Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod"

Transcription

1 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E. Rice, S.M. Wolfe, S.J. Wukitch, and the Alcator C-Mod Team Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA contact of main author: Abstract Neo-classical tearing modes (NTMs) have been observed on Alcator C-Mod. The NTMs occur in high performance I-mode plasmas that are heated by a combination of ICRF D(H) minority heating at 80 MHz and D( 3 He) mode conversion (MC) heating at 50 MHz. I-mode plasmas have confinement as good as H-mode but lower collisionality. Due to the stabilizing effect by the energetic minority hydrogen ions, long sawtooth ( 40 ms) and large sawtooth crashes ( T e0 3 kev) are produced in these hot (T e 9 kev) plasmas. A typical case is that soon after the plasma enters I-mode, a (m = 4, n = 3) mode (f = khz) appears following a large sawtooth crash, and then a (3, 2) mode (20-40 khz) appears later at slightly higher β N. The (3, 2) mode can also occur without a preceding (4, 3) mode. In some plasmas, a (2, 1) mode may appear simultaneously with the (3, 2) mode, and lead to disruption. The onset criterion of the (3, 2) NTMs approximately follows that obtained from DIII-D and ASDEX Upgrade. The onset parameters are β P ~ , β N ~ , β N /ρ i * ~ , ν NTM (q=3/2) ~ The saturated magnetic island width of the (4, 3) mode is typically W sat ~ cm, and the mode usually has an insignificant effect on confinement. For the (3, 2) mode, W sat ~ cm, which is 3-4 times the ion banana width, and the mode can cause small confinement degradation ( β/β ~ a few percent). The NTMs have a strong effect on plasma rotation. MC flow drive generates large toroidal rotation above 100 km/sec in L-mode, and when the plasma enters I-mode, plasma rotation is expected to increase significantly due to the additional intrinsic rotation torque from the edge T e pedestal. However, the rotation almost always stops rising after the onset of the NTM(s). The appearance of the (3, 2) mode usually rapidly reduces the rotation speed, and the (2, 1) mode, if occurs, would completely halt the rotation. 1. Introduction Since its first observation on TFTR [1], neo-classical tearing modes (NTMs) have been observed in many major tokamaks [2,3,4,5,6]. Being non-ideal MHD modes, NTMs impose a soft limit on plasma performance, and they need to be controlled on ITER in order to achieve high performance. The basic mechanism for the onset of NTMs can be summarized as following: A magnetic island eliminates the radial pressure gradient inside the island, and this flattened pressure profile removes the local bootstrap current. And the removal of bootstrap current then further increases the magnetic island. The island would grow until the drive from the loss of bootstrap current is balanced by the equilibrium current gradient. The result saturated island often has a significant radial width and thus it affects plasma global energy and particle confinement. At small island width, NTMs are stable, thus a triggering mechanism is required to create a seed island with finite width before NTMs can grow. The triggers are usually provided by large sawtooth crashes and ELMs. Avoiding NTMs by tailoring sawtooth oscillations has been reported [7]. Controlling NTMs using electron cyclotron heating has been demonstrated in some tokamaks [e.g.,8,9,10], and this method will be utilized on ITER. Alcator C-Mod is a compact (R = 0.68 m, a = 0.22 m) high field (B < 8.1 T ) tokamak, and typically runs with relatively high density compared to other tokamaks. Since NTMs usually occur in higher β and lower collisionality plasmas, they have rarely been observed in the usual

