Non-Solenoidal Plasma Startup in

Size: px
Start display at page:

Download "Non-Solenoidal Plasma Startup in"

Transcription

1 Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1

2 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique Plasma guns provide localized, pointcurrent source at plasma edge Technique appears to be flexible & scalable to larger currents & devices Divertor injection Up to.1 MA plasma current to date I (MA) I inj Midplane injection time (ms) A.C. Sontag, 5th APS-DPP, Nov. 2, Midplane injection gun off 32 Z (m) R (m) At gun shut-off: = 94 ka R =.45 m l i =.35 κ = 1.6 β p =.22 W tot = 35 J

3 Local Plasma Current Sources + Helical Vacuum Field Give Simple DC Helicity Injection Scheme * Inject current into existing helical magnetic field high I inj & modest B current filaments follow field lines toroidal current = I inj *geometric windup high I inj & low B current-driven B θ overwhelms vac. B z relaxation via MHD to tokamak-like Taylor state w/ poloidal flux amplification reduced B z * M. Ono, et al., Phys. Rev. Lett. 59, (1987) A.C. Sontag, 5th APS-DPP, Nov. 2, 28 3

4 Pegasus is Studying Physics of Plasma Gun Startup & Using Technique to Access High-I N Critical ST issue: plasma startup and ramp-up (FESAC TAP report) Relaxation through simultaneous satisfaction of multiple constraints Plasma gun startup readily coupled to other current drive Edge current drive allows access to high-i N via j(r) manipulation Goal: develop understanding to project to fully non-solenoidal operation with RF growth & sustainment of plasma gun target A.C. Sontag, 5th APS-DPP, Nov. 2, 28 4

5 Point-Current Source Injection Allows Geometric Flexibility Operation: Guns biased relative to anode DC helicity injection rate: K inj = 2V inj B N A inj Divertor injection V inj - injector voltage B N - normal B field at gun aperture A inj - injector area maximize helicity by increasing B, A inj & V inj Advantages of plasma gun system: 1. Potentially scalable to large facilities 2. Flexible geometry possible 3. Clean operation High-Z impurities trapped inside gun Midplane injecton Anode Plasma streams 3 plasma guns V inj A.C. Sontag, 5th APS-DPP, Nov. 2, 28 5

6 Pegasus Operates at Near-Unity A to Study HighIN, βt ST Regime Equilibrium Field Coils Centerstack: High-stress Ohmic Exposing Ohmic Heating heating solenoid Solenoid (NHMFL) Experimental Parameters Parameter Achieved Goals A R (m) Ip (MA)!.18!.3 IN (MA/m-T) RBt (T-m)!.6!.1! 1.4" "3.7 #shot (s) $t (%) PHHFW (MW) Vacuum Vessel 4 cm Toroidal Field Coils A.C. Sontag, 5th APS-DPP, Nov. 2, 28!.5 > 4 1. Anode RF Heating Anntenna Ohmic Trim Coils!.2! 25.2 Plasma Limiters 6 Outer limiter Plasma guns

7 Several Constraints Must Be Satisfied for Relaxation to a Tokamak-Like State Conditions for relaxation to occur: B v : low to allow null formation B TF : high to increase helicity injection B v, B TF : tokamak equilibrium - force balance, q a B v /B TF : avoid collision with injector hardware Consistent with experimental observations divertor injection: center-post limited discharges relaxation coincides with reversal of central poloidal flux midplane injection: plasma modeled as set of axisymmetric filaments perturbed magnetic field shows null in relaxed cases Current central column flux 6kA Divertor injection I inj! pol /I inj time (s) 2628x1-3 Midplane injection 2A current multiplication A.C. Sontag, 5th APS-DPP, Nov. 2, 28 7

8 Relaxation to a Tokamak-Like State Leads to Particle Confinement & Heating Relaxation to tokamak-like state very sensitive to applied B v consistent with null formation Relaxed state appears tokamak-like current multiplication particle confinement increased decay time suggestion of higher T e subject to radial force balance.8 ms after guns off sharp edge A.C. Sontag, 5th APS-DPP, Nov. 2, 28 8 Plasma current (ka) M = / I inj!n e dl (1 19 m -2 ) B v = 62 G B v = 67 G Time (ms) geometric windup

