The Advanced Tokamak: Goals, prospects and research opportunities

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Advanced Tokamak: Goals, prospects and research opportunities"

Transcription

1 The Advanced Tokamak: Goals, prospects and research opportunities Amanda Hubbard MIT Plasma Science and Fusion Center with thanks to many contributors, including A. Garafolo, C. Greenfield, C. Kessel, D. Meade, M. Murakami, F. Najmabadi, T. Taylor Opinions are my own GCEP Fusion Energy Workshop on Opportunities for Fundamental Research and Breakthrough in Nuclear Fusion Princeton, NJ May

2 The Advanced Tokamak Introduction: What is an advanced tokamak? The AT vision for fusion energy Drawing heavily on ARIES studies. Current results and near-term prospects Focusing here on US program. AT on ITER: What we will (and won t) learn. Research Opportunities: ideas to advance and accelerate fusion energy prospects. To start the discussion.

3 An advanced tokamak device is, in terms of magnetic configuration, simply a TOKAMAK Pure toroidal field does not confine charged particles Adding poloidal field does confine charged particles. Produced by toroidal current. Tokamak needs a toroidal current for stability. Current conventionally driven by tranformer; - Current is driven around central solenoid. Inherently NOT steady-state.

4 Tokamaks lead other configurations in fusion performance, are approaching breakeven ITER D. Meade, ARIES workshop 4/24/05

5 Conventional tokamak operation will be primary mode of operation on ITER Heating applied mainly on-axis, inductive current drive, profiles relax to natural state. Much experience worldwide, good confidence in extrapolation to burning plasma conditions. This will allow critical exploration of burning plasma physics. Could probably be used to make a fusion power plant. Advantages of relative simplicity, staying away from performance limits. BUT projected power plant not seen as economically attractive (at least in prior assessments with low cost oil!)

6 Tokamak current does not have to be driven by a transformer! Alternative means of current drive: External current drive, by neutral beams, or microwaves (various ranges from ion cyclotron (~100 MHz), Lower Hybrid (~ 5 GHz), electron cyclotron (~100 GHz)) Bootstrap current : Self-generated current due to temperature, density, pressure gradients in the plasma. All of these are fairly well understood, and have been demonstrated to work on many experiments. Gives potential for steady-state operation. The crucial distinguishing feature of an Advanced Tokamak over a conventional tokamak is the use of active control of the current or shear profile, and of the pressure profile or transport characteristics (AT Workshop, GA, 1999) Same tokamaks can (and do) operate in both conventional and advanced regimes.

7 OPTIMIZATION OF THE TOKAMAK CONCEPT LEADS TO AN ATTRACTIVE FUSION POWER PLANT Attractive features Improved power cycle Improved economics Reduced size Higher pressure, reduced heat loss Conventional Optimized Power cycle Pulsed Steady-state COE /kwhr ~13 ~7 Major radius (m) 8 5 The U.S. ARIES system study Central Solenoid PF Coils Vacuum Vessel Door Superconducting TF Toroidal CoilsMagnets Cryostat Maintenance Port Optimization of the tokamak concept is known as the Advanced Tokamak program Vacuum Vessel Low Temperature Shield High Temperature Shield Low Activation First Wall and Blanket Hardback Structure Divertor Diverter Region /TST/wj

8 THE GOAL OF THE ADVANCED TOKAMAK PROGRAM IS TO OPTIMIZE THE TOKAMAK CONCEPT FOR ATTRACTIVE FUSION ENERGY PRODUCTION Key Elements Discovering the Ultimate Potential of the Tokamak Steady state High self-generated bootstrap current Compact (smaller) Improved confinement (reduced heat loss) Fusion Ignition Requirement m 3 kev s < n T i τ (H a B κ) 2 H = τ E /τ conv E } Size High power density Improved stability P Fus (n T) 2 Vol β 2 B 4 Vol β = 2 µ o P B 2 DIII D NATIONAL FUSION FACILITY SAN DIEGO /TST/wj

9 SIMULATIONS PREDICT SELF-CONSISTENT EQUILIBRIA WITH NEARLY 100% BOOTSTRAP f BS = 0.92 J B BS 1 0 Radius DIII D NATIONAL FUSION FACILITY SAN DIEGO J B tot q Negative Magnetic Shear 1 Steady state with low recirculating power Off-axis current drive to supply missing current Provided by high power microwaves in DIII D Other benefits of negative central shear profile Reduced transport, improved confinement Improved stability to central unstable MHD modes Ballooning Tearing modes Sawteeth /TST/wj

10 NEGATIVE CENTRAL SHEAR AND SHEARED E B FLOW LEAD TO IMPROVED CORE CONFINEMENT Key physics Measured turbulence reduction is consistent with theoretical prediction E B shearing rate exceeds maximum growth rate of ion temperature gradient mode Negative magnetic shear contributes to reduced γ ITG Similar reduction is often observed in other transport channels 10 kev ρ 6 T i 5 ω E B = 2 1 γ ITG 10 5 s ρ 10 kev 0.9 s 0.9 s s T i ρ DIII D NATIONAL FUSION FACILITY SAN DIEGO /TST/wj

