamoura, Portugal, 16 November 2004 IAEACN116/ STUDY OF ADVANCED TOKAMAK PERFORMANCE USING THE INTERNATIONAL TOKAMAK PHYSICS ACTIVITY
More informationGA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES
GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report
More informationELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations
1 EXC/P502 ELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science
More informationCharacteristics of the Hmode H and Extrapolation to ITER
Characteristics of the Hmode H Pedestal and Extrapolation to ITER The Hmode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference
More informationPROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK
PROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared
More informationOVERVIEW OF THE ALCATOR CMOD PROGRAM. IAEAFEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center
OVERVIEW OF THE ALCATOR CMOD PROGRAM IAEAFEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE CMod is compact, high field, high density, high power
More informationITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK
ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:
More informationTHE OPTIMAL TOKAMAK CONFIGURATION NEXTSTEP IMPLICATIONS
THE OPTIMAL TOKAMAK CONFIGURATION NEXTSTEP IMPLICATIONS by R.D. STAMBAUGH Presented at the Burning Plasma Workshop San Diego, California *Most calculations reported herein were done by YR. LinLiu. Work
More informationPedestal Stability and Transport on the Alcator CMod Tokamak: Experiments in Support of Developing Predictive Capability
1 EX/P415 Pedestal Stability and Transport on the Alcator CMod Tokamak: Experiments in Support of Developing Predictive Capability J.W. Hughes 1, P.B. Snyder 2, X. Xu 3, J.R. Walk 1, E.M. Davis 1, R.M.
More informationEdge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas
Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas by T.M. Wilks 1 with A. Garofalo 2, K.H. Burrell 2, Xi. Chen 2, P.H. Diamond 3, Z.B. Guo 3, X. Xu
More informationPredictive Study on High Performance Modes of Operation in HL2A 1
1 EX/P0 Predictive Study on High Performance Modes of Oration in HLA 1 Qingdi GAO 1), R. V. BUDNY ), Fangzhu LI 1), Jinhua ZHANG 1), Hongng QU 1) 1) Southwestern Institute of Physics, Chengdu, Sichuan,
More informationUCLA. Broadband Magnetic and Density Fluctuation Evolution Prior to First ELM in DIIID Edge Pedestal. Presented by G. Wang a, In collaboration with
Broadband Magnetic and Density Fluctuation Evolution Prior to First ELM in DIIID Edge Pedestal Presented by G. Wang a, In collaboration with W.A. Peebles a, P.B. Snyder b, T.L. Rhodes a, E.J. Doyle a,
More informationGA A24340 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII D: EXPERIMENT AND THEORY
GA A ELECTRON CYCLOTRON CURRENT DRIVE IN DIII D: EXPERIMENT AND THEORY by R. PRATER, C.C. PETTY, T.C. LUCE, R.W. HARVEY, M. CHOI, R.J. LA HAYE, Y.R. LINLIU, J. LOHR, M. MURAKAMI, M.R. WADE, and K.L.
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationDevelopment of a Systematic, Selfconsistent Algorithm for the KDEMO Steadystate Operation Scenario
Development of a Systematic, Selfconsistent Algorithm for the KDEMO Steadystate Operation Scenario J.S. Kang 1, J.M. Park 2, L. Jung 3, S.K. Kim 1, J. Wang 1, D. H. Na 1, C.S. Byun 1, Y. S. Na 1, and
More informationThe Effects of Noise and Time Delay on RWM Feedback System Performance
The Effects of Noise and Time Delay on RWM Feedback System Performance O. KatsuroHopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,
More informationThe Advanced Tokamak: Goals, prospects and research opportunities
The Advanced Tokamak: Goals, prospects and research opportunities Amanda Hubbard MIT Plasma Science and Fusion Center with thanks to many contributors, including A. Garafolo, C. Greenfield, C. Kessel,
More informationGA A22993 EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE STABILITY IN DIII D
GA A22993 EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE by L.L. LAO, V.S. CHAN, L. CHEN, E.J. DOYLE, J.R. FERRON, R.J. GROEBNER, G.L. JACKSON, R.J. LA HAYE, E.A. LAZARUS, G.R. McKEE, R.L. MILLER, M. MURAKAMI,
More informationGA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D
GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D by J.S. degrassie, D.R. BAKER, K.H. BURRELL, C.M. GREENFIELD, H. IKEZI, Y.R. LINLIU, C.C. PETTY, and R. PRATER APRIL 1997 This report
More informationHeat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment.
Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment E. Kolemen a, S.L. Allen b, B.D. Bray c, M.E. Fenstermacher b, D.A. Humphreys c, A.W. Hyatt c, C.J. Lasnier b,
More informationDEMONSTRATION IN THE DIIID TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS
GAA24145 DEMONSTRATION IN THE DIIID TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS by TC LUCE, MR WADE, JR FERRON, AW HYATT, AG KELLMAN, JE KINSEY, RJ LA HAYE,
More informationParticle transport results from collisionality scans and perturbative experiments on DIIID
1 EX/P326 Particle transport results from collisionality scans and perturbative experiments on DIIID E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck
More informationOverview of Recent Experimental Results From the DIII D Advanced Tokamak Program
OV/5 Overview of Recent Experimental Results From the DIII D Advanced Tokamak Program K.H. Burrell for the DIII D Team General Atomics, P.O. Box 8568, San Diego, California 986568 email: burrell@fusion.gat.com
More informationGA A24016 PHYSICS OF OFFAXIS ELECTRON CYCLOTRON CURRENT DRIVE
GA A6 PHYSICS OF OFFAXIS ELECTRON CYCLOTRON CURRENT DRIVE by R. PRATER, C.C. PETTY, R. HARVEY, Y.R. LINLIU, J.M. LOHR, and T.C. LUCE JULY DISCLAIMER This report was prepared as an account of work sponsored
More informationIntegrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport
1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibarakiken, 3110193 Japan
More informationCharacteristics of Internal Transport Barrier in JT60U Reversed Shear Plasmas
Characteristics of Internal Transport Barrier in JT6U Reversed Shear Plasmas Y. Sakamoto, Y. Kamada, S. Ide, T. Fujita, H. Shirai, T. Takizuka, Y. Koide, T. Fukuda, T. Oikawa, T. Suzuki, K. Shinohara,
More informationValidation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling
Validation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling by B.A. Grierson1, C. Chrystal2, W.X. Wang1, J.A. Boedo3, J.S. degrassie2, W.M. Solomon2,
More informationINTRODUCTION TO BURNING PLASMA PHYSICS
INTRODUCTION TO BURNING PLASMA PHYSICS Gerald A. Navratil Columbia University American Physical Society  Division of Plasma Physics 2001 Annual Meeting, Long Beach, CA 1 November 2001 THANKS TO MANY PEOPLE
More informationThe RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationNonSolenoidal Plasma Startup in
NonSolenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APSDPP, Nov. 2, 28 1 PointSource DC Helicity Injection Provides Viable NonSolenoidal Startup Technique
More informationTHE ADVANCED TOKAMAK DIVERTOR
I Department of Engineering Physics THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and the team 14th PSI QTYUIOP MA D S O N UCLAUCLA UCLA UNIVERSITY OF WISCONSIN THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and
More informationGA A23403 GAS PUFF FUELED H MODE DISCHARGES WITH GOOD ENERGY CONFINEMENT ABOVE THE GREENWALD DENSITY LIMIT ON DIII D
GA A23403 GAS PUFF FUELED H MODE DISCHARGES WITH GOOD ENERGY CONFINEMENT ABOVE THE GREENWALD DENSITY LIMIT ON DIII D by T.H. OSBORNE, M.A. MAHDAVI, M.S. CHU, M.E. FENSTERMACHER, R.J. La HAYE, A.W. LEONARD,
More informationEX/C35Rb Relationship between particle and heat transport in JT60U plasmas with internal transport barrier
EX/CRb Relationship between particle and heat transport in JTU plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),
More informationDT Fusion Ignition of LHDType Helical Reactor by Joule Heating Associated with Magnetic Axis Shift )
DT Fusion Ignition of LHDType Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) Tsuguhiro WATANABE National Institute for Fusion Science, 3226 Oroshicho, Toki 5095292, Japan (Received
More informationObservation of NeoClassical Ion Pinch in the Electric Tokamak*
1 EX/P629 Observation of NeoClassical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.L. Gauvreau, P.A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,
More informationIssues of Perpendicular Conductivity and Electric Fields in Fusion Devices
Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Michael Tendler, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden Plasma Turbulence Turbulence can be regarded
More informationGA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS
GA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING by G.R. McKEE, C. HOLLAND, Z. YAN, E.J. DOYLE, T.C. LUCE, A. MARINONI, C.C. PETTY, T.L. RHODES, L. SCHMITZ, W.M. SOLOMON, B.J. TOBIAS, G.