9 The Maximum is Determined by the Balance Between Helicity Injection and Resistive Dissipation Total helicity injection rate in tokamak geometry: dk dt = " 2 % #J $ B d3 x " 2 &' &t ( " 2 V % A )B$ ds resistive dissipation AC injection (inductive drive) DC injection K AC = "2 #$ #t % = 2V loop% K DC = "2 $ #B% ds = 2V inj B & A inj A DC term is recast as effective V loop : V eff = N inj A inj B ",inj # V bias given by self-consistent confinement modeling with V loop ~ V eff + V ind standard tokamak scaling is useful in regime where perpendicular losses dominate A.C. Sontag, 5th APS-DPP, Nov. 2, 28 9

10 Taylor Relaxation Criteria Also Limits the Total Sustainable for a Given Plasma Geometry Considering force-free equilibrium: " # B = µ J = $B Current penetration via Taylor relaxation gives: " plasma < " edge µ " # µ I inj 2$R inj wb %,inj Assumptions: Force-free equilibrium: % C " p $I inj ' & 2#R inj µ w Driven edge current mixes uniformly in SOL Edge fields average to tokamak-like structure ( * ) 1/ 2 R A p Plasma area C p Plasma circumference Ψ Plasma toroidal flux w SOL width w/ j A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1

11 Max Achieved When Helicity and Relaxation Criteria are Simultaneously Satisfied Estimated plasma evolution Anode max Helicity limit I TF = 288 ka V bias = 1kV V ind = 1.5 V I inj = 4 ka w = d inj L-mode τ e Plasma guns Time Relaxation limit Requires B v ramp for radial force balance & V ind A.C. Sontag, 5th APS-DPP, Nov. 2, 28 11

12 Sufficient Helicity Injection is Required to Drive Plasma to the Relaxation Limit Helicity injection rate varied by changing V bias K DC "V bias " Z inj Injector impedance controlled by neutral fueling 9 V V bias = 12 V 12 V Helicity Limited Relaxation limit increases with V bias, helicity injection rate R = 47 cm A.C. Sontag, 5th APS-DPP, Nov. 2, 28 12

13 Helicity Balance Provides One Limit on Current Max appears limited by injected helicity for divertor gun data all cases with static external fields no inductive V loop Toroidal Current [ka] Divertor Gun Data Selected for V eff study V eff V surf supports helicity conservation: V loop V surf at gun shut-off measured by center column flux loop helicity efficiently transported into plasma current drive limited by helicity injection rate A.C. Sontag, 5th APS-DPP, Nov. 2, calculated V eff (V) Average (dk/dt) Inj / I TF [Wb 2 s -1 A -1 ] x 1-6 V eff = V surf.2.4 measured V surf (V).6 1.2

14 Relaxed Gun Plasma Exhibits Increased Stored Energy and Confinement after Gun Turn-Off 3-gun array: up to ~.1 MA PF induction adds AC helicity/cd helicity input limited by power supply voltage Magnetic equilibrium reconstructions for plasma characteristics stored energy steady during compression maximum Ip when plasma fills vessel Limiters anode (MA) A,! " p q 95! A W tot " p 8V #B (Gauss) q 95 Wtot (J) reconstructed flux at gun turn-off plasma gun array l i, R (m) l i R m time (ms) A.C. Sontag, 5th APS-DPP, Nov. 2, 28 14

15 Plasma Gun Startup Provides Robust Target Plasma for Consequent Ramp-Up and Sustainment e.g.: to OH CD 3-gun target then OH drive pre-oh plasma ~8 ka Equivalent with 1/2 OH flux swing ~ 5% flux savings Develop further to optimize target suitability for other CD (MA) (MA).15 plasma gun startup OH only v loop I inj ms v loop (V), I inj (ka) v loop (v) time A.C. Sontag, 5th APS-DPP, Nov. 2, 28 15

16 I N > 12, /I TF > 2 Readily Accessed at Low-A /I TF 3 techniques used to achieve high I N ( /I TF I N /6) OH drive at low TF via plasma gun pre-ionization Non-inductive discharge formation at low TF Fast TF ramp-down during OH operation /I tf gun pre-ionization TF ramp Plasma Current (MA) Guns guns only Only Ohmic Ohmic Plasma gun startup able to achieve highest I N I N (MA/m*T) soft limit w/simple OH drive & large TM A.C. Sontag, 5th APS-DPP, Nov. 2, 28 16

17 Plasma Gun Startup Appears to Give Broad, Stabilizing Current Profiles Current injection at edge leads to hollow j(r) l i.35 at gun turn off Transient TM suppression TM returns after l i increase Create stable, full-current targets in future system exploit hollow j(r) target with RF Current (ka) I inj (ka) φ pol (mwb) Mode Amp. (au) A.C. Sontag, 5th APS-DPP, Nov. 2, Typical DC-helicity-injection discharge evolution Centerstack Fluxloop l i Plasma Current Toroidal Field Rod Current Region of Interest!B 2 of Outboard Midplane Mirnov s Time (msec) time (ms)