2 2 EX/P4-22 plasma operation parameter space, i.e., L-mode and H-mode plasmas. Several cases have been reported as possible NTM candidates in some high performance Enhanced D α H-mode plasmas in a previous study [11]. In recent experimental campaigns, with the discovery and development of so-called I-mode plasmas [12,13,14], which typically have much lower collisionality (without density pedestal) than H-mode, but have similar energy confinement associated with a T e pedestal, we have started to observe NTMs more frequently on Alcator C- Mod. This paper presents the first systematic characterization of the NTMs observed in Alcator C- Mod. Most of the observations are from experiments that aim at driving large plasma rotations in I-mode. Previously, we have studied flow-drive effect using ICRF mode conversion (MC), and the result showed that the flow drive effect is strongest at low density L-mode plasmas [15,16,17]. I-mode plasmas were thought to be good targets for such flow drive studies, and large rotation was expected by combining the flow drive effect from ICRF and the large intrinsic rotation associated with I-mode (driven by edge T e pedestal [18]). Instead, the result I-mode plasmas frequently show evidence of NTM activities, and the observed plasma rotation is not as large as previously thought. The existence of NTMs in I-mode plasmas also suggests that we will need to find a way to avoid or control NTMs on Alcator C-Mod in order to further develop I-mode as a potential operation scenario of high confinement for future fusion devices. In Section 2, we describe the experimental setup, and in Section 3, we present the characteristics of the observed NTMs, their effects of NTMs on plasma performance and rotation, followed by Discussion (Section 4) and Summary (Section 5). 2. Experimental setup These I-mode experiments were carried out in reversed field (also reversed current) configuration and lower single null shape, that is, the direction of B B drift is toward the top of the machine and away from the divertor. This configuration has been found to favour triggering I-mode and has a wide window of heating power between the L-mode to I-mode transition threshold and the I-mode to H-mode transition threshold [14]. The original aim of the experiment was to study ICRF MC flow drive effect in I-mode plasmas. There are two sets of ICRF antennas on Alcator C-Mod, and each of them is capable of coupling ~3 MW power to the plasma [19,20]. One system is phase variable (+90 o, -90 o, or 180 o ), and also frequency tuneable (50, 70, or 78 MHz). The other system runs at a fixed frequency 80 MHz and fixed 180 o phasing. At +90 o phasing, the launched RF wave is preferentially in the same direction as the plasma current (co-i p ), while -90 o phasing is counter-i p and 180 o phasing (dipole) is toroidally symmetric. In these experiments, with the central magnetic field B t0 ~ 5.1 T, the 80 MHz ICRF was used for central heating via Hydrogen minority heating (with residual H in the plasma), and the antenna at 50 MHz was for 3 He mode conversion heating and flow drive with externally puffed 3 He. Plasma rotation was measured by an x-ray crystal system (HIREX). MHD modes were observed in magnetic coil signals, soft x-ray signals and also ECE T e signals. 3. Characterizing NTMs

3 3 EX/P4-22 A typical plasma in this experiment is shown in Fig. 1. Plasma parameters are I p = 1.0 MA, B t0 = 5.1 T, and n e0 = m -3. In Fig. 1-(d), we show the trace of total ICRF power. We use 50 MHz RF power at 2.5 MW (t > 0.6 sec) to drive plasma central rotation via mode conversion heating to more than 100 km/s as shown in Fig. 1-(e). The plasma stays in L-mode until t = 1.0 sec when we add 2.5 MW RF power at 80 MHz for central heating. The addition of RF power pushes the heating power above the threshold for L-mode to I-mode transition, and the plasma enters the I-mode region, as noted in the strong increase in plasma β in Fig. 1-(c). Fig. 1-(b) shows the central electron temperature trace, which has large sawtooth crashes. Fig. 1-(a) shows MHD modes identified as m = 4, n = 3, and m = 3, n = 2. The modes appear after the rise of β, and also the large sawtooth crashes. The (4, 3) mode appears about 50 ms after the I- mode transition, and later, with the further increase of β, the (3, 2) mode appears. The toroidal rotation does not increase with the I- mode (albeit with doubled stored energy and edge T e pedestal as high as 1 kev), and it actually decreases after the onset of the MHD modes. In these plasmas, because of the high ICRF power and relatively low density, a large population of energetic particles are expected to be generated via the ICRF heating. These energetic particles help stabilize sawtooth oscillations and result in particularly long sawteeth and large crashes. These large sawtooth crashes act as triggers for seeding magnetic islands, from which NTMs can be destabilized and grow. In Fig. 2, we show a detailed view of such a case. A sawtooth crash at 1.12 sec lowered the central T e from 7 kev to 3 kev, and after the sawtooth, an NTM with frequency about 30 khz appears and is sustained for many sawtooth periods. FIG. 1. A typical plasma shot in the experiment. (a) Spectra of a magnetic signal; (b) Central T e ; (c) Toroial and poloidal β; (d)icrf power; (e)central plasma toroidal rotation. L-mode for t < 1.0 sec, and I-mode for t > 1.0 sec. FIG. 2. A large sawtooth crash triggers an NTM. (a) Spectra of a magnetic signal, (b) Data trace of central T e with large sawtooth crashes. The mode numbers are calculated from the magnetic signals from coils in various toroidal locations and poloidal locations. A cross-phase study of the magnetic signals shows the mode in Fig. 2 is best described as mode n = 2 (Fig. 3-(a)) and m = 3 (Fig. 3-(b)). The spatial location of the mode can also be determined from the several ECE channels that observe the mode. The result location, R ~ 0.82 m, is consistent with the location of q = 3/2 surface from

