Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

Save this PDF as:
Size: px
Start display at page:

Download "Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device"

Transcription

1 Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device P. T. Bonoli, Y. Lin. S. Shiraiwa, G. M. Wallace, J. C. Wright, and S. J. Wukitch MIT PSFC, Cambridge, MA th Annual Meeting of the APS Division of Plasma Physics Milwaukee, WI October 23-27, 2017 Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and a PSFC Theory Grant under DE-FG02-91-ER54109 Abstract CO

2 RF actuators are critical for fusion energy development Radio-frequency (RF) sources are used in reactor designs such as the ARC Device: Ion cyclotron radio-frequency (ICRF) fast wave power for core heating and current drive Lower hybrid radio-frequency (LHRF) power for off axis-current drive that augments the bootstrap current. High field side (HFS) placement of RF actuators has a number of distinct advantages: Reduced heat flux, quiescent nature (turbulent reduction), and screening of impurities Improvement in core wave physics Refined lower hybrid current drive (LHCD) predictions for ARC using a hierarchy of LHCD models result in higher current drive efficiency with improved profiles for current profile control: ACCOME: Adjoint code + 1D (v ) power absorption + ray tracing GENRAY + CQL3D: 3D (r, v, v ) + ray tracing Abstract CO

3 Plasma Sustainment Challenge Efficient, robust, steady state current drive is required to make the tokamak a viable concept for fusion electricity. Power required for current sustainment is a major constraint upon plant efficiency. RF actuators have been long recognized as essential tools for steady state tokamak. Maintaining a large radius of shear reversal helps with improved confinement and MHD stability Maximizes bootstrap current Ideal-wall β N limit rises as current profile is broadened External off axis current drive supplements bootstrap current profile at 0.6 < ρ < This FNSF Design was done with the LH launcher on the LFS FNSF Design Target Adapted from C. Kessel et al, Fusion Science & Tech. (2015). Abstract CO

4 Quiescent high field side SOL is ideal for RF antennas Transport in tokamak sends heat and particles to low field side scrape off layer (SOL) Expect coupling to remain quiescent. Expect reduced scattering from turbulent density perturbations. ELMs are attenuated in single null and do not reach HFS in double null. N. Smick et al, Nucl. Fusion 53 (2013) Abstract CO

5 High field side SOL plasma profiles allow for optimal RF antenna coupling Transport in tokamak sends heat and particles to low field side scrape off layer (SOL) Expect coupling to remain quiescent. Expect reduced scattering from turbulent density perturbations. ELMs are attenuated in single null and do not reach HFS in double null. Steep HFS SOL Density Profile Allows for Coupling Optimization Lower density measured in HFS Double Null (DN) plasmas: Potential to optimize coupling through magnetic balance. Density control at launcher by adjusting inner gap Magnetic Balance (USN, LSN, DN) allows control of SOL flows and impurity screening. N. Smick, B. LaBombard, C.S. Pitcher, Journal of Nuclear Materials, 2005 See Poster JP by S. J. Wukitch The High Field Path to Practical Fusion Energy Abstract CO

6 Conventional Reduced heat flux on high field side (HFS) favors HFS placement of RF actuators Tokamak power exhaust strongly favors HFS launch. Innovation RF CD launcher Injecting power from HFS removes the launcher from high heat flux region. Conventional approach has launchers facing into high heat exhaust and turbulent plasma. In reactor, ~0.5 m of actively cooled shield and blanket region. Innovative RF launchers can be accommodated. > 0.5 m shield & blanket Abstract CO

7 HFS antenna location also improves core performance of LHCD by allowing use of a lower parallel refractive index n = k c / ω LH wave accessibility [1] and the condition for electron Landau damping of the LH wave [2] (v / v te 2.5-3) determine an access window for wave penetration and absorption: n n n acc ELD, ω ω ω ω ( n ) n acc > , n ELD 30 / Te ( kev ) ω ω ω ω 2 2 1/2 pi pe pe pe e 2 2 ce ce ce( B) Higher magnetic field improves wave accessibility by lowering n acc thus allowing access to a higher T e with faster phase velocity LH waves: Can be done by raising B 0 through HFS launch. [1] M. Brambilla Nuc. Fusion 19 (1979) [2] M. Brambilla Physics of Plasma Close to Thermonuclear Conditions (Brussels, 1980) 291. Abstract CO