18 Near-Term Issues to be Addressed What determines λ edge? J edge broadening due to magnetic turbulence (edge & global) magnetic shear gun characteristics physical geometry How does T e scale with? χ vs. χ in the presence of magnetic turbulence confinement depends of degree of stocasticity of magnetic field What determines injector impedance? V bias = I inj Z inj neutral fueling filament length What are plasma properties? T e, n e, j(r), P rad, etc. A.C. Sontag, 5th APS-DPP, Nov. 2, 28 18

19 Point-Source Current Injection Potentially Provides an Attractive ST Startup & Growth Technique Point-source DC helicity injection appears to be viable startup technique simple & scalable Tests today with small 3-gun system gives Ip up to ~.1 MA limited by present hardware configuration Helicity driven discharges governed by helicity balance and Taylor relaxation limits many issues remain to be addressed (edge current profiles, gun impedance, field stocasticity, χ vs χ, geometry, plasma characteristics, etc.) Pegasus moving towards high-current startup and sustainment without solenoid A.C. Sontag, 5th APS-DPP, Nov. 2, 28 19

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Non-solenoidal startup using point-source DC helicity injectors

More information

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Aaron J. Redd for the Pegasus Team 2008 Innovative Confinement Concepts Workshop Reno, Nevada June 24-27,

More information

Abstract. The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N

Abstract. The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N Abstract The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N regime (I N > 12). Access to this regime requires a small centerpost

More information

A.J.Redd, D.J.Battaglia, M.W.Bongard, R.J.Fonck, and D.J.Schlossberg

A.J.Redd, D.J.Battaglia, M.W.Bongard, R.J.Fonck, and D.J.Schlossberg A.J.Redd, D.J.Battaglia, M.W.Bongard, R.J.Fonck, and D.J.Schlossberg 51st APS-DPP Annual Meeting November 2-6, 2009 Atlanta, GA USA The PEGASUS Toroidal Experiment Helicity injection in PEGASUS Testing

More information

Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges

Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges J.L. Barr, M.W. Bongard, M.G. Burke, R.J. Fonck, E.T. Hinson, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome

More information

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment 1 EXS/P2-07 Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment R.J. Fonck 1), D.J. Battaglia 2), M.W. Bongard 1), E.T. Hinson 1), A.J. Redd 1), D.J.

More information

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup M.W. Bongard G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, J.A. Reusch, A.T. Rhodes, N.J. Richner, C.

More information

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment E. T. Hinson J. L. Barr, M. W. Bongard, M. G. Burke, R. J. Fonck, J. M. Perry, A. J. Redd,

More information

Expanding Non-Solenoidal Startup with Local Helicity Injection

Expanding Non-Solenoidal Startup with Local Helicity Injection Expanding Non-Solenoidal Startup with Local Helicity Injection Justin M. Perry J. L. Barr, G. M. Bodner, M. W. Bongard, M. G. Burke, R. J. Fonck, E. T. Hinson, B. T. Lewicki, J. A. Reusch, D. J. Schlossberg

More information

Abstract. , low-q operating space at near-unity aspect ratio. Plasmas are characterized by high b t ( 20% to date); very low toroidal field (B t

Abstract. , low-q operating space at near-unity aspect ratio. Plasmas are characterized by high b t ( 20% to date); very low toroidal field (B t Abstract The is exploring stability limits in the high b t, low-q operating space at near-unity aspect ratio. Plasmas are characterized by high b t ( 2% to date); very low toroidal field (B t.7 T); densities

More information

Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment

Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment Initial Investigations of H-mode Edge Dynamics in the PEGASUS Toroidal Experiment M.W. Bongard, R.J. Fonck, K.E. Thome, D.S. Thompson 55 th Annual Meeting of the APS Division of Plasma Physics University

More information

Current Drive Experiments in the HIT-II Spherical Tokamak

Current Drive Experiments in the HIT-II Spherical Tokamak Current Drive Experiments in the HIT-II Spherical Tokamak T. R. Jarboe, P. Gu, V. A. Izzo, P. E. Jewell, K. J. McCollam, B. A. Nelson, R. Raman, A. J. Redd, P. E. Sieck, and R. J. Smith, Aerospace & Energetics

More information

Physics of the Current Injection Process in Localized Helicity Injection

Physics of the Current Injection Process in Localized Helicity Injection Physics of the Current Injection Process in Localized Helicity Injection Edward Thomas Hinson Pegasus Toroidal Experiment University of Wisconsin Madison 57 th American Physical Society Division of Plasma

