Progressing Performance Tokamak Core Physics. Marco Wischmeier MaxPlanckInstitut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.


 Beatrix Bridges
 1 years ago
 Views:
Transcription
1 Progressing Performance Tokamak Core Physics Marco Wischmeier MaxPlanckInstitut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.de Joint ICTPIAEA College on Advanced Plasma Physics, Triest, Italy, 2016
2 Specific Fusion Plasma Physics Ø heat insulation (energy transport) Ø magnetohydrodynamic (MHD) stability Ø tokamak operational scenarios Ø exhaust of heat and particles (tomorrow, Wednesday)
3 Specific Fusion Plasma Physics Ø heat insulation (energy transport) Ø magnetohydrodynamic (MHD) stability Ø tokamak operational scenarios
4 Reactor energetics: the Lawson criterion for nτ Ε αheating compensates losses: radiative losses (Bremsstrahlung) heat conduction and convection τ E = W plasma /P loss ( energy confinement time ) leads to which has a minimum for nτ Ε = 2 x m 3 s at T = 20 kev
5 Figure of merit for fusion performance ntτ Power P loss needed to sustain plasma determined by thermal insulation: τ E = W plasma /P loss ( energy confinement time ) Fusion power increases with W plasma P fus ~ n D n T <σv> ~ n e2 T 2 ~ W plasma 2 Present day experiments: P loss compensated by external heating Q = P fus /P ext P fus /P loss ~ ntτ E Reactor: P loss compensated by α(self)heating Q = P fus /P ext =P fus /(P loss P α ) (ignited plasma)
6 How is heat transported across field lines?
7 Energy confinement time determined by transport Simplest ansatz for heat transport: Diffusion due to binary collisions χ r L 2 / τ c m 2 /s τ E a 2 /(4 χ) table top device (R 0.6 m) should ignite! Important transport regime for tokamaks and stellarators: Diffusion of trapped particles on banana orbits due to binary collisions neoclassical transport (important for impurities) Experimental finding: Anomalous transport, much larger heat losses B collision Transport to the edge R Tokamaks: Ignition expected for R ~ 8 m
8 Energy confinement: empirical scaling laws In lack of a first principles physics model, ITER has been designed on the basis of an empirical scaling law very limited predictive capability, need first principles model
9 From empirical scaling laws to physics understanding P heat First principle based understanding of temperature (density, ) profiles
10 Anomalous transport due to turbulence Simplest estimation for heat transport due to turbulence: D (Δr eddy ) 2 /τ tear 2 m 2 /s
11 Global turbulence simulations
12 Energy Transport in Fusion Plasmas T(0.4) T(0.8) Anomalous transport determined by gradient driven turbulence temperature profiles show a certain stiffness critical gradient phenomenon χ increases with P heat (!) increasing machine size will increase central T as well as τ E N.B.: steep gradient region in the edge governed by different physics!
13 Energy Transport in Fusion Plasmas ASDEX Upgrade Locally, critical gradients can be exceeded ( Transport Barrier ) sheared rotation can suppress turbulent eddies works at the edge (Hmode, see later) and internally ( ITB )
14 Anomalous transport determines machine size Q = c 5 c q 5 A 0.1 R H β 1 N B ITER (Q=10) DEMO (ignited) 1 Fusion Power [MW] P fus = c 1 β B R N 2 4 q95 A ITER (β N =1.8) DEMO (β N =3) Major radius R 0 [m] Major radius R 0 [m] ignition (selfheated plasma) predicted at R = 7.5 m at this machine size, the fusion power will be of the order of 1 GW
15 Specific Fusion Plasma Physics Ø heat insulation (energy transport) Ø magnetohydrodynamic (MHD) stability Ø tokamak operational scenarios
16 Plasma discharges can be subject to instabilities Desaster βlimit, disruption Selforganisation sationarity of profiles j(r), p(r)
17 Plasma discharges can be subject to instabilities linearly stable linearly unstable Equilibrium p = j x B means force balance, but not necessarily stability Stability against perturbation has to be evaluated by stability analysis Mathematically: solve time dependent MHD equations linear stability: small perturbation, equilibrium unperturbed, exponentially growing eigenmodes nonlinear stability: finite peturbation, back reaction on equilibrium, final state can also be saturated instability
18 Free energies to drive MHD modes current driven instabilities Ex.: kink mode (only tokamaks) pressure driven instabilities Ex.: interchange mode (tokamak and stellarator) N.B.: also fast particle pressure (usually kinetic effects)!