8 In the ARC device high magnetic field is combined with HFS launch to yield excellent CD access HFS concept forms the basis for the LHCD system in ARC [1]: n = , f 0 = 8 GHz B 0 = 9.25 T, I p = 8 MA a = 1.1m R 0 = 3.3 m n e (0) = m -3 T e (0) ~ T i (0) = 26 kev HFS placement of LHRF actuator improves wave penetration at conventional values of B 5T but enables significant penetration when combined with high B 10T. [1] B. N. Sorbom et al, Fusion Eng. and Design (2015). Abstract CO

9 Original ARC LHCD simulations (ACCOME code) solved for the LH current density (J rf ) via a response function approach Define and solve an Adjoint Problem for the Spitzer Harm function (χ): [Karney, NF 1985] J rf = 3 χ d p Γrf p Γ rf = D QL f e p The response function χ contains all the physics effects already in the numerical 2D and 3D FP solvers such as particle trapping, DC electric field effect, and momentum conserving corrections in C(f e ) Computation of J rf requires separate knowledge of Γ rf and f e. Γ rf and f e are evaluated from a 1-D (p ) solution of the Fokker Planck Equation which only captures parallel damping effects related to T >> T e Abstract CO

10 New LHCD simulations have been performed for ARC using a combined 3-D (p, p, r) Fokker Planck ray tracing model (GENRAY CQL3D) CQL3D computes the time dependent solution of the Fokker Planck equation, with and without the radial diffusion operator: p D rf ( p f ) p + Γ δ ( p s e + C( fe, p, p ) + 1 ) + r Ray tracing and FP solver iterate until a self-consistent D rf and f e are obtained. Approach captures important 2D (v, v ) velocity space effects on LH wave damping due to pitch angle scattering of electrons from the parallel to perpendicular directions resulting in T >> T e This effect was ignored in the original simulations which assumed T T e Abstract CO r rχ F fe r ee = f p f t e e

11 Coupled ray tracing / 3D Fokker Planck simulations yield a LH power deposition profile that is more peaked and slightly farther out in radius as compared to the adjoint + ray tracing More accurate LH power deposition profile places LHCD at location needed for FNSF J LH profile in CQL3D becomes more peaked and moves slightly outward with I LH increasing from 1.77 MA to 1.95 MA Abstract CO

12 Physical ray trajectories are identical in ACCOME and GENRAY Differences in wave absorption due to 2-D (v, v ) velocity space effects Single pass damping achieved with deep ray penetration Abstract CO

13 High field side scrape-off layer offers a number of important advantages for placement of RF sources Reduced heat flux, quiescent nature (turbulent reduction), and screening of impurities High magnetic field combined with HFS launch in ARC makes it possible to couple LH waves at densities where both the current drive efficiency is high and the bootstrap current fraction is high: f BS ~ 0.65 and f NI ~ 0.35 Comparison of lower hybrid current drive (LHCD) predictions for ARC using more advanced ray tracing / Fokker Planck models indicates: Two-dimensional velocity space effects increase the level of LHRF current generation and cause the spatial profile of J LH to be peaked slightly farther out and be narrower, which is better for control of the shear reversal point ACCOME: Adjoint code + 1D (v ) power absorption + ray tracing η LH ~ 0.31 (10 20 A/W/m 2 ) GENRAY + CQL3D: 3D (r, v, v ) + ray tracing η LH ~ 0.35 (10 20 A/W/m 2 ) These LHCD efficiencies are consistent with FNSF requirements No other CD technique can give this CD efficiency at this location. Abstract CO

Improved RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies in Reactor-Relevant Plasmas

Improved RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies in Reactor-Relevant Plasmas Improved RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies in Reactor-Relevant Plasmas P. T. Bonoli*, S. G. Baek, B. LaBombard, K. Filar, M. Greenwald, R. Leccacorvi,

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters S. Shiraiwa, P. Bonoli, F. Poli 1, R. W, Harvey 2, C. Kessel 1, R. Parker, and G. Wallace MIT-PSFC, PPPL 1, and CompX

More information

Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak

Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak Full-wave Simulations of Lower Hybrid Wave Propagation in the EAST Tokamak P. T. BONOLI, J. P. LEE, S. SHIRAIWA, J. C. WRIGHT, MIT-PSFC, B. DING, C. YANG, CAS-IPP, Hefei 57 th Annual Meeting of the APS

More information

Recent results from lower hybrid current drive experiments on Alcator C-Mod

Recent results from lower hybrid current drive experiments on Alcator C-Mod Recent results from lower hybrid current drive experiments on Alcator C-Mod R. R. Parker, S.-G. Baek, C. Lau, Y. Ma, O. Meneghini, R. T. Mumgaard, Y. Podpaly, M. Porkolab, J.E. Rice, A. E. Schmidt, S.