11 A COMPACT STEADY STATE TOKAMAK REQUIRES OPERATION AT HIGH β N 2 P fus γ ε cur Q ss = eff β N B 3 aκ P CD nq ( 1 ξ A q β ) N β Power Density T ε 1 + κ 2 2 DIII D NATIONAL FUSION FACILITY SAN DIEGO Current Limit q* = 4 Advanced Pressure Conventional Tokamak Limit Tokamak β N = 5 β N = 3.5 Equilibrium Limit 2 εβ p Bootstrap Current High power density high β T Large bootstrap fraction high β p Steady state high β N β N power density bootstrap current ( 1 + κ 2 β T β p 2 )β N β N = β T /(I/aB) /TST/wj

12 Advanced Tokamak concept of fusion power plant. Embodied in ARIES design studies, ARIES-RS and ARIES-AT. Japan has similar studies. Material courtesy of F. Najmabadi, UCSD

13 ARIES-AT is an attractive vision for fusion with a reasonable extrapolation in physics & technology Competitive cost of electricity (5c/kWh); Steady-state operation; Low level waste; Public & worker safety; High availability.

14 Evolution of ARIES Designs 1 st Stability, Nb 3 Sn Tech. High-Field Option Reverse Shear Option ARIES-IA ARIES-I ARIES-RS ARIES-AT Major radius (m) β (β Ν ) Plasma pressure/magnetic p 2% (2.9) 2% (3.0) 5% (4.8) 9.2% (5.4) Peak magnetic field (T) Avg. Wall Load (MW/m 2 ) Current-driver power (MW) Recirculating Power Fraction Thermal efficiency Cost of Electricity (c/kwh) Approaching COE insensitive of power density

15 Our Vision of Magnetic Fusion Power Systems Has Improved Dramatically in the Last Decade, and Is Directly Tied to Advances in Fusion Science & Technology Estimated Cost of Electricity (c/kwh) Major radius (m) Mid 80's Physics Early 90's Physics Late 90's Physics Advance Technology Mid 80's Pulsar Early 90's ARIES-I Late 90's ARIES-RS 2000 ARIES-AT Present ARIES-AT parameters: Major radius: 5.2 m Fusion Power 1,720 MW Toroidal β: 9.2% Net Electric 1,000 MW Wall Loading: 4.75 MW/m 2 COE 5 c/kwh

16 ARIES-AT is Competitive with Other Future Energy Sources Estimated range of COE (c/kwh) for 2020* Natural Gas Coal Nuclear Wind (Intermittent) Fusion (ARIES-AT) AT 1000 (1 GWe) AT 1500 (1.5 GWe) EPRI Electric Supply Roadmap (1/99): Business as usual Impact of $100/ton Carbon Tax. * Data from Snowmass Energy Working Group Summary. Estimates from Energy Information Agency Annual Energy Outlook 1999 (No Carbon tax). Annual Energy Outlook 2005 (2025 COE, 2003$)

17 Advanced Tokamak Research on current experiments What is needed? key issues What results have already been obtained? Near-term plans and prospects.

18 Physics Requirements for Advanced Tokamak For STEADY STATE, want 100% non-induction current drive (external + self-generated Bootstrap For low recirculating power, good economics, want High bootstrap fraction 80-90% self-generated. To get this, need high normalized pressure, β N. This requires low transport, to get high gradients, which in turn are enabled by optimized current profile. High pressure itself improves economics. Highly coupled control of current, transport profiles needed for times long compared to plasma time scales, eg. energy confinement time τ E, current relaxation time τ CR.

19 Many of these requirements have been demonstrated in present expts As examples, show recent results from DIII-D tokamak, San Diego at 2005 APS-DPP meeting (A. Garafolo, Univ. Columbia, M. Murakami, ORNL) and from C-Mod, MIT DIII-D results rely heavily on MHD stabilization techniques to reach high β. This important aspect of AT research will be covered this afternoon by G. Navratil. Other world tokamaks, in particular JT-60U (Japan) and ASDEX- Upgrade (Germany) also have strong AT programs, range of control tools. Will not attempt a comprehensive review here! Also important work on advanced scenarios in spherical (low aspect ratio) tokamaks NSTX (PPPL) and MAST (UK), which will (I presume) be covered in talk by Martin Peng.

20 Advanced Tokamak Goal is Steady-state Operation Combined with High Fusion Performance Steady state operation 100% non-inductive current High β P, high fraction of bootstrap current High fusion gain High β, high τ E High normalized fusion performance: G = β N H 89 /q 95 2 Fusion power Negative Central Shear Bootstrap current Stability to high-n ballooning modes and neoclassical tearing modes Suppression of transport Good alignment of bootstrap current with total current Hollow current profile, wall-stabilization of low-n kink modes

21 Recent DIII-D Experiments Achieved High Fusion Performance at High Bootstrap Current Fraction Combination of high confinement, high beta, and high bootstrap fraction sustained for ~2 s Multiple control tools needed, including Simultaneous ramping of plasma current and toroidal field Simultaneous Feedback Control of Error Fields and Resistive Wall Mode Transport analysis confirms presence of internal transport barriers (ITBs) in high β discharges Stability analysis indicates potential for higher beta operation High noninductive current fraction (~100%) has been achieved Steady-state sustainment will be pursued with new DIII-D tools

22 High Normalized Beta (β N ~4) Sustained for ~2 s at High Safety Factor and High Confinement β N > 6l i for ~2 s Relies on wall stabilization of the n=1 external kink mode (conventional stability limit ~4l i ) High performance phase generally terminated by current profile evolution (m,n) = (2,1) tearing mode