4 4 EX/P4-22 FIG. 3. Mode number calculation for the mode shown in FIG. 2. (a) Cross phase from coils at the same poloidal location but different toroidal locations; (b) Cross phase from coils at the same toroidal location. The best match from the phase from the signals and toroidal/poloidal locations is n = 2, and m = 3. the q profile from EFIT reconstruction. NTMs with other mode numbers can also be determined and verified in the same manner. A variety of modes have been observed, including (5,4), (4,3), (3,2), and (2,1). In some plasmas, (3, 2) mode would appear right away like that in the plasma of Fig. 2, and then possibly (2,1) appears later. In some plasmas, only (5,4) or (4,3) are present. In Fig. 4, we show a plasma that (5,4), (4,3), (3,2), and (2,1) modes all exist in the same shot. The effect to plasma confinement of the NTMs is estimate to be β/β 4(ρ s /a) 4 W sat /ρ s, where ρ s is the minor radius of the island and W sat is the saturated island width [21]. In Fig. 4-(e), the island width is estimated from the magnetic signals using a standard analysis technique [11]. For the (4, 3) mode, W sat ~ cm, and this mode has weak effect. For the (3, 2) mode in these plasmas, W sat ~ cm, and β/β ~ 4-5%. This island width of the (3, 2) mode is approximately 3-4 times the ion banana width, comparable to the observed result from other tokamaks [22]. FIG. 4. A plasma with a variety of NTMs, (a) Spectrl of a magnetic signal, with the mode number of NTMs labelled. (b) Central T e ; (c) Plasma β; (d) ICRF power trace; (e) Island width; (f) Central rotation. The existence of NTMs produces a torque that would slow down the plasma rotation. The torque is generated by the induced field interacting with the machine wall. During the island growing phase, the drag force is W 4 [23]. In Fig. 4-(f) the toroidal rotation is found to