More information

Theory Work in Support of C-Mod

Theory Work in Support of C-Mod Theory Work in Support of C-Mod 2/23/04 C-Mod PAC Presentation Peter J. Catto for the PSFC theory group MC & LH studies ITB investigations Neutrals & rotation BOUT improvements TORIC ICRF Mode Conversion

More information

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies P.T. Bonoli, J.C. Wright, M. Porkolab, PSFC, MIT M. Brambilla, IPP, Garching, Germany E. D Azevedo, ORNL, Oak Ridge,

More information

Development of LH wave fullwave simulation based on FEM

Development of LH wave fullwave simulation based on FEM Development of LH wave fullwave simulation based on FEM S. Shiraiwa and O. Meneghini on behalf of LHCD group of Alacator C-Mod PSFC, MIT 2010/03/10 San-Diego, CA Special acknowledgements : R. Parker, P.

More information

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves Integration of Fokker Planck calculation in full wave FEM simulation of LH waves O. Meneghini S. Shiraiwa R. Parker 51 st DPP APS, Atlanta November 4, 29 L H E A F * Work supported by USDOE awards DE-FC2-99ER54512

More information

Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D

Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D Modelling of the EAST lower-hybrid current drive experiment using GENRAY/CQL3D and TORLH/CQL3D The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod*

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* R. R. Parker, Y. Podpaly, J. Lee, M. L. Reinke, J. E. Rice, P.T. Bonoli, O. Meneghini, S. Shiraiwa, G. M. Wallace,

More information

OV/2-5: Overview of Alcator C-Mod Results

OV/2-5: Overview of Alcator C-Mod Results OV/2-5: Overview of Alcator C-Mod Results Research in Support of ITER and Steps Beyond* E.S. Marmar on behalf of the C-Mod Team 25 th IAEA Fusion Energy Conference, Saint Petersburg, Russia, 13 October,

More information

Full wave simulations of lower hybrid wave propagation in tokamaks

Full wave simulations of lower hybrid wave propagation in tokamaks PSFC/JA-09-18 Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright*, P. T. Bonoli*, C. K. Phillips, E. Valeo and R. W. Harvey** *MIT - Plasma Science and Fusion Center Cambridge,

More information

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod S. Shiraiwa, P. Bonoli, R. Parker, F. Poli 1, G. Wallace, and J, R. Wilson 1 PSFC, MIT and 1 PPPL 40th European Physical

More information

Power balance of Lower Hybrid Current Drive in the SOL of High Density Plasmas on Alcator C-Mod

Power balance of Lower Hybrid Current Drive in the SOL of High Density Plasmas on Alcator C-Mod Power balance of Lower Hybrid Current Drive in the SOL of High Density Plasmas on Alcator C-Mod I.C. Faust, G.M. Wallace, S.G. Baek, D. Brunner, B. LaBombard, R.R. Parker, Y. Lin, S. Shiraiwa, J.L. Terry,

More information

Full wave simulations of lower hybrid wave propagation in tokamaks

Full wave simulations of lower hybrid wave propagation in tokamaks Full wave simulations of lower hybrid wave propagation in tokamaks J. C. Wright, P. T. Bonoli, C. K. Phillips, E. Valeo and R. W. Harvey MIT - Plasma Science and Fusion Center Cambridge, MA 02139 Princeton

More information

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas 1 EX/P5-4 Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas J.E. Rice 1), A.C. Ince-Cushman 1), P.T. Bonoli 1), M.J. Greenwald 1), J.W. Hughes 1), R.R. Parker 1), M.L. Reinke

More information

Self-consistent full wave simulations of lower hybrid waves

Self-consistent full wave simulations of lower hybrid waves 18 th RF Topical Conference Gent, June 2009 Self-consistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli - MIT E.J. Valeo, C. K. Phillips - PPPL R. W. Harvey - Comp-X with thanks

More information

Time Dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas

Time Dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas Time Dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas John C. Wright 1 J.P. Lee 1 P. T. Bonoli 1 A.E. Schmidt 1 and E.J. Valeo 2 1 Plasma Science and Fusion Center

More information

Lower Hybrid RF: Results, Goals and Plans. J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010