More information

Evidence for Magnetic Relaxation in Coaxial Helicity Injection Discharges in the HIT II Spherical Torus

Evidence for Magnetic Relaxation in Coaxial Helicity Injection Discharges in the HIT II Spherical Torus Evidence for Magnetic Relaxation in Coaxial Helicity Injection Discharges in the HIT II Spherical Torus A. J. Redd Aerospace & Energetics Research University of Washington Seattle, Washington USA 24 Innovative

More information

Characterization of Edge Stability and Ohmic H-mode in the PEGASUS Toroidal Experiment

Characterization of Edge Stability and Ohmic H-mode in the PEGASUS Toroidal Experiment Characterization of Edge Stability and Ohmic H-mode in the PEGASUS Toroidal Experiment M.W. Bongard, J.L. Barr, M.G. Burke, R.J. Fonck, E.T. Hinson, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome

More information

Physics of Intense Electron Current Sources for Helicity Injection

Physics of Intense Electron Current Sources for Helicity Injection Physics of Intense Electron Current Sources for Helicity Injection E.T. Hinson, J.L. Barr, M.W. Bongard, M.G. Burke, R.J. Fonck, B.T. Lewicki, J.M. Perry, A.J. Redd, G.R. Winz APS-DPP 2014 Oct 27-31, 2014

More information

(Inductive tokamak plasma initial start-up)

(Inductive tokamak plasma initial start-up) (Inductive tokamak plasma initial start-up) 24. 6. 7. (tapl1.kaist.ac.kr) Outline Conventional inductive tokamak plasma start-up Inductive outer PF coil-only plasma start-up Inductive plasma start-up in

More information

Current Drive Experiments in the Helicity Injected Torus (HIT II)

Current Drive Experiments in the Helicity Injected Torus (HIT II) Current Drive Experiments in the Helicity Injected Torus (HIT II) A. J. Redd, T. R. Jarboe, P. Gu, W. T. Hamp, V. A. Izzo, B. A. Nelson, R. G. O Neill, R. Raman, J. A. Rogers, P. E. Sieck and R. J. Smith

More information

Non-Solenoidal Startup via Helicity Injection in the PEGASUS ST

Non-Solenoidal Startup via Helicity Injection in the PEGASUS ST Non-Solenoidal Startup via Helicity Injection in the PEGASUS ST M.W. Bongard G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, N.J. Richner, C. Rodriguez Sanchez, D.J. Schlossberg,

More information

Initiatives in Non-Solenoidal Startup and H-mode Physics at Near-Unity A

Initiatives in Non-Solenoidal Startup and H-mode Physics at Near-Unity A Initiatives in Non-Solenoidal Startup and H-mode Physics at Near-Unity A M.W. Bongard, J.L. Barr, M.G. Burke, R.J. Fonck, E.T. Hinson, B.T. Lewicki, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome,

More information

H-mode and Non-Solenoidal Startup in the Pegasus Ultralow-A Tokamak

H-mode and Non-Solenoidal Startup in the Pegasus Ultralow-A Tokamak 1 OV/5-4 H-mode and Non-Solenoidal Startup in the Pegasus Ultralow-A Tokamak R.J. Fonck 1, J.L. Barr 1, G. M. Bodner 1, M.W. Bongard 1, M.G. Burke 1, D. M. Kriete 1, J.M. Perry 1, J.A. Reusch 1, D.J. Schlossberg

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak 1 EXS/P2-19 Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak T. Yamada 1), R. Imazawa 2), S. Kamio 1), R. Hihara 1), K. Abe 1), M. Sakumura 1), Q. H. Cao 1), H. Sakakita

More information

Experimental Study of Hall Effect on a Formation Process of an FRC by Counter-Helicity Spheromak Merging in TS-4 )

Experimental Study of Hall Effect on a Formation Process of an FRC by Counter-Helicity Spheromak Merging in TS-4 ) Experimental Study of Hall Effect on a Formation Process of an FRC by Counter-Helicity Spheromak Merging in TS-4 ) Yasuhiro KAMINOU, Michiaki INOMOTO and Yasushi ONO Graduate School of Engineering, The

More information

Oscillating-Field Current-Drive Experiment on MST

Oscillating-Field Current-Drive Experiment on MST Oscillating-Field Current-Drive Experiment on MST K. J. McCollam, J. K. Anderson, D. J. Den Hartog, F. Ebrahimi, J. A. Reusch, J. S. Sarff, H. D. Stephens, D. R. Stone University of Wisconsin-Madison D.