5 5 EX/P4-22 decrease significantly after the NTM onset and along with the growing of the island width. Detailed modelling of torque and rotation will be left for future work. The NTM onset critical conditions have been studied extensively in other tokamaks. Generally, NTMs favour low collisionality and high β. In Fig. 5, we plot the plasma parameters at the time of NTM onset for all the (3, 2) modes, and compare the Alcator C-Mod result with the empirical scaling obtained from ASDEX Upgrade and DIII-D tokamaks [22]. The Alcator C-Mod data are in the range of β P ~ , β N ~ , β N /ρ i * ~ , ν NTM (q=3/2) = (ν ii /ε)/ω e * ~ When β N /ρ i * is plotted vs. ν NTM (q=3/2), the onset critical β is slight lower than that of the other machines while the trend is very similar. In terms of other plasma parameters, e.g., B t, density, plasma rotation and the auxiliary heating source, the C-Mod data occupy a unique parameter space. Further analysis of these data may help clarify some on-going understanding of NTM physics, for example, the effect of plasma rotation on NTM onset critical criteria [24], and the interaction between fast particles and NTMs. FIG. 5. NTM onset criteria for (3,2) mode and compared with data from other machines. NTMs also appear in other I-mode plasmas where only ICRF D(H) minority heating is applied. Fig. 6 shows such a case. Plasma parameters are B t0 = 5.8 T, I p = 1.1 MA, and n e0 = m -3. The onset condition is in a similar range as those with mode conversion flow drive. As shown in Fig. 6-(c), the store FIG. 6. NTMs in I-mode heated only with ICRF minority D(H) heating, (a) Spectra of a magnetic signal; (b) Central T e ; (c)plasma stored energy calculated by EFIT; (d) ICRF power at 80 MHz. energy of the plasma is no longer increasing after the onset of NTMs. Unfortunately, 5 MW is near the limit of the practically available ICRF power, and we are unable to verify whether and/or how effective the NTMs have clamped the plasma performance. 4. Discussion Characterizing the NTMs is only a start in terms of NTM study. We are carrying out experiments aiming at exploring a practical way of avoiding the NTMs in high performance I- mode by tailoring the sawtooth oscillations. Sawteeth can be controlled via ICRF antenna phasing and by carefully manage the relative distance of the q = 1 surface and the ICRF mode conversion surface. These experiments will also determine, if NTMs are avoided in I-mode, whether we can drive significantly more plasma rotation via ICRF mode conversion flow drive. Preliminary results of these experiments will be reported at the conference.

6 6 EX/P Summary NTMs have been observed on Alcator C-Mod in high performance I-mode plasmas. We have characterized the modes, onset criteria and also studied their effect on plasma confinement and rotation. We plan to find a way to avoid or control these modes on Alcator C-Mod in order to further improve plasma performance in I-mode plasmas. Acknowledgments The authors thank the Alcator C-Mod operation and ICRF groups. This work was supported at MIT by U.S. DoE Cooperative Agreement No. DE-FC02-99ER References [1] Chang Z. et al 1995 Phys. Rev. Lett [2] La Haye R. L. et al 1997 Nucl. Fusion [3] Gates D.A. et al 1997 Nucl. Fusion [4] Zohm H. et al 1997 Nucl. Fusion 37 B237 [5] Buttery R.J. et al 1997 Phys. Rev. Lett [6] Huysmans G.T.A. et al 1999 Nucl. Fusion [7] Sauter O. et al 2002 Phys. Rev. Lett [8] Maraschek G. et al 2005 Nucl. Fusion [9] La Haye R.J. et al 2002 Phys. Plasmas [10] La Haye R.J Phys. Plasmas [11] Snipes J.A. et al 2002 Plasma Phys. Control. Fusion [12] Whyte D.G. et al 2010 Nucl. Fusion [13] Hubbard A.E. et al 2011 Phys. Plasmas [14] Hubbard A.E. et al 2012 Presentation EX1-3, this conference. [15] Lin Y. et al 2008 Phys. Rev. Lett [16] Lin Y. et al 2009 Phys. Plasmas [17] Lin Y. et al 2011 Nucl. Fusion [18] Rice J.E. et al 2011 Phys. Rev. Lett [19] Bonoli A., et al 2007 Fusion Sci. Tech [20] Wukitch S. J., et al 2012 Presentation FTP 1-1, this conference [21] Chang Z., et al 1990 Nucl. Fusion [22] La Haye R.J., et al 2000 Phys. Plasmas [23] Nave M.F.F. et al 1990 Nucl. Fusion [24] Sen A Fusion Sci. Tech

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

The performance of improved H-modes at ASDEX Upgrade and projection to ITER

The performance of improved H-modes at ASDEX Upgrade and projection to ITER EX/1-1 The performance of improved H-modes at ASDEX Upgrade and projection to George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany G. Tardini 1, C. Forest 2, O. Gruber 1, P. Mc Carthy

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations 1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science

More information

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center C-Mod Core Transport Program Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly

More information

Confinement and Transport Research in Alcator C-Mod

Confinement and Transport Research in Alcator C-Mod PSFC/JA-05-32. Confinement and Transport Research in Alcator C-Mod M. Greenwald, N. Basse, P. Bonoli, R. Bravenec 1, E. Edlund, D. Ernst, C. Fiore, R. Granetz, A. Hubbard, J. Hughes, I. Hutchinson, J.