Lower Hybrid RF: Results, Goals and Plans. J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010 Lower Hybrid RF: Results, Goals and Plans J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010 ITER Needs and the RENEW Report Provide a Context for LH Research on C-Mod ITER Needs: Hea-ng

More information

Overview of Alcator C-Mod Research

Overview of Alcator C-Mod Research Overview of C-Mod Research Presented by E.S. Marmar On behalf of the C-Mod Team APS-DPP04 Paper JO3.001 Work Supported by USDoE Office of Fusion Energy Sciences SOL flows impose a toroidal rotation boundary

More information

Nonthermal Particle and Full-wave Effects on Heating and Current Drive in the ICRF and LHRF Regimes

Nonthermal Particle and Full-wave Effects on Heating and Current Drive in the ICRF and LHRF Regimes Nonthermal Particle and Full-wave Effects on Heating and Current Drive in the ICRF and LHRF Regimes J. C. Wright - MIT D. B. Batchelor, L. A. Berry, M. D. Carter, E. F. Jaeger ORNL Fusion Energy E. D Azevedo

More information

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks Y. Lin, J.E. Rice, S.J. Wukitch, M.J. Greenwald, A.E. Hubbard, A. Ince- Cushman, L. Lin, E.S. Marmar, M. Porkolab, M.L.

More information

Heating and Current Drive by Electron Cyclotron Waves in JT-60U

Heating and Current Drive by Electron Cyclotron Waves in JT-60U EX/W- Heating and Current Drive by Electron Cyclotron Waves in JT-6U T. Suzuki ), S. Ide ), C. C. Petty ), Y. Ikeda ), K. Kajiwara ), A. Isayama ), K. Hamamatsu ), O. Naito ), M. Seki ), S. Moriyama )

More information

ICRF Minority-Heated Fast-Ion Distributions on the Alcator C-Mod: Experiment and Simulation

ICRF Minority-Heated Fast-Ion Distributions on the Alcator C-Mod: Experiment and Simulation ICRF Minority-Heated Fast-Ion Distributions on the Alcator C-Mod: Experiment and Simulation A. Bader 1, P. Bonoli 1, R. Granetz 1, R.W. Harvey 2, E.F. Jaeger 3, R. Parker 1, S. Wukitch 1. 1)MIT-PSFC, Cambridge,

More information

C-Mod Advanced Tokamak Program: Recent progress and near-term plans

C-Mod Advanced Tokamak Program: Recent progress and near-term plans Advanced Tokamak Program: Recent progress and near-term plans Program Advisory Committee Review February 2, 2004 MIT PSFC Presented by A. Hubbard MIT Plasma Science and Fusion Center, for the team Advanced

More information

ICRF Loading Studies on Alcator C-Mod

ICRF Loading Studies on Alcator C-Mod ICRF Loading Studies on Alcator C-Mod 46 th Annual Meeting of the APS Division of Plasma Physics November 15-19, 19, 2004 A. Parisot, S.J. S.J. Wukitch,, P. Bonoli,, J.W. Hughes, B. Labombard,, Y. Lin,

More information

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod EXC/P2-02 Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod J. R. Wilson 1, C. E. Kessel 1, S. Wolfe 2, I. Hutchinson 2, P. Bonoli 2, C. Fiore 2, A. Hubbard 2, J. Hughes 2, Y. Lin 2, Y.

More information

ARIES ACT1 progress & ACT2

ARIES ACT1 progress & ACT2 ARIES ACT1 progress & ACT2 C. Kessel and F. Poli Princeton Plasma Physics Laboratory ARIES Project Meeting, 9/26-27/2012 Wash. DC Outline Temperature and density profile variations at R = 5.5 m in order

More information

TH/P6-08. CompX, Del Mar, CA 92014, USA; 2Xcel Engineering, Oak Ridge, TN 37830, USA; 3PSFC-MIT,Cambridge, MA 02139

TH/P6-08. CompX, Del Mar, CA 92014, USA; 2Xcel Engineering, Oak Ridge, TN 37830, USA; 3PSFC-MIT,Cambridge, MA 02139 1 Differences Between QL and Exact Ion Cyclotron Resonant Diffusion R.W. Harvey1, Yu. V. Petrov1, E.F. Jaeger2, P.T. Bonoli3, A. Bader3, and RF-SciDAC Group 1 CompX, Del Mar, CA 92014, USA; 2Xcel Engineering,

More information

Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS

Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS G. Taylor 1, J.B. Caughman 2, M.D. Carter 2, S. Diem 1, P.C. Efthimion 1, R.W. Harvey 3, J. Preinhaelter 4, J.B. Wilgen 2, T.S. Bigelow 2, R.A.