More information

1 EX/P7-12. Transient and Intermittent Magnetic Reconnection in TS-3 / UTST Merging Startup Experiments

1 EX/P7-12. Transient and Intermittent Magnetic Reconnection in TS-3 / UTST Merging Startup Experiments 1 EX/P7-12 Transient and Intermittent Magnetic Reconnection in TS-3 / UTST Merging Startup Experiments Y. Ono 1), R. Imazawa 1), H. Imanaka 1), T. Hayamizu 1), M. Inomoto 1), M. Sato 1), E. Kawamori 1),

More information

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE M. Uchida, Y. Nozawa, H. Tanaka, T. Maekawa Graduate School of Energy Science, Kyoto University

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 26-28, 2007 The RFP fusion development

More information

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment Derivation of dynamo current drive and stable current sustainment in the HIT SI experiment 1 Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

More information

Spherical Torus Fusion Contributions and Game-Changing Issues

Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus (ST) research contributes to advancing fusion, and leverages on several game-changing issues 1) What is ST? 2) How does research

More information

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1Euratom-CEA Association, Cadarache, France Euratom-EPFL

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

Oscillating Field Current Drive on MST

Oscillating Field Current Drive on MST Oscillating Field Current Drive on MST John Sarff A. Blair, K. McCollam, P. Nonn, J. Anderson, D. Brower 1, D. Craig, B. Deng 1, D. Den Hartog, W. Ding 1, F. Ebrahimi, D. Ennis, G. Fiksel, S. Gangadhara,

More information

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory Localized Electron Cyclotron Current Drive in : Experiment and Theory by Y.R. Lin-Liu for C.C. Petty, T.C. Luce, R.W. Harvey,* L.L. Lao, P.A. Politzer, J. Lohr, M.A. Makowski, H.E. St John, A.D. Turnbull,

More information

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM STATUS OF THE HIT-II EXPERIMENTAL PROGRAM Roger J. Smith and the HIT-II Team Plasma Dynamics Group University of Washington, Seattle, Washington HIT-II Team Faculty/Staff Support Staff Graduate Students

More information

Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U

Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U 1 Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U Y. Takase, 1) S. Ide, 2) S. Itoh, 3) O. Mitarai, 4) O. Naito, 2) T. Ozeki, 2) Y. Sakamoto, 2) S. Shiraiwa,

More information

Plasma formation in MAST by using the double null merging technique

Plasma formation in MAST by using the double null merging technique 1 Plasma formation in MAST by using the double null merging technique P. Micozzi 1, F. Alladio 1, P. Costa 1, A. Mancuso 1, A. Sykes 2, G. Cunningham 2, M. Gryaznevich 2, J. Hicks 2, M. Hood 2, G. McArdle

More information

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift )

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) Tsuguhiro WATANABE National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan (Received

More information

Flow and dynamo measurements in the HIST double pulsing CHI experiment

Flow and dynamo measurements in the HIST double pulsing CHI experiment Innovative Confinement Concepts (ICC) & US-Japan Compact Torus (CT) Plasma Workshop August 16-19, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Measurement capabilities for the Pegasus ST are increasing to support the scientific studies of plasma behavior at very-low A. Global parameters are obtained from equilibrium reconstructions constrained

More information

Numerical investigation of design and operating parameters on CHI spheromak performance

Numerical investigation of design and operating parameters on CHI spheromak performance Numerical investigation of design and operating parameters on CHI spheromak performance J.B. O Bryan, C.A. Romero-Talamás (University of Maryland, Baltimore County) S. Woodruff, J.E. Stuber, C. Bowman,

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

The details of point source helicity injection as a noninductive startup technique must be characterized:

The details of point source helicity injection as a noninductive startup technique must be characterized: The details of point source helicity injection as a noninductive startup technique must be characterized: Is energy confinement dominated by cross-field transport? Is energy confinement dominated by parallel

More information

1 IC/P4-5. Spheromak Formation by Steady Inductive Helicity Injection

1 IC/P4-5. Spheromak Formation by Steady Inductive Helicity Injection 1 IC/P4-5 Spheromak Formation by Steady Inductive Helicity Injection T. R. Jarboe, C. Akcay, W. T. Hamp, R. Z. Aboul Hosn, G. J. Marklin, B. A. Nelson, R. G. O Neill, P. E. Sieck, R. J. Smith, and J. S.