23 High β Discharge Profiles Show NCS and ITBs Strong gradients typical of ITBs are observed in T i, n e and rotation profiles, but not in T e Pressure peaking factor, P(0)/<P> varies in range during high beta phase P(0)/<P>=2.9 f GW ~

24 High β N Discharge with Constant Plasma Current Driven Noninductively for ~0.5 s Surface voltage < 0 after I p ramp ends Internal loop voltage profile shows noninductive current fraction 100 %, although not fully relaxed 100 ms triangular smoothing Current drive analysis

25 With Improved Confinement, f ni =100% Achieved with Good CD Alignment 2 Local toroidal current density (A/cm ) J φ (R) Midplane major radius, R (m) MSE Array Tangential Radial Edge 2.4 Flux Surface Averaged Toroidal Current Density (A/cm 2 ) J(ρ) J ind Measurement J tot (Eq. Measurement) RADIUS, ρ Equilibrium measurement: J ind = neo E neo pol / t f NI = 1 f ind f ind = 0.5%, f NI = 99.5% Inductive current is locally & globally close to zero NI current aligned well to desired J tot good CD alignment T = 3.5%, N = 3.6, q 95 = 5.0 G = N H 89 /q 2 95 = 0.3 ITER steady state scenario requirements satisfied /mm/jy

26 Transport Code Carries Out Data Analysis Based on Equilibrium Reconstruction with Kinetic Profile Information Local toroidal current density (A/cm 2 ) J φ (r) J (calc.) EC Midplane major radius, R (m) MSE Array Tangential Radial Edge Analysis (EFIT) 2.4 Flux Surface Averaged Toroidal Current Density (A/cm 2 ) J(ρ) J NB J EC J bs J tot Analysis F Radius, ρ Measurements: f ind = 0.5%, f NI = 99.5% Analysis shows: f BS =59% f NB =31% f EC = 8% f NI = 98% Equilibrium reconstruction (EFIT) lacks spatial resolution Makes the current balance calculations problematic /mm/jy

27 Internal transport barriers, and core transport control, have been produced in C-Mod with normal shear, by varying heating profile OFF-axis heating alone causes density peaking, ~ const T. ON-axis heating clamps n, but increases T, neutron rate. Electron Pressure (MPascals) 3 RF Power Density (MW/m ) r/a MW central ICRF added into fully formed ITB t=1.294 s ITB, 2.35 MW Off-axis ICRF t=1.127s H-mode, No ITB t=0.894 s On-axis + off-axis, 4 MW total rf power at t=1.3 s Off-axis alone, 2.3 MW total rf power at t=1.1 s r/a 20-3 Electron Density (10 m ) Electron Temperature (kev) n e TS data t=0.761s H-mode t=1.094s ITB t=1.276s ITB with on-axis heating Midplane Major Radius [m] t=0.794s H-mode t=1.094s ITB t=1.261s ITB with added central rf power TS data Edge Thomson GPC2 data FRC data T e Midplane Major Radius [m] Levels of heat and particle diffusivity can be reduced to neoclassical, or increased to stabilize density and impurities.

28 Issues and Near-term plans for Advanced Tokamak Research While much has been achieved, much more remains to be done to realize potential of advanced regimes on burning plasmas, and fusion reactors. Most scenarios are still non-stationary (t < τ CR ), and/or rely on current profile control techniques (eg, tailored heating during current rampup, central NBI) which don t extrapolate to steady state. Most present experiments have plasma conditions quite different from burning plasmas. Eg. Uncoupled (τ e-i >> τ Ε ) vs coupled (τ e-i << τ Ε ) electrons and ions (lower vs higher density) Core particle and momentum sources (vs RF, alpha htg.) Both factors strongly affect transport barrier formation. Handling of high heat loads in divertor common to all attractive configurations and will be covered in talk by Mike Ulrickson.

29 Experiments at Higher q min and Higher β N Will Address Steady-state Demonstration New divertor and improved density control will slow down q min evolution By allowing higher temperature at lower density By allowing higher ECCD at lower density Additional ECCD power will improve current profile control Higher β N at higher q min will give higher bootstrap current Will reduce Ohmic current at large radii Will overdrive at small radii Compensate overdrive using ECCD, FW, Counter NBI

30 Advanced Tokamak Research on C-Mod AT research is an increasingly important focus on C-Mod, which is a compact (R=.68 m), high B (5-8 T), high n e ( m -3 ) tokamak. Unique among world divertor tokamaks, can test AT physics and scenarios At ITER field and density (key wave physics parameters). Without core particle or momentum sources (all RF heating) Strongly coupled ions and electrons (τ e-i << τ Ε ) Pulse lengths >> current relaxation times, routinely. (ie., steady-state, relaxed j(r)). ITER-level divertor fluxes. Important challenge and test: Will AT regimes scenarios work as well in these conditions, typical of ITER and reactors?? Program focuses on control of current and magnetic shear as well as transport and kinetic profiles with various shear profiles. RF systems (ICRF +LHCD) provide key control tools. LHCD is highest efficiency technique for current drive far off axis. Also adding new cryopump, important for density control. In near term, rely on shape and profile control to maximize no-wall limit β N ~3. Longer term, would like to add active stabilization.

31 New LHCD system on Alcator C-Mod 12 klystrons 0.25 MW = GHz Transmission waveguides Coupler grill MIT/PPPL collab n. 96 waveguide outlets, allowing flexible phasing to launch spectrum Initial experiments in progress and first, significant, LHCD recently seen!