More information

Recent Experiments of Lower Hybrid Wave-Plasma Coupling and Current

Recent Experiments of Lower Hybrid Wave-Plasma Coupling and Current 1 EXW/P7-3 Recent Experiments of Lower Hybrid Wave-Plasma Coupling and Current Drive in EAST Tokamak B J Ding 1), Y L Qin 1), W K Li 1), M H Li 1), E H Kong 1), A Ekedahl ), Y Peysson ), M Wang 1), H D

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak

Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak PSFC/JA-1-1 Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak Wallace, G.M, Parker, R.R., Bonoli, P.T., Harvey, R.W.*, Hubbard, A.E., Hughes, J.W., LaBombard, B.L., Meneghini,

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Spontaneous Core Toroidal Rotation in Alcator C- Mod L-Mode, H-Mode and ITB Plasmas.

Spontaneous Core Toroidal Rotation in Alcator C- Mod L-Mode, H-Mode and ITB Plasmas. PSFC/JA-8-11 Spontaneous Core Toroidal Rotation in Alcator C- Mod L-Mode, H-Mode and ITB Plasmas. Rice, J.E.; Ince-Cushman, A.C.; Reinke, M.L.; Podpaly, Y.; Greenwald, M.J.; LaBombard, B.S.; Marmar, E.S.

More information

Full wave simulations of lower hybrid waves in toroidal geometry with Non-Maxwelian electrons

Full wave simulations of lower hybrid waves in toroidal geometry with Non-Maxwelian electrons PSFC/JA-07-23 Full wave simulations of lower hybrid waves in toroidal geometry with Non-Maxwelian electrons Wright, J.C., Valeo, E.J. *,Phillips, C.K. *, Bonoli, P.T., Brambilla, M. ** * Princeton Plasma

More information

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod J. Liptac, J. Decker, R. Parker, V. Tang, P. Bonoli MIT PSFC Y. Peysson CEA Cadarache APS 3 Albuquerque, NM Abstract A Lower Hybrid

More information

Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER Relevant Parameters

Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER Relevant Parameters Review of Recent Experimental and Modeling Progress in the Lower Hybrid Range of Frequencies at ITER Relevant Parameters P. T. Bonoli PSFC MIT, Cambridge, MA 02139 (USA) 20 th Topical Conference on Radio

More information

arxiv: v1 [physics.plasm-ph] 10 Sep 2014

arxiv: v1 [physics.plasm-ph] 10 Sep 2014 ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets B.N. Sorbom, J. Ball, T.R. Palmer, F.J. Mangiarotti, J.M. Sierchio, P. Bonoli, C. Kasten,

More information

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D GA A271 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LIN-LIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER AUGUST 2001 DISCLAIMER This

More information

GA A24016 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE

GA A24016 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE GA A6 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE by R. PRATER, C.C. PETTY, R. HARVEY, Y.R. LIN-LIU, J.M. LOHR, and T.C. LUCE JULY DISCLAIMER This report was prepared as an account of work sponsored

More information

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod S. Baek, R. Parker, S. Shiraiwa, A. Dominguez, E. Marmar, G. Wallace, G. J. Kramer* Plasma Science and Fusion Center,

More information

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE Abhay K. Ram Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139. U.S.A. Joan Decker

More information

Review of recent experimental and modeling advances in the understanding of lower hybrid current drive in ITER-relevant regimes

Review of recent experimental and modeling advances in the understanding of lower hybrid current drive in ITER-relevant regimes UKAEA-CCFE-PR(18)32 B. J. Ding, P. T. Bonoli, A. Tuccillo, M. Goniche, K. Kirov, M. Li, Y. Li, R. Cesario, Y. Peysson, A. Ekedahl, L. Amicucci, S. Baek, I. Faust, R. Parker, S. Shiraiwa, G. M. Wallace,

More information

Ray Tracing and Full-wave Simulation of KSTAR LH Wave

Ray Tracing and Full-wave Simulation of KSTAR LH Wave Ray Tracing and Full-wave Simulation of KSTAR LH Wave 2016 KO-JA Workshop on Physics and Technology of Heating and Current Drive Presented by Young-soon Bae NFRI a W. Namkung, a M.H. Cho, b S. Shiraiwa,