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Active MHD Control Needs in Helical Configurations

Active MHD Control Needs in Helical Configurations Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2, A. Reiman 1, and the W7-AS Team and NBI-Group. 1 Princeton Plasma

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

Evolution of Bootstrap-Sustained Discharge in JT-60U

Evolution of Bootstrap-Sustained Discharge in JT-60U 1 Evolution of Bootstrap-Sustained Discharge in JT-60U Y. Takase 1), S. Ide 2), Y. Kamada 2), H. Kubo 2), O. Mitarai 3), H. Nuga 1), Y. Sakamoto 2), T. Suzuki 2), H. Takenaga 2), and the JT-60 Team 1)

More information

Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST M.G. Burke, J.L. Barr, M.W. Bongard, R.J. Fonck, E.T. Hinson, J.M. Perry, J.A. Reusch 57 th Annual Meeting of the APS-DPP University

More information

THE DIII D PROGRAM THREE-YEAR PLAN

THE DIII D PROGRAM THREE-YEAR PLAN THE PROGRAM THREE-YEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is well-aligned

More information

Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields

Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields H. Frerichs, O. Schmitz, I. Waters, G. P. Canal, T. E. Evans, Y. Feng and V. Soukhanovskii

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J.

More information

Resistive Wall Mode Control in DIII-D

Resistive Wall Mode Control in DIII-D Resistive Wall Mode Control in DIII-D by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil

More information

AC loop voltages and MHD stability in RFP plasmas

AC loop voltages and MHD stability in RFP plasmas AC loop voltages and MHD stability in RFP plasmas K. J. McCollam, D. J. Holly, V. V. Mirnov, J. S. Sar, D. R. Stone UW-Madison 54rd Annual Meeting of the APS-DPP October 29th - November 2nd, 2012 Providence,

More information

Evolution of Bootstrap-Sustained Discharge in JT-60U

Evolution of Bootstrap-Sustained Discharge in JT-60U EX1-4 Evolution of Bootstrap-Sustained Discharge in JT-60U Y. Takase, a S. Ide, b Y. Kamada, b H. Kubo, b O. Mitarai, c H. Nuga, a Y. Sakamoto, b T. Suzuki, b H. Takenaga, b and the JT-60 Team a University

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

Active Stability Control of a High-Beta Self-Organized Compact Torus

Active Stability Control of a High-Beta Self-Organized Compact Torus 1 ICC/P5-01 Active Stability Control of a High-Beta Self-Organized Compact Torus T. Asai 1), Ts. Takahashi 1), H. Matsunaga 1), H. Itagaki 1), Y. Matsuzawa 1), Y. Hirano 1), To. Takahashi 2), M. Inomoto

More information

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod EXC/P2-02 Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod J. R. Wilson 1, C. E. Kessel 1, S. Wolfe 2, I. Hutchinson 2, P. Bonoli 2, C. Fiore 2, A. Hubbard 2, J. Hughes 2, Y. Lin 2, Y.

More information

H-mode and ELM Dynamics Studies at Near-Unity Aspect Ratio in the PEGASUS Toroidal Experiment and their Extension to PEGASUS-Upgrade. M.W.

H-mode and ELM Dynamics Studies at Near-Unity Aspect Ratio in the PEGASUS Toroidal Experiment and their Extension to PEGASUS-Upgrade. M.W. H-mode and ELM Dynamics Studies at Near-Unity Aspect Ratio in the PEGASUS Toroidal Experiment and their Extension to PEGASUS-Upgrade M.W. Bongard J.L. Barr, G.M. Bodner, M.G. Burke, R.J. Fonck, H.G. Frerichs,

More information

Behavior of Compact Toroid Injected into the External Magnetic Field

Behavior of Compact Toroid Injected into the External Magnetic Field Behavior of Compact Toroid Injected into the External Magnetic Field M. Nagata 1), N. Fukumoto 1), H. Ogawa 2), T. Ogawa 2), K. Uehara 2), H. Niimi 3), T. Shibata 2), Y. Suzuki 4), Y. Miura 2), N. Kayukawa

More information

Current Profile Control by ac Helicity Injection

Current Profile Control by ac Helicity Injection Current Profile Control by ac Helicity Injection Fatima Ebrahimi and S. C. Prager University of Wisconsin- Madison APS 2003 Motivations Helicity injection is a method to drive current in plasmas in which

More information

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA Experimental Investigations of Magnetic Reconnection J Egedal MIT, PSFC, Cambridge, MA Coronal Mass Ejections Movie from NASA s Solar Dynamics Observatory (SDO) Space Weather The Solar Wind affects the

More information

Advanced Tokamak Research in JT-60U and JT-60SA

Advanced Tokamak Research in JT-60U and JT-60SA I-07 Advanced Tokamak Research in and JT-60SA A. Isayama for the JT-60 team 18th International Toki Conference (ITC18) December 9-12, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development