32 Safety Factor - q(r) Example of non-inductive AT target scenario on C-Mod One of many optimized scenarios modelled with ACCOME. I LH =240 ka I BS =600 ka (70%) Ip = 0.86 MA Ilh = 0.24 MA fbs = 0.7 Double transport barrier B T =4 T ICRH: 5 MW LHCD: 3 MW, N //0 =3 n e (0)= 1.8e 20 m -3 T e (0)=6.5 kev (H=2.5) β N =2.9 Scenarios without barrier, or only an ITB, have similar performance. J (MA / m2) q(0) = 5.08 q min = 3.30 q(95) = 5.98 r / a r / a P. Bonoli, Nucl. Fus. 20(6) 2000.

33 Advanced Scenarios on ITER As a burning plasma experiment, ITER will explore a range of physics parameters and scenarios. To guide planning, currently focusing on three main target scenarios, all at B T =5.3 T. Still some flexibility/uncertainty in sources, parameters. 1. Conventional H-mode: Baseline Scenario, Q=10.Positive shear, q 95 =3, β N =1.8, H H ~1, n~10 20 m -3. f NI ~ MAIN ITER GOAL! 2. Hybrid Scenario: Q=10 Weak core shear, q 95 =4, q min ~1, β N =2.8, H H ~1.2, f NI ~ 0.5. j(x) 3. Steady-state: Q=5, long pulse Weak or negative shear, q 95 ~5, q min ~2, β N =3.0, H H ~1.2, f NI ~ 1.0. SECONDARY GOAL TRANSP/TSC simulation of ITER S-S scenario. Houlberg&ITPA, IAEA04.

34 What we can (and can t) expect from ITER Demonstration of advanced, high non-inductive scenarios on ITER would be an extremely important step towards an AT DEMO reactor! Would resolve many uncertainties about applicability with BPrelevant plasma parameters and control tools, as outlined above. Would start addressing key control issues with self-heating. A key goal of the current US program is to conduct research that will support AT on ITER, and to push for needed hardware. BUT Because steady-state mission on ITER is secondary, it is NOT an optimized machine for AT. For example, Shaping flexibility is limited. Heating and current drive likely underpowered. Much depends on hardware decisions not yet made, eg. Will ITER have LHCD, needed for off-axis CD? How much? Will ITER have active control coils to reach highest β? US will be pushing for these, but we won t call all the shots! Coming year or two is critical.

35 Research Opportunities What are key questions/topics which would take advanced tokamak from interesting and attractive scientific research to a fusion energy source? Which are NOT likely to be funded in near-term US-DOE program? As a general principle, I assume that issues of direct application to ITER will likely get priority, and (hopefully) adequate funding. More general but still important issues or those aiming at steps beyond ITER, and fusion energy application, are likely to get less resources.

36 CONTROL ISSUES TOP MY LIST A fusion reactor or DEMO would need to run for long periods, close to stability limits, and with all profiles well optimized and controlled. In high-bootstrap scenario, these are tightly coupled Current profile derived mainly from n, T profiles, which in turn depend on both sources and transport. MANY interactions! Limited external control of j(r). How much is needed? Pressure/current profiles need to be aligned for stability. Heat mainly coming from fusion burn reduces controllability. I would like to see a more focussed effort on demonstrating active, integrated profile control not just tailoring of profiles applicable to a specific machine or experiment (eg by adjusting heating times in rampup). This likely won t just happen, even with ITER coming. Would benefit from an interdisciplinary approach, from plasma physics experimentalists and theorists, plus engineering, controls, power systems experts.

37 Actuators and nonlinear couplings in a bootstrap-dominated steady state burning plasmas Figure from P. Politzer et al., ITPA meeting Lisbon 2004 D. Moreau IEA W60 Burning Plasma Physics and Simulation, Tarragona, July 2005

38 Can we develop a transport control tool? Part of the difficulty in profile control is the indirect nature of controlling temperature and density profiles. We control heat and particle sources and, if we are fortunate, current profiles. Plasma transport determines T, n profiles. While there is good progress in understanding transport (to be covered in talks by Tynan, Dorland), it is highly complex, with gaps in our knowledge; not easily amenable to control algorithms! χ D have been shown to be affected by j(r), by heating profile, by shear flow The goal is NOT minimum transport, but optimum transport otherwise pressure limits exceeded, impurities and ash accumulate. A holy grail of transport and control research is an active control tool for transport, independent of heat sources. Best hopes are for RF tools, which could eg. drive flow shear, modifying χ at specific location. There are ideas (eg, Ion Bernstein Waves), but currently not a focused experimental and theoretical effort. Could I think be done with modest funding, including expt-theory collaboration and small-scale lab tests. Would be high leverage for AT fusion development.

39 Other pressing issues Most of these will I expect come up in other talks, and are active areas of international fusion research Improved divertor solutions and materials for steady state, reactor-level heat fluxes. Compatibility of core and edge plasmas in advanced modes (closely related to divertor issue) MHD control tools for sustaining high beta, suppressing code instabilities. Disruption avoidance and mitigation. Extension to longer pulse lengths EAST and KSTAR will play important roles, though experience suggests it will take several years to develop needed AT tools.