More information

Neoclassical Tearing Modes

Neoclassical Tearing Modes Neoclassical Tearing Modes O. Sauter 1, H. Zohm 2 1 CRPP-EPFL, Lausanne, Switzerland 2 Max-Planck-Institut für Plasmaphysik, Garching, Germany Physics of ITER DPG Advanced Physics School 22-26 Sept, 2014,

More information

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport 1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193 Japan

More information

The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions

The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions P.B. Snyder 1, T.H. Osborne 1, M.N.A. Beurskens 2, K.H. Burrell 1, R.J. Groebner 1, J.W. Hughes 3, R. Maingi

More information

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was

More information

Multimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER

Multimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER 1 IT/P6-8 Multimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER R. J. Buttery 1), S. Gerhardt ), A. Isayama 3), R. J. La Haye 4), E. J. Strait 4), D. P. Brennan 5), P. Buratti 6), D.

More information

Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence

Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence th IAEA Fusion Energy Conference Vilamoura, Portugal, 1-6 November IAEA-CN-116/TH/-1 Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence

More information

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,

More information

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO 21 st IAEA Fusion Energy Conference Chengdu, China Oct. 16-21, 2006 DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO R. Maingi 1, A. Kirk 2, T. Osborne 3, P. Snyder 3, S. Saarelma 2, R. Scannell

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER A. Loarte ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France

More information

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia

More information

Sawtooth Control. J. P. Graves CRPP, EPFL, Switzerland. FOM Instituut voor Plasmafysica Rijnhuizen, Association EURATOM-FOM, The Netherlands

Sawtooth Control. J. P. Graves CRPP, EPFL, Switzerland. FOM Instituut voor Plasmafysica Rijnhuizen, Association EURATOM-FOM, The Netherlands Sawtooth Control J. P. Graves CRPP, EPFL, Switzerland B. Alper 1, I. Chapman 2, S. Coda, M. de Baar 3, L.-G. Eriksson 4, R. Felton 1, D. Howell 2, T. Johnson 5, V. Kiptily 1, R. Koslowski 6, M. Lennholm

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

CHAPTER 8 PERFORMANCE-LIMITING MAGNETOHYDRODYNAMICS IN JET

CHAPTER 8 PERFORMANCE-LIMITING MAGNETOHYDRODYNAMICS IN JET CHAPTER 8 PERFORMANCE-LIMITING MAGNETOHYDRODYNAMICS IN JET R. J. BUTTERY* and T. C. HENDER EURATOM0UKAEA Fusion Association, Culham Science Centre Abingdon, Oxfordshire OX14 3DB, United Kingdom Received

More information

DIII D Research in Support of ITER

DIII D Research in Support of ITER Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 13-18, 28 DIII-D Research Has Made Significant Contributions in the Design

More information

S1/2 EX/S, EX/D, EX/W

S1/2 EX/S, EX/D, EX/W S1/2 EX/S, EX/D, EX/W S1/2 EX/S - Magnetic Confinement Experiments: Stability 47 papers EX/W - Magnetic Confinement Experiments: Wave plasma interactions, current drive & heating, energetic particles 58

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

Progress in characterization of the H-mode pedestal

Progress in characterization of the H-mode pedestal Journal of Physics: Conference Series Progress in characterization of the H-mode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

Physics fundamentals for ITER

Physics fundamentals for ITER Plasma Phys. Control. Fusion 41 (1999) A99 A113. Printed in the UK PII: S0741-3335(99)97512-7 Physics fundamentals for ITER ITER-JCT, ITER San Diego Joint Work Site, 11025 North Torrey Pines Rd, La Jolla,