19 Ideal and resistive MHD instabilities Ideal MHD: η = 0 flux conservation topology unchanged Resistive MHD: η 0 reconnection of field lines topology changes
20 Magnetic islands impact tokamak discharges coupling between island chains (possibly stochastic regions) sudden loss of heat insulation ('disruptive instability')
21 Disruptive instability limits achievable density High density clamps current profile and leads to island chains excessive cooling, current can no longer be sustained disruptions lead to high thermal and mechanical loads!
22 Removal of magnetic islands by microwaves n ν ECR = ν wave k v Electron Cyclotron Resonance at ν = n 28 GHz B [T] Plasma is optically thick at ECR frequency Deposition controlled by local Bfield very good localisation
23 Ideal MHD instabilities limit achievable pressure Optimising nt means high pressure and, for given magnetic field, high dimensionless pressure β = 2µ 0 <p> / B 2 This quantity is ultimately limited by ideal instabilities Ideal MHD limit (ultimate limit, plasma unstable on Alfvén time scale ~ 10 µs, only limited by inertia) Troyon limit β max ~ I p /(ab), leads to definition of β N = β/(i p /(ab)) at fixed ab, shaping of plasma crosssection allows higher I p higher β β [%] β N =β/(i/ab)=3.5
24 Specific Fusion Plasma Physics Ø heat insulation (energy transport) Ø magnetohydrodynamic (MHD) stability Ø tokamak operational scenarios
25 What is a tokamak scenario? A tokamak (operational) scenario is a recipe to run a tokamak discharge Plasma discharge characterised by external control parameters: B t, R 0, a, κ, δ, P heat, Φ D integral plasma parameters: β = 2µ 0 <p>/b 2, I p = 2π j(r) r dr plasma profiles: pressure p(r) = n(r)*t(r), current density j(r) current density (a.u.) total j(r) noninductive j(r) β p = 1 I p = 800 ka f NI = 14% current density (a.u.) total j(r) noninductive j(r) β p = 1 I p = 800 ka f NI = 37% operational scenario best characterised by shape of p(r), j(r)
26 Control of the profiles j(r)and p(r) is limited Pressure profile determined by combination of heating / fuelling profile and radial transport coefficients ohmic heating coupled to temperature profile via σ ~T 3/2 external heating methods allow for some variation ICRH/ECRH deposition determined by Bfield, NBI has usually broad profile gas puff is peripheral source of particles, pellets further inside but: under reactorlike conditions, dominant αheating ~ (nt) 2
27 The (low confinement) Lmode scenario Standard scenario without special tailoring of geometry or profiles central current density usually limited by sawteeth temperature gradient sits at critical value over most of profile extrapolates to very large (R > 10 m, I p > 30 MA) pulsed reactor
28 The (high confinement) Hmode scenario With hot (low collisionality) conditions, edge transport barrier develops gives higher boundary condition for stiff temperature profiles global confinement τ E roughly factor 2 better than Lmode extrapolates to more attractive (R ~ 8 m, I p ~ 20 MA) pulsed reactor
29 Quality of heat insulation Turbulent transport limits (on a logarithmic scale) the gradient of the temperature profile Analogy of a sand pile: limited gradient But total height is variable by barriers
30 Turbulent transport strongly increases with logarithmic temperature gradient Existence of a critical logarithmic temperature gradient (nearly independent on heating power) stiff temperature profiles d ln T dr T = =  T 1 L T,cr T(a) = T(b) exp b  a L T,cr
31 Core temperature determined by temperature at the edge nearly independent of heating power Transport barrier at the edge ( high confinement mode) in divertor geometry
32 Energy Transport in Fusion Plasmas Anomalous transport determined by gradient driven turbulence linear: main microinstabilities giving rise to turbulence identified nonlinear: turbulence generates zonal flow acting back on eddy size (eddy size) 2 / (eddy lifetime) is of the order of experimental χvalues
33 Sheared flows the most important saturation mechanism Macroscopic sheared rotation deforms eddies and tears them Radial transport increases with eddy size
34 Stationary Hmodes usually accompanied by ELMs Edge Localised Modes (ELMs) regulate edge plasma pressure without ELMs, particle confinement too good impurity accumulation