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport*

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* E. Marmar, B. Lipschultz, A. Dominguez, M. Greenwald, N. Howard, A. Hubbard, J. Hughes, B. LaBombard, R. McDermott, M. Reinke,

More information

ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak

ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak 23 rd IAEA Fusion Energy Conference, EXW/4 1 ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak Yijun Lin, J.E. Rice, S.J. Wukitch, M.L. Reinke, M. Greenwald, A. E. Hubbard, E.S. Marmar, Y. Podpaly,

More information

GA A23698 ELECTRON CYCLOTRON WAVE EXPERIMENTS ON DIII D

GA A23698 ELECTRON CYCLOTRON WAVE EXPERIMENTS ON DIII D GA A23698 ELECTRON CYCLOTRON WAVE EXPERIMENTS ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LIN-LIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER JUNE 21 DISCLAIMER

More information

Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator C-Mod Plasmas

Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator C-Mod Plasmas Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator C-Mod Plasmas N.M. Cao 1, J.E. Rice 1, A.E. White 1, S.G. Baek 1, M.A. Chilenski 1, P.H. Diamond 2, A.E. Hubbard 1, J.W. Hughes 1,

More information

Progress on Quantitative Modeling of rf Sheaths

Progress on Quantitative Modeling of rf Sheaths Progress on Quantitative Modeling of rf Sheaths D. A. D Ippolito, J. R. Myra, H. Kohno and J. C. Wright Lodestar Research Corporation, Boulder, Colorado, 80301 May, 2011 Prepared for the 19th Topical Conference

More information

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING V.S. Chan, S.C. Chiu, Y.A. Omelchenko General Atomics, San Diego, CA, U.S.A. 43rd Annual APS Division of Plasma Physics Meeting

More information

Plan of Off-axis Neutral Beam Injector in KSTAR

Plan of Off-axis Neutral Beam Injector in KSTAR KSTAR conference, Feb 25-27, 2015, Daejeon (DCC), Korea Plan of Off-axis Neutral Beam Injector in KSTAR Feb. 26, 2015 DCC, Daejeon, Korea Young-soon Bae a L. Terzolo a, K.S. Lee a, H.K. Kim a, H.L. Yang

More information

C-Mod Transport Program

C-Mod Transport Program C-Mod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where C-Mod

More information

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co Transport Studies in Alcator C-Mod Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co With Contributions from: I. Bespamyatnov, P. T. Bonoli*, D. Ernst*, M.

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Predictive Study on High Performance Modes of Operation in HL-2A 1

Predictive Study on High Performance Modes of Operation in HL-2A 1 1 EX/P-0 Predictive Study on High Performance Modes of Oration in HL-A 1 Qingdi GAO 1), R. V. BUDNY ), Fangzhu LI 1), Jinhua ZHANG 1), Hongng QU 1) 1) Southwestern Institute of Physics, Chengdu, Sichuan,

More information

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer N. Smick, B. LaBombard MIT Plasma Science and Fusion Center PSI-19 San Diego, CA May 25, 2010 Boundary flows

More information

Light Impurity Transport Studies in Alcator C-Mod*

Light Impurity Transport Studies in Alcator C-Mod* Light Impurity Transport Studies in Alcator C-Mod* I. O. Bespamyatnov, 1 W. L. Rowan, 1 C. L. Fiore, 2 K. W. Gentle, 1 R. S. Granet, 2 and P. E. Phillips 1 1 Fusion Research Center, The University of Texas

More information

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT PROGRAM C-Mod C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER C-MOD - OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals

More information

JP Sta,onary Density Profiles in Alcator C Mod

JP Sta,onary Density Profiles in Alcator C Mod JP8.00072 Sta,onary Density Profiles in Alcator C Mod 1 In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion

More information

Fusion Nuclear Science - Pathway Assessment

Fusion Nuclear Science - Pathway Assessment Fusion Nuclear Science - Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNS-Pathways Assessment 1. Determination of DEMO/power plant parameters and requirements,

More information

Analysis of Ion Cyclotron Heating Issues for ITER

Analysis of Ion Cyclotron Heating Issues for ITER 1 TH/P6-8 Analysis of Ion Cyclotron Heating Issues for ITER L.A. Berry 1), D.B. Batchelor 1), P.T. Bonoli 2), M.D. Carter 1), M. Choi 3), W.A. Houlberg 1), D.A. D Ippolito 4), R.W. Harvey 5), E.F. Jaeger

More information

Ray-tracing and Fokker Planck modelling of the effect of plasma current on the propagation and absorption of lower hybrid waves

Ray-tracing and Fokker Planck modelling of the effect of plasma current on the propagation and absorption of lower hybrid waves Ray-tracing and Fokker Planck modelling of the effect of plasma current on the propagation and absorption of lower hybrid waves Frédéric Imbeaux, Y. Peysson To cite this version: Frédéric Imbeaux, Y. Peysson.