40 Summary: The Advanced Tokamak The advanced tokamak is a tokamak operational scenario characterized by high degree of control of current and pressure profiles. Leads to optimized fusion reactor designs (eg ARIES-AT, RS) which are steady-state, have low recirculating power and lower size and cost than conventional tokamaks. Extrapolates to competitive cost of electricity. Current experiments have demonstrated many key needed features, such as high β, reduced transport and non-inductive current drive. Near-term research aims at extending such results to steady-state and demonstrating in more burning-plasma relevant conditions. ITER will be an important test of advanced scenarios in a burning plasma! But, this is a secondary mission and the device may not have optimal design and tools. Further research is needed to go from current experiments to confidence in an advanced tokamak DEMO reactor, in particular more tools, understanding and experience in active control.

THE DIII D PROGRAM THREE-YEAR PLAN

THE DIII D PROGRAM THREE-YEAR PLAN THE PROGRAM THREE-YEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is well-aligned

More information

C-Mod Advanced Tokamak Program: Recent progress and near-term plans

C-Mod Advanced Tokamak Program: Recent progress and near-term plans Advanced Tokamak Program: Recent progress and near-term plans Program Advisory Committee Review February 2, 2004 MIT PSFC Presented by A. Hubbard MIT Plasma Science and Fusion Center, for the team Advanced

More information

Progress Toward High Performance Steady-State Operation in DIII D

Progress Toward High Performance Steady-State Operation in DIII D Progress Toward High Performance Steady-State Operation in DIII D by C.M. Greenfield 1 for M. Murakami, 2 A.M. Garofalo, 3 J.R. Ferron, 1 T.C. Luce, 1 M.R. Wade, 1 E.J. Doyle, 4 T.A. Casper, 5 R.J. Jayakumar,

More information

MHD. Jeff Freidberg MIT

MHD. Jeff Freidberg MIT MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, self-consistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium

More information

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:

More information

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 26-28, 2007 The RFP fusion development

More information

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory Localized Electron Cyclotron Current Drive in : Experiment and Theory by Y.R. Lin-Liu for C.C. Petty, T.C. Luce, R.W. Harvey,* L.L. Lao, P.A. Politzer, J. Lohr, M.A. Makowski, H.E. St John, A.D. Turnbull,

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg. Progressing Performance Tokamak Core Physics Marco Wischmeier Max-Planck-Institut für Plasmaphysik 85748 Garching marco.wischmeier at ipp.mpg.de Joint ICTP-IAEA College on Advanced Plasma Physics, Triest,

More information

Advanced Tokamak Research in JT-60U and JT-60SA

Advanced Tokamak Research in JT-60U and JT-60SA I-07 Advanced Tokamak Research in and JT-60SA A. Isayama for the JT-60 team 18th International Toki Conference (ITC18) December 9-12, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development

More information

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J.

More information

Progress in Modeling of ARIES ACT Plasma

Progress in Modeling of ARIES ACT Plasma Progress in Modeling of ARIES ACT Plasma And the ARIES Team A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, General Atomics H. St John, G. Staebler C. Kessel Princeton Plasma Physics Laboratory

More information

Spherical Torus Fusion Contributions and Game-Changing Issues

Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus (ST) research contributes to advancing fusion, and leverages on several game-changing issues 1) What is ST? 2) How does research

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

Optimization of Stationary High-Performance Scenarios

Optimization of Stationary High-Performance Scenarios Optimization of Stationary High-Performance Scenarios Presented by T.C. Luce National Fusion Program Midterm Review Office of Fusion Energy Science Washington, DC September, 6 QTYUIOP 8-6/TCL/rs Strategy

More information

Evolution of Bootstrap-Sustained Discharge in JT-60U

Evolution of Bootstrap-Sustained Discharge in JT-60U 1 Evolution of Bootstrap-Sustained Discharge in JT-60U Y. Takase 1), S. Ide 2), Y. Kamada 2), H. Kubo 2), O. Mitarai 3), H. Nuga 1), Y. Sakamoto 2), T. Suzuki 2), H. Takenaga 2), and the JT-60 Team 1)

More information

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT J. F. Lyon, ORNL ARIES Meeting October 2-4, 2002 TOPICS Stellarator Reactor Optimization 0-D Spreadsheet Examples 1-D POPCON Examples 1-D Systems Optimization

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

Evolution of Bootstrap-Sustained Discharge in JT-60U

Evolution of Bootstrap-Sustained Discharge in JT-60U EX1-4 Evolution of Bootstrap-Sustained Discharge in JT-60U Y. Takase, a S. Ide, b Y. Kamada, b H. Kubo, b O. Mitarai, c H. Nuga, a Y. Sakamoto, b T. Suzuki, b H. Takenaga, b and the JT-60 Team a University

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

Plasma Stability in Tokamaks and Stellarators

Plasma Stability in Tokamaks and Stellarators Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1- May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,

More information

Non-Solenoidal Plasma Startup in

Non-Solenoidal Plasma Startup in Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIII-D WITHOUT INDUCTIVE CURRENT CONTROL

STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIII-D WITHOUT INDUCTIVE CURRENT CONTROL th IAEA Fusion Energy Conference Vilamoura, Portugal, to 6 November IAEA-CN-6/EX/P-7 STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIII-D WITHOUT INDUCTIVE CURRENT CONTROL P.A. POLITZER, A.W. HYATT, T.C.