35 Cross section of the spherical tokamak MAST MAST, CCFE, UK
36 Plasma discharges can be subject to instabilities MAST, CCFE, UK
37 Instability also measured in total radiation ASDEX Upgrade tomographic reconstruction of AXUV diods By M. Bernert on youtube
38 Stationary Hmodes usually accompanied by ELMs acceptable lifetime for 1 st ITER divertor But: ELMs may pose a serious threat to the ITER divertor large type I ELMs may lead to too high divertor erosion
39 Progress
40 Tokamaks have made Tremendous Progress figure of merit ntτ E doubles every 1.8 years JET tokamak in Culham (UK) has produced 16 MW of fusion power present knowledge has allowed to design a next step tokamak to demonstrate large scale fusion power production: ITER
Introduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationDer Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk
MaxPlanckInstitut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator
More informationITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK
ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:
More informationMagnetohydrodynamics (MHD) II
Magnetohydrodynamics (MHD) II YongSu Na National Fusion Research Center POSTECH, Korea, 810 May, 2006 Review I 1. What is confinement? Why is single particle motion approach required? 2. Fluid description
More informationIssues of Perpendicular Conductivity and Electric Fields in Fusion Devices
Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Michael Tendler, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden Plasma Turbulence Turbulence can be regarded
More informationObservation of NeoClassical Ion Pinch in the Electric Tokamak*
1 EX/P629 Observation of NeoClassical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.L. Gauvreau, P.A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,
More informationTURBULENT TRANSPORT THEORY
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationPerformance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK
Performance limits Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 24) Previously... In the last few
More informationCharacteristics of the Hmode H and Extrapolation to ITER
Characteristics of the Hmode H Pedestal and Extrapolation to ITER The Hmode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference
More informationThe RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationRole of Magnetic Configuration and Heating Power in ITB Formation in JET.
Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA
More informationRunaway electron losses enhanced by resonant magnetic perturbations
Runaway electron losses enhanced by resonant magnetic perturbations G. Papp 1,2, M. Drevlak 3, T. Fülöp 1, P. Helander 3, G. I. Pokol 2 1) Chalmers University of Technology, Göteborg, Sweden 2) Budapest
More informationMHD. Jeff Freidberg MIT
MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, selfconsistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium
More informationTHE DIII D PROGRAM THREEYEAR PLAN
THE PROGRAM THREEYEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is wellaligned
More informationJoint ITERIAEAICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER
22671 Joint ITERIAEAICTP Advanced Workshop on Fusion and Plasma Physics 314 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations
More informationNIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997
NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU General Atomics Nimrod Project Review Meeting July 21 22, 1997 Work supported by the U.S. Department of Energy under Grant DEFG0395ER54309 and Contract
More informationMagnetically Confined Fusion: Transport in the core and in the Scrape off Layer Bogdan Hnat
Magnetically Confined Fusion: Transport in the core and in the Scrape off Layer ogdan Hnat Joe Dewhurst, David Higgins, Steve Gallagher, James Robinson and Paula Copil Fusion Reaction H + 3 H 4 He + n
More informationOverview of results from MAST Presented by: Glenn Counsell, for the MAST team
Overview of results from MAST Presented by: Glenn Counsell, for the MAST team This work was jointly funded by the UK Engineering & Physical Sciences Research Council and Euratom Focus on 4 areas The LH
More informationExhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France
Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.