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

Impact of H&CD Technology on DEMO Scenario Choice (Impact of DEMO Scenario on Choice of H&CD Technology)

Impact of H&CD Technology on DEMO Scenario Choice (Impact of DEMO Scenario on Choice of H&CD Technology) Impact of H&CD Technology on DEMO Scenario Choice (Impact of DEMO Scenario on Choice of H&CD Technology) By A.M. Garofalo, R. Prater, V.S. Chan, R.I. Pinsker, G. Staebler, T.S. Taylor, C.P.C. Wong (General

More information

Challenges in self-consistent full wave simulations of lower hybrid waves

Challenges in self-consistent full wave simulations of lower hybrid waves Challenges in self-consistent full wave simulations of lower hybrid waves John C. Wright P. T. Bonoli, J-P. Lee - MIT E.J. Valeo, C. K. Phillips - Princeton R. W. Harvey - Comp-X 21st International Conference

More information

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Dr. Jawad Younis Senior Scientist Pakistan Atomic Energy Commission, P. O. Box, 2151,Islamabad Institute

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

Plasma Response Control Using Advanced Feedback Techniques

Plasma Response Control Using Advanced Feedback Techniques Plasma Response Control Using Advanced Feedback Techniques by M. Clement 1 with J. M. Hanson 1, J. Bialek 1 and G. A. Navratil 1 1 Columbia University Presented at 59 th Annual APS Meeting Division of

More information

The fast-ion distribution function

The fast-ion distribution function The fast-ion distribution function Source Collisions Orbits RF Losses W. Heidbrink 3 MeV & 14.7 MeV protons Charge Exchange Reactivity σv Complex neutral beam sources are described by a few parameters

More information

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas 1 On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas Lj. Nikolić and M.M. Škorić Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade 11001, Serbia and Montenegro ljnikoli@tesla.rcub.bg.ac.yu

More information

Spontaneous tokamak rotation: observations turbulent momentum transport has to explain

Spontaneous tokamak rotation: observations turbulent momentum transport has to explain Spontaneous tokamak rotation: observations turbulent momentum transport has to explain Ian H Hutchinson Plasma Science and Fusion Center and Nuclear Science and Engineering Massachusetts Institute of Technology

More information

Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer

Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer PHYSICS OF PLASMAS VOLUME 7, NUMBER 11 NOVEMBER 2000 Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer R. Nachtrieb a) Lutron Electronics Co.,

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER

More information

Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios

Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios E. S. Marmar and the Alcator C-Mod Team MIT Plasma Science and Fusion Center, Cambridge MA 02139 USA E-mail contact

More information

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod J.W. Hughes, B. LaBombard, M. Greenwald, A. Hubbard, B. Lipschultz, K. Marr, R. McDermott, M. Reinke, J.L. Terry

More information

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:

More information

Ohmic and RF Heated ITBs in Alcator C-Mod

Ohmic and RF Heated ITBs in Alcator C-Mod Ohmic and RF Heated s in Alcator C-Mod William L. Rowan, Igor O. Bespamyatnov Fusion Research Center, The University of Texas at Austin C.L. Fiore, A. Dominguez, A.E. Hubbard, A. Ince-Cushman, M.J. Greenwald,

More information

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell J.M. Canik, L.W. Owen, Y.K.M. Peng, J. Rapp, R.H. Goulding Oak Ridge National Laboratory ORNL is developing a helicon-based

More information

Overview of EAST Experiments on the Development of High-Performance Steady- State Scenario

Overview of EAST Experiments on the Development of High-Performance Steady- State Scenario 26th IAEA FEC, 17-22 October 2016, Kyoto Japan Overview of EAST Experiments on the Development of High-Performance Steady- State Scenario B.N. Wan on behalf of EAST team & collaborators Email: bnwan@ipp.ac.cn