More information

Critical Physics Issues for DEMO

Critical Physics Issues for DEMO Max-Planck-Institut für Plasmaphysik Critical Physics Issues for DEMO L.D. Horton with thanks to the contributors to the EFDA DEMO physics tasks in 2006 and to D.J. Campbell, who organized this effort

More information

DIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by

DIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN Presented by C.M. GREENFIELD for J.C. DeBOO, T.C. LUCE, B.W. STALLARD, E.J. SYNAKOWSKI, L.R. BAYLOR,3 K.H. BURRELL, T.A. CASPER, E.J.

More information

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas 1 EX/P5-4 Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas J.E. Rice 1), A.C. Ince-Cushman 1), P.T. Bonoli 1), M.J. Greenwald 1), J.W. Hughes 1), R.R. Parker 1), M.L. Reinke

More information

Predictive Study on High Performance Modes of Operation in HL-2A 1

Predictive Study on High Performance Modes of Operation in HL-2A 1 1 EX/P-0 Predictive Study on High Performance Modes of Oration in HL-A 1 Qingdi GAO 1), R. V. BUDNY ), Fangzhu LI 1), Jinhua ZHANG 1), Hongng QU 1) 1) Southwestern Institute of Physics, Chengdu, Sichuan,

More information

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges by J.R. Ferron with T.C. Luce, P.A. Politzer, R. Jayakumar, * and M.R. Wade *Lawrence Livermore

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U

Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U 1 Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U Y. Takase, 1) S. Ide, 2) S. Itoh, 3) O. Mitarai, 4) O. Naito, 2) T. Ozeki, 2) Y. Sakamoto, 2) S. Shiraiwa,

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

Recent results from lower hybrid current drive experiments on Alcator C-Mod

Recent results from lower hybrid current drive experiments on Alcator C-Mod Recent results from lower hybrid current drive experiments on Alcator C-Mod R. R. Parker, S.-G. Baek, C. Lau, Y. Ma, O. Meneghini, R. T. Mumgaard, Y. Podpaly, M. Porkolab, J.E. Rice, A. E. Schmidt, S.

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

INTRODUCTION TO BURNING PLASMA PHYSICS

INTRODUCTION TO BURNING PLASMA PHYSICS INTRODUCTION TO BURNING PLASMA PHYSICS Gerald A. Navratil Columbia University American Physical Society - Division of Plasma Physics 2001 Annual Meeting, Long Beach, CA 1 November 2001 THANKS TO MANY PEOPLE

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

PHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China.

PHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China. PHYSICS OF CFETR Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China Dec 4, 2013 Mission of CFETR Complementary with ITER Demonstration of fusion

More information

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT PROGRAM C-Mod C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER C-MOD - OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals

More information

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center C-Mod Core Transport Program Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly

More information

1999 RESEARCH SUMMARY

1999 RESEARCH SUMMARY 1999 RESEARCH SUMMARY by S.L. Allen Presented to DIII D Program Advisory Committee Meeting January 2 21, 2 DIII D NATIONAL FUSION FACILITY SAN DIEGO 3 /SLA/wj Overview of Physics Results from the 1999

More information

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D.

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D. Developing a Robust Compact Tokamak Reactor by Exploiting ew Superconducting Technologies and the Synergistic Effects of High Field D. Whyte, MIT Steady-state tokamak fusion reactors would be substantially

More information

Fusion Development Facility (FDF) Mission and Concept

Fusion Development Facility (FDF) Mission and Concept Fusion Development Facility (FDF) Mission and Concept Presented by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION University of California Los Angeles FNST Workshop

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Modelling plasma scenarios for MAST-Upgrade

Modelling plasma scenarios for MAST-Upgrade Modelling plasma scenarios for MAST-Upgrade Neutral beam requirements, sensitivity studies and stability D. Keeling R. Akers, I. Chapman, G. Cunningham, H. Meyer, S. Pinches, S. Saarelma, O. Zolotukhin

More information

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER 2267-1 Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics 3-14 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations

More information

THE OPTIMAL TOKAMAK CONFIGURATION NEXT-STEP IMPLICATIONS

THE OPTIMAL TOKAMAK CONFIGURATION NEXT-STEP IMPLICATIONS THE OPTIMAL TOKAMAK CONFIGURATION NEXT-STEP IMPLICATIONS by R.D. STAMBAUGH Presented at the Burning Plasma Workshop San Diego, California *Most calculations reported herein were done by Y-R. Lin-Liu. Work

More information

Plan of Off-axis Neutral Beam Injector in KSTAR

Plan of Off-axis Neutral Beam Injector in KSTAR KSTAR conference, Feb 25-27, 2015, Daejeon (DCC), Korea Plan of Off-axis Neutral Beam Injector in KSTAR Feb. 26, 2015 DCC, Daejeon, Korea Young-soon Bae a L. Terzolo a, K.S. Lee a, H.K. Kim a, H.L. Yang

More information

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup M.W. Bongard G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, J.A. Reusch, A.T. Rhodes, N.J. Richner, C.

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod EXC/P2-02 Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod J. R. Wilson 1, C. E. Kessel 1, S. Wolfe 2, I. Hutchinson 2, P. Bonoli 2, C. Fiore 2, A. Hubbard 2, J. Hughes 2, Y. Lin 2, Y.