More informationINTRODUCTION TO MAGNETIC NUCLEAR FUSION
INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies
More informationUnderstanding physics issues of relevance to ITER
Understanding physics issues of relevance to ITER presented by P. Mantica IFPCNR, Euratom/ENEACNR Association, Milano, Italy on behalf of contributors to the EFDAJET Work Programme Brief summary of
More informationEffects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER
Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione EuratomENEA sulla Fusione, C.R.
More informationDT Fusion Power Production in ELMfree Hmodes in JET
JET C(98)69 FG Rimini and e JET Team DT Fusion ower roduction in ELMfree Hmodes in JET This document is intended for publication in e open literature. It is made available on e understanding at it may
More informationTurbulence and Transport The Secrets of Magnetic Confinement
Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS
More informationHighlights from (3D) Modeling of Tokamak Disruptions
Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly
More informationFirst Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIIID MatchedShape Plasmas
1 PD/11 First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIIID MatchedShape Plasmas R. Nazikian 1, W. Suttrop 2, A. Kirk 3, M. Cavedon 2, T.E. Evans
More informationMHDparticle simulations and collective alphaparticle transport: analysis of ITER scenarios and perspectives for integrated modelling
MHDparticle simulations and collective alphaparticle transport: analysis of ITER scenarios and perspectives for integrated modelling G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione EuratomENEA
More informationHighm Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows
TH/P33 Highm Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows A. Bierwage 1), S. Benkadda 2), M. Wakatani 1), S. Hamaguchi 3), Q. Yu
More informationErosion and Confinement of Tungsten in ASDEX Upgrade
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik Erosion and Confinement of Tungsten in ASDEX Upgrade R. Dux, T.Pütterich, A. Janzer, and ASDEX Upgrade Team 3rd IAEAFECConference, 4.., Daejeon, Rep.
More informationCritical Physics Issues for DEMO
MaxPlanckInstitut für Plasmaphysik Critical Physics Issues for DEMO L.D. Horton with thanks to the contributors to the EFDA DEMO physics tasks in 2006 and to D.J. Campbell, who organized this effort
More informationRadiative typeiii ELMy Hmode in alltungsten ASDEX Upgrade
Radiative typeiii ELMy Hmode in alltungsten ASDEX Upgrade J. Rapp 1, A. Kallenbach 2, R. Neu 2, T. Eich 2, R. Fischer 2, A. Herrmann 2, S. Potzel 2, G.J. van Rooij 3, J.J. Zielinski 3 and ASDEX Upgrade
More informationCharacterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod
1 EX/P422 Characterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.
More informationAlcator CMod. Double Transport Barrier Plasmas. in Alcator CMod. J.E. Rice for the CMod Group. MIT PSFC, Cambridge, MA 02139
Alcator CMod Double Transport Barrier Plasmas in Alcator CMod J.E. Rice for the CMod Group MIT PSFC, Cambridge, MA 139 IAEA Lyon, Oct. 17, Outline Double Barrier Plasma Profiles and Modeling Conditions
More informationNonlinear Consequences of Weakly Driven Energetic Particle Instabilities
2008 International Sherwood Fusion Theory Conference March 30  April 2, 2008, Boulder, Colorado Nonlinear Consequences of Weakly Driven Energetic Particle Instabilities Boris Breizman Institute for Fusion
More informationINTRODUCTION TO BURNING PLASMA PHYSICS
INTRODUCTION TO BURNING PLASMA PHYSICS Gerald A. Navratil Columbia University American Physical Society  Division of Plasma Physics 2001 Annual Meeting, Long Beach, CA 1 November 2001 THANKS TO MANY PEOPLE
More informationCurrent density modelling in JET and JT60U identity plasma experiments. Paula Sirén
Current density modelling in JET and JT60U identity plasma experiments Paula Sirén 1/12 1/16 EuratomTEKES EuratomTekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationAdvanced Tokamak Research in JT60U and JT60SA
I07 Advanced Tokamak Research in and JT60SA A. Isayama for the JT60 team 18th International Toki Conference (ITC18) December 912, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationTRANSPORT PROGRAM CMOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER
TRANSPORT PROGRAM CMod CMOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER CMOD  OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals
More informationENERGETIC PARTICLES AND BURNING PLASMA PHYSICS
ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS Reported by J. Van Dam Institute for Fusion Studies The University of Texas at Austin USJapan JIFT Workshop on TheoryBased Modeling and Integrated Simulation
More informationHFS PELLET REFUELING FOR HIGH DENSITY TOKAMAK OPERATION
ASDEX Upgrade Session: "Issues and prospects of effcient fueling for magnetic confinement" HFS ELLET REFUELING FOR HIGH DENSITY TOKAMAK OERATION.T. Lang for the ASDEX Upgrade and JET teams Cubic mm size
More informationThe EPED Pedestal Model: Extensions, Application to ELMSuppressed Regimes, and ITER Predictions
The EPED Pedestal Model: Extensions, Application to ELMSuppressed Regimes, and ITER Predictions P.B. Snyder 1, T.H. Osborne 1, M.N.A. Beurskens 2, K.H. Burrell 1, R.J. Groebner 1, J.W. Hughes 3, R. Maingi
More informationCMod Core Transport Program. Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center
CMod Core Transport Program Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly
More informationPlasma instabilities. Dr Ben Dudson, University of York 1 / 37
Plasma instabilities Dr Ben Dudson, University of York 1 / 37 Previously... Plasma configurations and equilibrium Linear machines, and Stellarators Ideal MHD and the GradShafranov equation Collisional
More informationand expectations for the future
39 th Annual Meeting of the FPA 2018 First operation of the Wendelstein 7X stellarator and expectations for the future HansStephan Bosch MaxPlanckInstitut für Plasmaphysik Greifswald, Germany on behalf
More informationAnnual Report MaxPlanckInstitut für Plasmaphysik
Annual Report 2002 MaxPlanckInstitut für Plasmaphysik Foreword At the MaxPlanckInstitut für Plasmaphysik (IPP) we investigate the basic physics associated with the construction and operation of a future
More informationOverview of EAST Experiments on the Development of HighPerformance Steady State Scenario
26th IAEA FEC, 1722 October 2016, Kyoto Japan Overview of EAST Experiments on the Development of HighPerformance Steady State Scenario B.N. Wan on behalf of EAST team & collaborators Email: bnwan@ipp.ac.cn
More informationW.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA
INTRINSICALLY STEADY STATE TOKAMAKS K.C. SHAING, A.Y. AYDEMIR, R.D. HAZELTINE Institute for Fusion Studies, The University of Texas at Austin, Austin TX 78712 USA W.A. HOULBERG Oak Ridge National Lab.,
More informationExtension of HighBeta Plasma Operation to Low Collisional Regime
EX/44 Extension of HighBeta Plasma Operation to Low Collisional Regime Satoru Sakakibara On behalf of LHD Experiment Group National Institute for Fusion Science SOKENDAI (The Graduate University for
More informationActive MHD Control Needs in Helical Configurations
Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2, A. Reiman 1, and the W7AS Team and NBIGroup. 1 Princeton Plasma
More informationEX/C35Rb Relationship between particle and heat transport in JT60U plasmas with internal transport barrier
EX/CRb Relationship between particle and heat transport in JTU plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),
More informationTungsten impurity transport experiments in Alcator CMod to address high priority R&D for ITER
Tungsten impurity transport experiments in Alcator CMod to address high priority R&D for ITER A. Loarte ITER Organization, Route de VinonsurVerdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France
More informationMitigation of ELMs and Disruptions by Pellet Injection
TH/P45 Mitigation of ELMs and Disruptions by Pellet Injection K. Gál ), T. Fehér ), T. Fülöp ), P. T. Lang 3), H. M. Smith 4), ASDEX Upgrade Team 5) and JETEFDA contributors 3) ) KFKIRMKI, Association
More informationDIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH
DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK
More informationSpatiotemporal investigations on the triggering of pellet induced ELMs
Spatiotemporal investigations on the triggering of pellet induced ELMs G. Kocsis, S. Kálvin, P.T. Lang*, M. Maraschek*, J. Neuhauser* W. Schneider*, T. Szepesi and ASDEX Upgrade Team KFKIRMKI, EURATOM
More informationPHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China.