More information

GA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELM-SUPPRESSED REGIMES, AND ITER PREDICTIONS

GA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELM-SUPPRESSED REGIMES, AND ITER PREDICTIONS GA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELM-SUPPRESSED REGIMES, AND ITER PREDICTIONS by P.B. SNYDER, T.H. OSBORNE, M.N.A. BEURSKENS, K.H. BURRELL, R.J. GROEBNER, J.W. HUGHES, R. MAINGI,

More information

Modification of sawtooth oscillations with ICRF waves in the JET tokamak

Modification of sawtooth oscillations with ICRF waves in the JET tokamak Modification of sawtooth oscillations with ICRF waves in the JET tokamak M.J.Mantsinen 1,, B. Alper, C. Angioni 1, R. Buttery, S. Coda, L.-G. Eriksson, J.P. Graves, T. Hellsten, D. Howell, L.C. Ingesson

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 4 January 2010 / Accepted

More information

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D GA A271 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LIN-LIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER AUGUST 2001 DISCLAIMER This

More information

Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod

Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod PSFC/JA-15-83 Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod A.J. Creely 1, A.E.White 1, E.M. Edlund 2, N.T Howard 3, A.E. Hubbard 1 1 MIT Plasma Science and Fusion Center,

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,

More information

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared

More information

The Advanced Tokamak: Goals, prospects and research opportunities

The Advanced Tokamak: Goals, prospects and research opportunities The Advanced Tokamak: Goals, prospects and research opportunities Amanda Hubbard MIT Plasma Science and Fusion Center with thanks to many contributors, including A. Garafolo, C. Greenfield, C. Kessel,

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER The MIT Faculty has made this article openly available. Please share how this access

More information

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA PFC/JA-88-38 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted

More information

Dimensionless Identity Experiments in JT-60U and JET

Dimensionless Identity Experiments in JT-60U and JET 1 IAEA-CN-116/IT/1-2 Dimensionless Identity Experiments in JT-60U and JET G Saibene 1, N Oyama 2, Y Andrew 3, JG Cordey 3, E de la Luna 4, C Giroud 3, K Guenther 3, T Hatae 2, GTA Huysmans 5, Y Kamada

More information

Plasma Stability in Tokamaks and Stellarators

Plasma Stability in Tokamaks and Stellarators Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1- May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,

More information

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015 Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all

More information

arxiv: v1 [physics.plasm-ph] 11 Mar 2016

arxiv: v1 [physics.plasm-ph] 11 Mar 2016 1 Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasm-ph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and

More information

q(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5

q(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5 EX/P-1 MHD issues in Tore Supra steady-state fully non-inductive scenario P Maget 1), F Imbeaux 1), G Giruzzi 1), V S Udintsev ), G T A Huysmans 1), H Lütjens 3), J-L Ségui 1), M Goniche 1), Ph Moreau

More information

Phase ramping and modulation of reflectometer signals

Phase ramping and modulation of reflectometer signals 4th Intl. Reflectometry Workshop - IRW4, Cadarache, March 22nd - 24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,

More information

DIII D INTEGRATED PLASMA CONTROL SOLUTIONS FOR ITER AND NEXT- GENERATION TOKAMAKS

DIII D INTEGRATED PLASMA CONTROL SOLUTIONS FOR ITER AND NEXT- GENERATION TOKAMAKS GA A25808 DIII D INTEGRATED PLASMA CONTROL SOLUTIONS FOR ITER AND NEXT- GENERATION TOKAMAKS by D.A. HUMPHREYS, J.R. FERRON, A.W. HYATT, R.J. La HAYE, J.A. LEUER, B.G. PENAFLOR, M.L. WALKER, A.S. WELANDER,

More information

Towards the construction of a model to describe the inter-elm evolution of the pedestal on MAST

Towards the construction of a model to describe the inter-elm evolution of the pedestal on MAST Towards the construction of a model to describe the inter-elm evolution of the pedestal on MAST D. Dickinson 1,2, S. Saarelma 2, R. Scannell 2, A. Kirk 2, C.M. Roach 2 and H.R. Wilson 1 June 17, 211 1