More information

Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK

Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK Electrode and Limiter Biasing Experiments on the Tokamak ISTTOK C. Silva, H. Figueiredo, J.A.C. Cabral,, I. Nedzelsky, C.A.F. Varandas Associação Euratom/IST, Centro de Fusão Nuclear, Instituto Superior

More information

Physics and Operations Plan for LDX

Physics and Operations Plan for LDX Physics and Operations Plan for LDX Columbia University A. Hansen D.T. Garnier, M.E. Mauel, T. Sunn Pedersen, E. Ortiz Columbia University J. Kesner, C.M. Jones, I. Karim, P. Michael, J. Minervini, A.

More information

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università

More information

Additional Heating Experiments of FRC Plasma

Additional Heating Experiments of FRC Plasma Additional Heating Experiments of FRC Plasma S. Okada, T. Asai, F. Kodera, K. Kitano, T. Suzuki, K. Yamanaka, T. Kanki, M. Inomoto, S. Yoshimura, M. Okubo, S. Sugimoto, S. Ohi, S. Goto, Plasma Physics

More information

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES HIGH PERFORMANCE EXPERIMENTS IN JT-U REVERSED SHEAR DISCHARGES IAEA-CN-9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,

More information

Ion Temperature Measurements in the

Ion Temperature Measurements in the Ion Temperature Measurements in the PEGASUS Toroidal Experiment M.G. Burke, M.W. Bongard, R.J. Fonck, D.J. Schlossberg, A.J. Redd 52 nd Annual APS-DPP University of Wisconsin-Madison Chicago, IL November

More information

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies R. F. Post, T. K. Fowler*, R. Bulmer, J. Byers, D. Hua, L. Tung Lawrence Livermore National Laboratory *Consultant, Presenter This talk

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

The Effects of Noise and Time Delay on RWM Feedback System Performance

The Effects of Noise and Time Delay on RWM Feedback System Performance The Effects of Noise and Time Delay on RWM Feedback System Performance O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,

More information

Time-scales for Non-Inductive Current Buildup In Low-Aspect-Ratio Toroidal Geometry. S. C. Jardin. Abstract

Time-scales for Non-Inductive Current Buildup In Low-Aspect-Ratio Toroidal Geometry. S. C. Jardin. Abstract Time-scales for Non-Inductive Current Buildup In Low-Aspect-Ratio Toroidal Geometry S. C. Jardin Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543 November 1999 Abstract The

More information

MHD. Jeff Freidberg MIT

MHD. Jeff Freidberg MIT MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, self-consistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium

More information

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

More information

UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance

UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance N.S. Wolf, G.D. Porter, M.E. Rensink, T.D. Rognlien Lawrence Livermore National Lab, And the DIII-D team

More information

W.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA

W.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA INTRINSICALLY STEADY STATE TOKAMAKS K.C. SHAING, A.Y. AYDEMIR, R.D. HAZELTINE Institute for Fusion Studies, The University of Texas at Austin, Austin TX 78712 USA W.A. HOULBERG Oak Ridge National Lab.,

More information

PFC/JA NEUTRAL BEAM PENETRATION CONSIDERATIONS FOR CIT

PFC/JA NEUTRAL BEAM PENETRATION CONSIDERATIONS FOR CIT PFC/JA-88-12 NEUTRAL BEAM PENETRATION CONSIDERATIONS FOR CIT J. Wei, L. Bromberg, R. C. Myer, and D. R. Cohn Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 To

More information

RESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS

RESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS RESISTIVE WALL MODE STABILIZATION RESEARCH ON STATUS AND RECENT RESULTS by A.M. Garofalo1 in collaboration with J. Bialek,1 M.S. Chance,2 M.S. Chu,3 T.H. Jensen,3 L.C. Johnson,2 R.J. La Haye,3 G.A. Navratil,1

More information

Highlights from (3D) Modeling of Tokamak Disruptions

Highlights from (3D) Modeling of Tokamak Disruptions Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Plasma Breakdown Analysis in JFT-2M without the Use of Center Solenoid

Plasma Breakdown Analysis in JFT-2M without the Use of Center Solenoid 3st EPS Conference on Plasma Physics 28th June 2nd July, 24, Imperial College, London Plasma Breakdown Analysis in without the Use of Center Solenoid H. Tsutsui, S. Tsuji-Iio, R. Shimada, M. Sato, K. Tsuzuki,