PHYSICS OF CFETR Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China Dec 4, 2013 Mission of CFETR Complementary with ITER Demonstration of fusion
More informationEdge Momentum Transport by Neutrals
1 TH/P318 Edge Momentum Transport by Neutrals J.T. Omotani 1, S.L. Newton 1,2, I. Pusztai 1 and T. Fülöp 1 1 Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 CCFE,
More informationTOKAMAK EXPERIMENTS  Summary 
17 th IAEA Fusion Energy Conference, Yokohama, October, 1998 TOKAMAK EXPERIMENTS  Summary  H. KISHIMOTO Japan Atomic Energy Research Institute 22 UchisaiwaiCho, ChiyodaKu, Tokyo, Japan 1. Introduction
More informationThe performance of improved Hmodes at ASDEX Upgrade and projection to ITER
EX/11 The performance of improved Hmodes at ASDEX Upgrade and projection to George Sips MPI für Plasmaphysik, EURATOMAssociation, D85748, Germany G. Tardini 1, C. Forest 2, O. Gruber 1, P. Mc Carthy
More informationEffect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T10 Tokamak
1 Effect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T10 Tokamak P. V. Savrukhin 1), E. V. Popova 1), A. V. Sushkov 1), D. E. Kravtsov 1), S. A. Grashin 1), V. P. Budaev
More informationElectron temperature barriers in the RFXmod experiment
Electron temperature barriers in the RFXmod experiment A. Scaggion Consorzio RFX, Padova, Italy Tuesday 5 th October 2010 ADVANCED PHYSICS LESSONS 27/09/2010 07/10/2010 IPP GARCHING JOINT EUROPEAN RESEARCH
More informationCurrentdriven instabilities
Currentdriven instabilities Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 21 st February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously In the last
More informationFormation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )
Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 3110102, Japan 1) University
More informationThe role of stochastization in fast MHD phenomena on ASDEX Upgrade
1 EX/P910 The role of stochastization in fast MHD phenomena on ASDEX Upgrade V. Igochine 1), O.Dumbrajs 2,3), H. Zohm 1), G. Papp 4), G. Por 4), G. Pokol 4), ASDEX Upgrade team 1) 1) MPI für Plasmaphysik,
More information3D Random Reconnection Model of the Sawtooth Crash
3D Random Reconnection Model of the Sawtooth Crash Hyeon K. Park Princeton Plasma PhysicsN Laboratory Princeton University at IPELS, 2007 Cairns, Australia August 59, 2007 Collaboration with N.C. Luhmann,
More informationASSESSMENT AND MODELING OF INDUCTIVE AND NONINDUCTIVE SCENARIOS FOR ITER
ASSESSMENT AND MODELING OF INDUCTIVE AND NONINDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD
More information1) Hmode in Helical Devices. 2) Construction status and scientific objectives of the Wendelstein 7X stellarator
MaxPlanckInstitut für Plasmaphysik 1) Hmode in Helical Devices M. Hirsch 1, T. Akiyama 2, T.Estrada 3, T. Mizuuchi 4, K. Toi 2, C. Hidalgo 3 1 MaxPlanckInstitut für Plasmaphysik, EURATOMAss., D17489