More information

DT Fusion Power Production in ELM-free H-modes in JET

DT Fusion Power Production in ELM-free H-modes in JET JET C(98)69 FG Rimini and e JET Team DT Fusion ower roduction in ELM-free H-modes in JET This document is intended for publication in e open literature. It is made available on e understanding at it may

More information

Model for humpback relaxation oscillations

Model for humpback relaxation oscillations Model for humpback relaxation oscillations F. Porcelli a,b,c.angioni a,r.behn a,i.furno a,t.goodman a,m.a.henderson a, Z.A. Pietrzyk a,a.pochelon a,h.reimerdes a, E. Rossi c,o.sauter a a Centre de Recherches

More information

Tokamak/Helical Configurations Related to LHD and CHS-qa

Tokamak/Helical Configurations Related to LHD and CHS-qa 9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 21-23, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHS-qa

More information

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade 1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans

More information

Linjin Zheng, Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO)

Linjin Zheng, Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) International Sherwood Fusion Theory Conference, Austin, May 2-4, 2011 Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) Linjin Zheng, M. T. Kotschenreuther,

More information

Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas

Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas 1 Nuclear Fusion Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas Y.J.Shi 1, J.M. Kwon 2, P.H.Diamond 3, W.H.Ko 2, M.J.Choi 2, S.H.Ko 2, S.H.Hahn 2, D.H.Na

More information

HFS PELLET REFUELING FOR HIGH DENSITY TOKAMAK OPERATION

HFS PELLET REFUELING FOR HIGH DENSITY TOKAMAK OPERATION ASDEX Upgrade Session: "Issues and prospects of effcient fueling for magnetic confinement" HFS ELLET REFUELING FOR HIGH DENSITY TOKAMAK OERATION.T. Lang for the ASDEX Upgrade and JET teams Cubic mm size

More information

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier EX/C-Rb Relationship between particle and heat transport in JT-U plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),

More information

Confinement Studies during LHCD and LHW Ion Heating on HL-1M

Confinement Studies during LHCD and LHW Ion Heating on HL-1M Confinement Studies during LHCD and LHW Ion Heating on HL-1M Y. Liu, X.D.Li, E.Y. Wang, J. Rao, Y. Yuan, H. Xia, W.M. Xuan, S.W. Xue, X.T. Ding, G.C Guo, S.K. Yang, J.L. Luo, G.Y Liu, J.E. Zeng, L.F. Xie,

More information

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model 1 THC/3-3 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California

More information

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Kazuo TOI CHS & LHD Experimental Group National Institute for Fusion Science Toki 59-5292, Japan Special contributions from:

More information

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University

More information

Initial Experimental Program Plan for HSX

Initial Experimental Program Plan for HSX Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UW-Madison HSX Plasma Laboratory Team The Helically

More information

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General

More information

Physics analysis of the ITER ECW system for an optimized performance

Physics analysis of the ITER ECW system for an optimized performance Physics analysis of the TER ECW system for an optimized performance G Ramponi 1, D Farina 1, M A Henderson 2, E Poli 3, O Sauter 2, G Saibene 4, H Zohm 3 and C Zucca 2 1 stituto di Fisica del Plasma, CNR,

More information

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012 Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty

More information

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^ Tokamak operation at low q and scaling toward a fusion machine R. Paccagnella^ Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy ^ and Istituto Gas Ionizzati del Consiglio Nazionale

More information

Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves

Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves -,.*w Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves F. W. Perkins 1-2, R. B. White 2, and P. Bonoli 3 1 Plasma Physics Laboratory, P.O.Box 4.51, Princeton,

More information

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak M. Garcia-Munoz M. A. Van Zeeland, S. Sharapov, Ph. Lauber, J. Ayllon, I. Classen, G. Conway, J. Ferreira,

More information

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas 1 Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas N. Hayashi 1), T. Takizuka 1), N. Aiba 1), N. Oyama 1), T. Ozeki 1), S. Wiesen 2), V. Parail 3) 1) Japan Atomic Energy Agency,

More information

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

More information

GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D

GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D by E.J. DOYLE, J.C. DeBOO, T.A. CASPER, J.R. FERRON, R.J. GROEBNER, C.T. HOLCOMB, A.W. HYATT, G.L. JACKSON, R.J. LA HAYE, T.C. LUCE, G.R.