More information

SPECTRUM AND PROPAGATION OF LOWER HYBRID WAVES IN THE ALCATOR C TOKAMAK

SPECTRUM AND PROPAGATION OF LOWER HYBRID WAVES IN THE ALCATOR C TOKAMAK PFC/JA-84-6 PECTRUM AND PROPAGATION OF LOWER HYBRID WAVE IN THE ALCATOR C TOKAMAK R. L. Watterson, Y. Takase, P. T. Bonoli, M. Porkolab Plasma Fusion Center Massachusetts Institute of Technology Cambridge,

More information

Benchmarking of electron cyclotron heating and current drive codes on ITER scenarios within the European Integrated Tokamak Modelling framework

Benchmarking of electron cyclotron heating and current drive codes on ITER scenarios within the European Integrated Tokamak Modelling framework Benchmarking of electron cyclotron heating and current drive codes on ITER scenarios within the European Integrated Tokamak Modelling framework L. Figini 1,a, J. Decker 2, D. Farina 1, N. B. Marushchenko

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory Localized Electron Cyclotron Current Drive in : Experiment and Theory by Y.R. Lin-Liu for C.C. Petty, T.C. Luce, R.W. Harvey,* L.L. Lao, P.A. Politzer, J. Lohr, M.A. Makowski, H.E. St John, A.D. Turnbull,

More information

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General

More information

Ray Tracing Simulations of ECR Heating and ECE Diagnostic at W7-X Stellarator

Ray Tracing Simulations of ECR Heating and ECE Diagnostic at W7-X Stellarator Ray Tracing Simulations of ECR Heating and ECE Diagnostic at W7-X Stellarator Nikolai B. MARUSHCHENKO, Volker ERCKMANN, Hans J. HARTFUSS, Mattias HIRSCH, Heinrich P. LAQUA, Henning MAASSBERG and Yuri TURKIN

More information

EFFECT OF ION CYCLOTRON HEATING ON FAST ION TRANSPORT AND PLASMA ROTATION IN TOKAMAKS

EFFECT OF ION CYCLOTRON HEATING ON FAST ION TRANSPORT AND PLASMA ROTATION IN TOKAMAKS EFFECT OF ION CYCLOTRON HEATING ON FAST ION TRANSPORT AND PLASMA ROTATION IN TOKAMAKS by V.S. Chan, S.C. Chiu, and Y.A. Omelchenko Presented at the American Physical Society Division of Plasma Physics

More information

Propagation of Radio Frequency Waves Through Fluctuations in Plasmas

Propagation of Radio Frequency Waves Through Fluctuations in Plasmas PSFC/JA-15- Propagation of Radio Frequency Waves Through Fluctuations in Plasmas A. K. Ram K. Hizanidis a and S. Valvis a a National Technical University of Athens (part of HELLAS) School of Electrical

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Computational Study of Non-Inductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid

Computational Study of Non-Inductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid 1st IAEA TM, First Generation of Fusion Power Plants Design and Technology -, Vienna, July 5-7, 25 Computational Study of Non-Inductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid Y.

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

Overview of the Alcator C-Mod Research Program*

Overview of the Alcator C-Mod Research Program* Overview of the Alcator C-Mod Research Program* E.S. Marmar 1, A. Bader 1, M. Bakhtiari 2, H. Barnard 1, W. Beck 1, I. Bespamyatnov 3, A. Binus 1, P. Bonoli 1, B. Bose 1, M. Bitter 4, I. Cziegler 1, G.

More information

Developing the Physics Basis for the ITER Baseline 15 MA Scenario in Alcator C-Mod

Developing the Physics Basis for the ITER Baseline 15 MA Scenario in Alcator C-Mod Developing the Physics Basis for the ITER Baseline 15 MA Scenario in Alcator C-Mod C. E. Kessel 1, S. M. Wolfe 2, I. H. Hutchinson 2, J. W. Hughes 2, Y. Lin 2, Y. Ma 2, D. R. Mikkelsen 1, F. M. Poli 1,

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD

More information

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER 2267-1 Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics 3-14 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations

More information

Full Wave Simulations of Fast Wave Mode Conversion and Lower Hybrid Wave Propagation in Tokamaks

Full Wave Simulations of Fast Wave Mode Conversion and Lower Hybrid Wave Propagation in Tokamaks PSFC/JA-04-14 Full Wave Simulations of Fast Wave Mode Conversion and Lower Hybrid Wave Propagation in Tokamaks J.C. Wright, P.T. Bonoli, M. Brambilla, F. Meo, E. D Azevedo, D.B. Batchelor, E.F. Jaeger,

More information