More informationEnergetic Particle Physics in Tokamak Burning Plasmas
Energetic Particle Physics in Tokamak Burning Plasmas presented by C. Z. (Frank) Cheng in collaboration with N. N. Gorelenkov, G. J. Kramer, R. Nazikian, E. Fredrickson, Princeton Plasma Physics Laboratory
More informationResearch of Basic Plasma Physics Toward Nuclear Fusion in LHD
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 5095292, Japan (Received 4 January 2010 / Accepted
More informationParticle transport results from collisionality scans and perturbative experiments on DIIID
1 EX/P326 Particle transport results from collisionality scans and perturbative experiments on DIIID E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck
More informationTriggering Mechanisms for Transport Barriers
Triggering Mechanisms for Transport Barriers O. Dumbrajs, J. Heikkinen 1, S. Karttunen 1, T. Kiviniemi, T. KurkiSuonio, M. Mantsinen, K. Rantamäki 1, S. Saarelma, R. Salomaa, S. Sipilä, T. Tala 1 EuratomTEKES
More informationANOTHER LOOK AT TOKAMAK PLASMA PHYSIC. K.A.Razumova
ANOTHER LOOK AT TOKAMAK PLASMA PHYSIC K.A.Razumova 1 . This great scientists, who founded the basis of plasma physic don t work with us more, but we all the time use the ideas given us by them 2 In the
More informationSTELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT
STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT J. F. Lyon, ORNL ARIES Meeting October 24, 2002 TOPICS Stellarator Reactor Optimization 0D Spreadsheet Examples 1D POPCON Examples 1D Systems Optimization
More informationDIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by
UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN Presented by C.M. GREENFIELD for J.C. DeBOO, T.C. LUCE, B.W. STALLARD, E.J. SYNAKOWSKI, L.R. BAYLOR,3 K.H. BURRELL, T.A. CASPER, E.J.
More informationOVERVIEW OF THE ALCATOR CMOD PROGRAM. IAEAFEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center
OVERVIEW OF THE ALCATOR CMOD PROGRAM IAEAFEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE CMod is compact, high field, high density, high power
More informationOverview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations
Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER
More informationEnhanced Energy Confinement Discharges with Lmodelike Edge Particle Transport*
Enhanced Energy Confinement Discharges with Lmodelike Edge Particle Transport* E. Marmar, B. Lipschultz, A. Dominguez, M. Greenwald, N. Howard, A. Hubbard, J. Hughes, B. LaBombard, R. McDermott, M. Reinke,
More informationDevelopment and Validation of a Predictive Model for the Pedestal Height (EPED1)
Development and Validation of a Predictive Model for the Pedestal Height (EPED1) P.B. Snyder 1 with R.J. Groebner 1, A.W. Leonard 1, T.H. Osborne 1, M. Beurskens 3, L.D. Horton 4, A.E. Hubbard 5, J.W.