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Non-solenoidal startup using point-source DC helicity injectors

More information

Resistive Wall Mode Control in DIII-D

Resistive Wall Mode Control in DIII-D Resistive Wall Mode Control in DIII-D by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil

More information

ARIES ACT1 progress & ACT2

ARIES ACT1 progress & ACT2 ARIES ACT1 progress & ACT2 C. Kessel and F. Poli Princeton Plasma Physics Laboratory ARIES Project Meeting, 9/26-27/2012 Wash. DC Outline Temperature and density profile variations at R = 5.5 m in order

More information

Design window analysis of LHD-type Heliotron DEMO reactors

Design window analysis of LHD-type Heliotron DEMO reactors Design window analysis of LHD-type Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya

More information

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139 Alcator C-Mod Double Transport Barrier Plasmas in Alcator C-Mod J.E. Rice for the C-Mod Group MIT PSFC, Cambridge, MA 139 IAEA Lyon, Oct. 17, Outline Double Barrier Plasma Profiles and Modeling Conditions

More information

Computational Study of Non-Inductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid

Computational Study of Non-Inductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid 1st IAEA TM, First Generation of Fusion Power Plants Design and Technology -, Vienna, July 5-7, 25 Computational Study of Non-Inductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid Y.

More information

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters S. Shiraiwa, P. Bonoli, F. Poli 1, R. W, Harvey 2, C. Kessel 1, R. Parker, and G. Wallace MIT-PSFC, PPPL 1, and CompX

More information

Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT

Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT C. E. Kessel 1, T. K. Mau 2, S. C. Jardin 1, F. Najmabadi 2 Abstract An advanced tokamak plasma configuration is developed

More information

C-Mod Transport Program

C-Mod Transport Program C-Mod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where C-Mod

More information

Disruption dynamics in NSTX. long-pulse discharges. Presented by J.E. Menard, PPPL. for the NSTX Research Team

Disruption dynamics in NSTX. long-pulse discharges. Presented by J.E. Menard, PPPL. for the NSTX Research Team Disruption dynamics in NSTX long-pulse discharges Presented by J.E. Menard, PPPL for the NSTX Research Team Workshop on Active Control of MHD Stability: Extension of Performance Monday, November 18, 2002

More information

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL)

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) 22 nd Topical Meeting on the Technology of Fusion Energy (TOFE) Philadelphia, PA August 22-25, 2016

More information

Characteristics of the H-mode H and Extrapolation to ITER

Characteristics of the H-mode H and Extrapolation to ITER Characteristics of the H-mode H Pedestal and Extrapolation to ITER The H-mode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Development of a Systematic, Self-consistent Algorithm for the K-DEMO Steady-state Operation Scenario

Development of a Systematic, Self-consistent Algorithm for the K-DEMO Steady-state Operation Scenario Development of a Systematic, Self-consistent Algorithm for the K-DEMO Steady-state Operation Scenario J.S. Kang 1, J.M. Park 2, L. Jung 3, S.K. Kim 1, J. Wang 1, D. H. Na 1, C.-S. Byun 1, Y. S. Na 1, and

More information

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Aaron J. Redd for the Pegasus Team 2008 Innovative Confinement Concepts Workshop Reno, Nevada June 24-27,

More information

THE ADVANCED TOKAMAK DIVERTOR

THE ADVANCED TOKAMAK DIVERTOR I Department of Engineering Physics THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and the team 14th PSI QTYUIOP MA D S O N UCLAUCLA UCLA UNIVERSITY OF WISCONSIN THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and

More information

Time-dependent Modeling of Sustained Advanced Tokamak Scenarios

Time-dependent Modeling of Sustained Advanced Tokamak Scenarios Time-dependent Modeling of Sustained Advanced Tokamak Scenarios T. A. Casper, L. L. LoDestro and L. D. Pearlstein LLNL M. Murakami ORNL L.L. Lao and H.E. StJohn GA We are modeling time-dependent behavior

More information

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device P. T. Bonoli, Y. Lin. S. Shiraiwa, G. M. Wallace, J. C. Wright, and S. J. Wukitch MIT PSFC, Cambridge, MA 02139 59th Annual Meeting

More information

Integrated Modelling of ITER Scenarios with ECCD

Integrated Modelling of ITER Scenarios with ECCD Integrated Modelling of ITER Scenarios with ECCD J.F. Artaud, V. Basiuk, J. Garcia, G. Giruzzi*, F. Imbeaux, M. Schneider Association Euratom-CEA sur la Fusion, CEA/DSM/DRFC, CEA/Cadarache, 13108 St. Paul-lez-Durance,

More information

Fusion Nuclear Science - Pathway Assessment

Fusion Nuclear Science - Pathway Assessment Fusion Nuclear Science - Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNS-Pathways Assessment 1. Determination of DEMO/power plant parameters and requirements,

More information

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES HIGH PERFORMANCE EXPERIMENTS IN JT-U REVERSED SHEAR DISCHARGES IAEA-CN-9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,

More information

Technological and Engineering Challenges of Fusion

Technological and Engineering Challenges of Fusion Technological and Engineering Challenges of Fusion David Maisonnier and Jim Hayward EFDA CSU Garching (david.maisonnier@tech.efda.org) 2nd IAEA TM on First Generation of FPP PPCS-KN1 1 Outline The European

More information

Mission and Design of the Fusion Ignition Research Experiment (FIRE)