More information

Optimization of Plasma Initiation Scenarios in JT-60SA

Optimization of Plasma Initiation Scenarios in JT-60SA J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Optimization of Plasma Initiation Scenarios in JT-60SA Makoto MATSUKAWA 1, Tsunehisa TERAKADO 1, Kunihito YAMAUCHI 1, Katsuhiro SHIMADA 1, Philippe CARA 2, Elena

More information

Predictive Study on High Performance Modes of Operation in HL-2A 1

Predictive Study on High Performance Modes of Operation in HL-2A 1 1 EX/P-0 Predictive Study on High Performance Modes of Oration in HL-A 1 Qingdi GAO 1), R. V. BUDNY ), Fangzhu LI 1), Jinhua ZHANG 1), Hongng QU 1) 1) Southwestern Institute of Physics, Chengdu, Sichuan,

More information

Real Plasma with n, T ~ p Equilibrium: p = j B

Real Plasma with n, T ~ p Equilibrium: p = j B Real Plasma with n, T ~ p Equilibrium: p = j B B lines must lie in isobaric surfaces. Since B = 0, only possible if isobaric surfaces are topological tori. Magnetic field lines must form nested tori. Equilibrium

More information

Lower Hybrid Wave Induced Rotation on Alcator C-Mod* Ron Parker, Yuri Podpaly, John Rice, Andréa Schmidt

Lower Hybrid Wave Induced Rotation on Alcator C-Mod* Ron Parker, Yuri Podpaly, John Rice, Andréa Schmidt Lower Hybrid Wave Induced Rotation on Alcator C-Mod* Ron Parker, Yuri Podpaly, John Rice, Andréa Schmidt *Work supported by USDoE awards DE-FC-99ER551 and DE-AC-7CH373 Abstract Injection of RF power in

More information

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters S. Shiraiwa, P. Bonoli, F. Poli 1, R. W, Harvey 2, C. Kessel 1, R. Parker, and G. Wallace MIT-PSFC, PPPL 1, and CompX

More information

DIII-D Experimental Simulation of ITER Scenario Access and Termination

DIII-D Experimental Simulation of ITER Scenario Access and Termination 1 DIII-D Experimental Simulation of ITER Scenario Access and Termination G.L. Jackson 1, P.A. Politzer 1, D.A. Humphreys 1, T.A. Casper 2, A.W. Hyatt 1, J.A. Leuer 1, J. Lohr 1, T.C. Luce 1, M.A. Van Zeeland

More information

Understanding Edge Harmonic Oscillation Physics Using NIMROD

Understanding Edge Harmonic Oscillation Physics Using NIMROD Understanding Edge Harmonic Oscillation Physics Using NIMROD J. King With contributions from S. Kruger & A. Pankin (Tech-X); K. Burrell, A. Garofalo, R. Groebner & P. Snyder (General Atomics) Work supported

More information

Requirements for Active Resistive Wall Mode (RWM) Feedback Control

Requirements for Active Resistive Wall Mode (RWM) Feedback Control Requirements for Active Resistive Wall Mode (RWM) Feedback Control Yongkyoon In 1 In collaboration with M.S. Chu 2, G.L. Jackson 2, J.S. Kim 1, R.J. La Haye 2, Y.Q. Liu 3, L. Marrelli 4, M. Okabayashi

More information

Imposed Dynamo Current Drive

Imposed Dynamo Current Drive Imposed Dynamo Current Drive by T. R. Jarboe, C. Akcay, C. J. Hansen, A. C. Hossack, G. J. Marklin, K. Morgan, B. A. Nelson, D. A. Sutherland, B. S. Victor University of Washington, Seattle, WA 98195,

More information

First Experiments in SST-1

First Experiments in SST-1 First Experiments in SST-1 Subrata Pradhan & SST-1 Team Institute for Plasma Research India OV 5-5 Steady State Superconducting Tokamak (SST-1) at IPR Outline SST-1 Parameters Results in SST-1 from Engineering

More information

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)

More information

Optimization of Stationary High-Performance Scenarios

Optimization of Stationary High-Performance Scenarios Optimization of Stationary High-Performance Scenarios Presented by T.C. Luce National Fusion Program Midterm Review Office of Fusion Energy Science Washington, DC September, 6 QTYUIOP 8-6/TCL/rs Strategy

More information

Internal Magnetic Field Measurements and Langmuir Probe Results for the HIT-SI Experiment

Internal Magnetic Field Measurements and Langmuir Probe Results for the HIT-SI Experiment Internal Magnetic Field Measurements and Langmuir Probe Results for the HIT-SI Experiment (First Evidence of Spheromak Generation and Sustainment) Roger J. Smith Plasma Dynamics Group University of Washington,

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information