More informationFast ion physics in the C2U advanced, beamdriven FRC
Fast ion physics in the C2U advanced, beamdriven FRC Richard Magee for the TAE Team 216 USJapan Workshop on the Compact Torus August 23, 216! High β FRC embedded in magnetic mirror is a unique fast
More informationValidation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling
Validation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling by B.A. Grierson1, C. Chrystal2, W.X. Wang1, J.A. Boedo3, J.S. degrassie2, W.M. Solomon2,
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More informationTwo Fluid Dynamo and EdgeResonant m=0 Tearing Instability in Reversed Field Pinch
1 Two Fluid Dynamo and EdgeResonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of WisconsinMadison, Madison,
More informationPlasma shielding during ITER disruptions
Plasma shielding during ITER disruptions Sergey Pestchanyi and Richard Pitts 1 Integrated tokamak code TOKES is a workshop with various tools objects Radiation bremsstrahlung recombination s line s cyclotron
More informationSTUDY OF ADVANCED TOKAMAK PERFORMANCE USING THE INTERNATIONAL TOKAMAK PHYSICS ACTIVITY DATABASE
INTERNATIONAL ATOMIC ENERGY AGENCY 20th IAEA Fusion Energy Conference Vilamoura, Portugal, 16 November 2004 IAEACN116/ STUDY OF ADVANCED TOKAMAK PERFORMANCE USING THE INTERNATIONAL TOKAMAK PHYSICS ACTIVITY
More informationSnakes and similar coherent structures in tokamaks
Snakes and similar coherent structures in tokamaks A. Y. Aydemir 1, K. C. Shaing 2, and F. W. Waelbroeck 1 1 Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 2 Plasma and
More informationHeat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UWMadison
Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UWMadison CMPD & CMSO Winter School UCLA Jan 510, 2009 Magnetic perturbations can destroy the nestedsurface topology desired for
More informationLMode and InterELM Divertor Particle and Heat Flux Width Scaling on MAST
CCFEPR(13)33 J. R. Harrison, G. M. Fishpool and A. Kirk LMode and InterELM Divertor Particle and Heat Flux Width Scaling on MAST Enquiries about copyright and reproduction should in the first instance
More informationGA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELMSUPPRESSED REGIMES, AND ITER PREDICTIONS
GA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELMSUPPRESSED REGIMES, AND ITER PREDICTIONS by P.B. SNYDER, T.H. OSBORNE, M.N.A. BEURSKENS, K.H. BURRELL, R.J. GROEBNER, J.W. HUGHES, R. MAINGI,
More informationPerformance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges
Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges R. C. Wolf, J. Hobirk, G. Conway, O. Gruber, A. Gude, S. Günter, K. Kirov, B. Kurzan, M. Maraschek, P. J.
More informationArbiTER studies of filamentary structures in the SOL of spherical tokamaks
ArbiTER studies of filamentary structures in the SOL of spherical tokamaks D. A. Baver, J. R. Myra, Research Corporation F. Scotti, Lawrence Livermore National Laboratory S. J. Zweben, Princeton Plasma
More informationDivertor Requirements and Performance in ITER
Divertor Requirements and Performance in ITER M. Sugihara ITER International Team 1 th International Toki Conference Dec. 1114, 001 Contents Overview of requirement and prediction for divertor performance
More informationINTERNATIONAL ATOMIC ENERGY AGENCY 21 st IAEA Fusion Energy Conference Chengdu, China, October 2006
IAEA INTERNATIONAL ATOMIC ENERGY AGENCY st IAEA Fusion Energy Conference Chengdu, China, 6  October 6 IAEACN9/EX/ THE PERFORMANCE OF IMPROVED HMODES AT ASDEX UPGRADE AND PROJECTION TO A.C.C. SIPS,
More informationDenis Bytschkow. Investigation of MHD mode rotation in the tokamak ASDEX Upgrade
Denis Bytschkow Investigation of MHD mode rotation in the tokamak ASDEX Upgrade IPP 1/341 September, 2010 P H Y S I K  D E P A R T M E N T TECHNISCHE UNIVERSITÄT MÜNCHEN Investigation of MHD mode rotation
More informationThree Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research
1 TH/P910 Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research S. Günter, M. GarciaMunoz, K. Lackner, Ph. Lauber, P. Merkel, M. Sempf, E. Strumberger, D. Tekle and
More informationChapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective
Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density
More informationNeoclassical transport
Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices
More informationDynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit
Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit Transport Physics of the Density Limit R. Hajjar, P. H. Diamond, M. Malkov This research was supported by the U.S. Department of Energy,
More informationSelfconsistent modeling of ITER with BALDUR integrated predictive modeling code
Selfconsistent modeling of ITER with BALDUR integrated predictive modeling code Thawatchai Onjun Sirindhorn International Institute of Technology, Thammasat University, Klong Luang, Pathumthani, 12121,
More information