Mission and Design of the Fusion Ignition Research Experiment (FIRE) Mission and Design of the Fusion Ignition Research Experiment (FIRE) D. M. Meade 1), S. C. Jardin 1), J. A. Schmidt 1), R. J. Thome 2), N. R. Sauthoff 1), P. Heitzenroeder 1), B. E. Nelson 3), M. A. Ulrickson

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

and expectations for the future

and expectations for the future 39 th Annual Meeting of the FPA 2018 First operation of the Wendelstein 7-X stellarator and expectations for the future Hans-Stephan Bosch Max-Planck-Institut für Plasmaphysik Greifswald, Germany on behalf

More information

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule 1 FT/P2-03 HT-7U* Superconducting Tokamak: Physics design, engineering progress and schedule Y.X. Wan 1), P.D. Weng 1), J.G. Li 1), Q.Q. Yu 1), D.M. Gao 1), HT-7U Team 1) Institute of Plasma Physics, Chinese

More information

OV/2-5: Overview of Alcator C-Mod Results

OV/2-5: Overview of Alcator C-Mod Results OV/2-5: Overview of Alcator C-Mod Results Research in Support of ITER and Steps Beyond* E.S. Marmar on behalf of the C-Mod Team 25 th IAEA Fusion Energy Conference, Saint Petersburg, Russia, 13 October,

More information

Impact of H&CD Technology on DEMO Scenario Choice (Impact of DEMO Scenario on Choice of H&CD Technology)

Impact of H&CD Technology on DEMO Scenario Choice (Impact of DEMO Scenario on Choice of H&CD Technology) Impact of H&CD Technology on DEMO Scenario Choice (Impact of DEMO Scenario on Choice of H&CD Technology) By A.M. Garofalo, R. Prater, V.S. Chan, R.I. Pinsker, G. Staebler, T.S. Taylor, C.P.C. Wong (General

More information

Performance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK

Performance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK Performance limits Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 24) Previously... In the last few

More information

Diagnostics for Burning Plasma Physics Studies: A Status Report.

Diagnostics for Burning Plasma Physics Studies: A Status Report. Diagnostics for Burning Plasma Physics Studies: A Status Report. Kenneth M. Young Princeton Plasma Physics Laboratory UFA Workshop on Burning Plasma Science December 11-13 Austin, TX Aspects of Plasma

More information

The performance of improved H-modes at ASDEX Upgrade and projection to ITER

The performance of improved H-modes at ASDEX Upgrade and projection to ITER EX/1-1 The performance of improved H-modes at ASDEX Upgrade and projection to George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany G. Tardini 1, C. Forest 2, O. Gruber 1, P. Mc Carthy

More information

GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D

GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D by J.S. degrassie, D.R. BAKER, K.H. BURRELL, C.M. GREENFIELD, H. IKEZI, Y.R. LIN-LIU, C.C. PETTY, and R. PRATER APRIL 1997 This report

More information

Electron Transport and Improved Confinement on Tore Supra

Electron Transport and Improved Confinement on Tore Supra Electron Transport and Improved Confinement on Tore Supra G. T. Hoang, C. Bourdelle, X. Garbet, T. Aniel, G. Giruzzi, M. Ottaviani. Association EURATOM-CEA. CEA-Cadarache, 38, St Paul-lez-Durance, France

More information

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod S. Shiraiwa, P. Bonoli, R. Parker, F. Poli 1, G. Wallace, and J, R. Wilson 1 PSFC, MIT and 1 PPPL 40th European Physical

More information

ELMs and Constraints on the H-Mode Pedestal:

ELMs and Constraints on the H-Mode Pedestal: ELMs and Constraints on the H-Mode Pedestal: A Model Based on Peeling-Ballooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,

More information

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER

More information

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

More information

NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997

NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997 NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU General Atomics Nimrod Project Review Meeting July 21 22, 1997 Work supported by the U.S. Department of Energy under Grant DE-FG03-95ER54309 and Contract

More information

(Inductive tokamak plasma initial start-up)

(Inductive tokamak plasma initial start-up) (Inductive tokamak plasma initial start-up) 24. 6. 7. (tapl1.kaist.ac.kr) Outline Conventional inductive tokamak plasma start-up Inductive outer PF coil-only plasma start-up Inductive plasma start-up in

More information

FAST 1 : a Physics and Technology Experiment on the Fusion Road Map

FAST 1 : a Physics and Technology Experiment on the Fusion Road Map Fusion Advanced Studies Torus FAST 1 : a Physics and Technology Experiment on the Fusion Road Map Presented by A. A. Tuccillo on behalf of ENEA-Euratom Association Univ. of Rome Tor Vergata Univ. of Catania

More information

Heating and Current Drive by Electron Cyclotron Waves in JT-60U

Heating and Current Drive by Electron Cyclotron Waves in JT-60U EX/W- Heating and Current Drive by Electron Cyclotron Waves in JT-6U T. Suzuki ), S. Ide ), C. C. Petty ), Y. Ikeda ), K. Kajiwara ), A. Isayama ), K. Hamamatsu ), O. Naito ), M. Seki ), S. Moriyama )

More information

TOKAMAK EXPERIMENTS - Summary -

TOKAMAK EXPERIMENTS - Summary - 17 th IAEA Fusion Energy Conference, Yokohama, October, 1998 TOKAMAK EXPERIMENTS - Summary - H. KISHIMOTO Japan Atomic Energy Research Institute 2-2 Uchisaiwai-Cho, Chiyoda-Ku, Tokyo, Japan 1. Introduction

More information