More informationTimedomain simulation and benchmark of LHCD experiment at ITER relevant parameters
Timedomain simulation and benchmark of LHCD experiment at ITER relevant parameters S. Shiraiwa, P. Bonoli, F. Poli 1, R. W, Harvey 2, C. Kessel 1, R. Parker, and G. Wallace MITPSFC, PPPL 1, and CompX
More informationRESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS
RESISTIVE WALL MODE STABILIZATION RESEARCH ON STATUS AND RECENT RESULTS by A.M. Garofalo1 in collaboration with J. Bialek,1 M.S. Chance,2 M.S. Chu,3 T.H. Jensen,3 L.C. Johnson,2 R.J. La Haye,3 G.A. Navratil,1
More informationASSESSMENT AND MODELING OF INDUCTIVE AND NONINDUCTIVE SCENARIOS FOR ITER
ASSESSMENT AND MODELING OF INDUCTIVE AND NONINDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD
More informationGA A23430 ADVANCED TOKAMAK PHYSICS IN DIII D
GA A343 ADVANCED TOKAMAK PHYSICS IN DIII D by C.C. PETTY, T.C. LUCE, P.A. POLITZER, M.R. WADE, S.L. ALLEN, M.E. AUSTIN, B. BRAY, K.H. BURRELL, T.A. CASPER, M.S. CHU, J.R. FERRON, E.D. FREDRICKSON, A.M.
More informationDIII D. by F. Turco 1. New York, January 23 rd, 2015
Modelling and Experimenting with ITER: the MHD Challenge by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, F. Carpanese 3, C. PazSoldan 2, C.C. Petty 2, T.C. Luce 2, W.M. Solomon 4,
More informationApproach to Steadystate High Performance in DD and DT with Optimised Shear on JET
JET P(98) F X Söldner et al Approach to Steadystate High Performance in DD and DT with Optimised Shear on JET This document is intended for publication in the open literature. It is made available on
More informationCharacterization of Edge Stability and Ohmic Hmode in the PEGASUS Toroidal Experiment
Characterization of Edge Stability and Ohmic Hmode in the PEGASUS Toroidal Experiment M.W. Bongard, J.L. Barr, M.G. Burke, R.J. Fonck, E.T. Hinson, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome
More informationQTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*
ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado
More informationNonlinear MHD Simulations of Edge Localized Modes in ASDEX Upgrade. Matthias Hölzl, Isabel Krebs, Karl Lackner, Sibylle Günter
Nonlinear MHD Simulations of Edge Localized Modes in ASDEX Upgrade Matthias Hölzl, Isabel Krebs, Karl Lackner, Sibylle Günter Matthias Hölzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013
More informationUnderstanding Confinement in Advanced Inductive Scenario Plasmas Dependence on Gyroradius and Rotation
1 Understanding Confinement in Advanced Inductive Scenario Plasmas Dependence on Gyroradius and Rotation P.A. Politzer 1, C.D. Challis 2, E. Joffrin 3, T.C. Luce 1, M. Beurskens 2, P. Buratti 4, F. Crisanti
More informationModeling of ELM Dynamics for ITER
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015
More informationRWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENTTHEORY COMPARISONS AND IMPLICATIONS FOR ITER
GA A24759 RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENTTHEORY COMPARISONS AND IMPLICATIONS FOR ITER by A.M. GAROFALO, J. BIALEK, M.S. CHANCE, M.S. CHU, D.H. EDGELL, G.L. JACKSON, T.H. JENSEN, R.J.
More informationMHD. Jeff Freidberg MIT
MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, selfconsistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium
More informationModelling plasma scenarios for MASTUpgrade
Modelling plasma scenarios for MASTUpgrade Neutral beam requirements, sensitivity studies and stability D. Keeling R. Akers, I. Chapman, G. Cunningham, H. Meyer, S. Pinches, S. Saarelma, O. Zolotukhin
More informationGA A23977 DETAILED MEASUREMENTS OF ECCD EFFICIENCY ON DIII D FOR COMPARISON WITH THEORY
GA A23977 DETAILED MEASUREMENTS OF ECCD EFFICIENCY ON DIII D by C.C. PETTY, R. PRATER, J. LOHR, T.C. LUCE, R.A. ELLIS, III, R.W. HARVEY, J.E. KINSEY, L.L. LAO, and M.A. MAKOWSKI MAY 2002 DISCLAIMER This
More informationIMPURITY ANALYSIS AND MODELING OF DIIID RADIATIVE MANTLE DISCHARGES
IMPURITY ANALYSIS AND MODELING OF DIIID RADIATIVE MANTLE DISCHARGES J. Mandrekas, W.M. Stacey Georgia Institute of Technology M. Murakami, M.R. Wade ORNL G. L. Jackson General Atomics Presented at the
More informationInfluence of Beta, Shape and Rotation on the Hmode Pedestal Height
Influence of Beta, Shape and Rotation on the Hmode Pedestal Height by A.W. Leonard with R.J. Groebner, T.H. Osborne, and P.B. Snyder Presented at FortyNinth APS Meeting of the Division of Plasma Physics
More informationGA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER
GA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was
More information