More information

Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod

Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod PAPER Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod To cite this article: A.J. Creely et al 0 Nucl. Fusion 000 Manuscript version: Accepted Manuscript Accepted Manuscript

More information

Evolution of the pedestal on MAST and the implications for ELM power loadings

Evolution of the pedestal on MAST and the implications for ELM power loadings Evolution of the pedestal on MAST and the implications for ELM power loadings Presented by Andrew Kirk EURATOM / UKAEA Fusion Association UKAEA authors were funded jointly by the United Kingdom Engineering

More information

DEMONSTRATION IN THE DIII-D TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS

DEMONSTRATION IN THE DIII-D TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS GA-A24145 DEMONSTRATION IN THE DIII-D TOKAMAK OF AN ALTERNATE BASELINE SCENARIO FOR ITER AND OTHER BURNING PLASMA EXPERIMENTS by TC LUCE, MR WADE, JR FERRON, AW HYATT, AG KELLMAN, JE KINSEY, RJ LA HAYE,

More information

Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak

Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7-/8// Modelling of the penetration process of externally applied helical magnetic perturbation

More information

A Study of Directly Launched Ion Bernstein Waves in a Tokamak

A Study of Directly Launched Ion Bernstein Waves in a Tokamak PFC-/JA-86-6 A Study of Directly Launched Ion Bernstein Waves in a Tokamak Y. Takase, J. D. Moody, C. L. Fiore, F. S. McDermott, M. Porkolab, and J. Squire Plasma Fusion Center Massachusetts Institute

More information

Observation of Alpha Heating in JET DT Plasmas

Observation of Alpha Heating in JET DT Plasmas JET P(98)1 Observation of Alpha Heating in JET DT Plasmas P R Thomas, P Andrew, B Balet, D Bartlett, J Bull, B de Esch, C Gowers, H Guo, G Huysmans, T Jones, M Keilhacker, R König, M Lennholm, P Lomas,

More information

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,

More information

Plasma impurity composition in Alcator C-Mod tokamak.

Plasma impurity composition in Alcator C-Mod tokamak. Plasma impurity composition in Alcator C-Mod tokamak. I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a, M. Brookman a, M. L. Reinke b, E. S. Marmar b, M. J. Greenwald b a Institute for Fusion Studies,

More information

Saturated ideal modes in advanced tokamak regimes in MAST

Saturated ideal modes in advanced tokamak regimes in MAST Saturated ideal modes in advanced tokamak regimes in MAST IT Chapman 1, M-D Hua 1,2, SD Pinches 1, RJ Akers 1, AR Field 1, JP Graves 3, RJ Hastie 1, CA Michael 1 and the MAST Team 1 EURATOM/CCFE Fusion

More information

Alcator C-Mod: Research in support of ITER and steps beyond

Alcator C-Mod: Research in support of ITER and steps beyond PSFC/JA-14-35 Alcator C-Mod: Research in support of ITER and steps beyond ES Marmar 1, SG Baek 1, H Barnard 1, P Bonoli 1, D Brunner 1, J Candy 2, J Canik 3, RM Churchill 4, I Cziegler 5, G Dekow 1, L

More information

L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX

L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX Research Supported by L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX T.M. Biewer 1, R. Maingi 1, H. Meyer 2, R.E. Bell 3, C. Bush 1, S. Kaye 3, S. Kubota 3, B. LeBlanc 3,

More information

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,

More information

Density limits in toroidal plasmas

Density limits in toroidal plasmas INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 44 (2002) R27 R80 PLASMA PHYSICS AND CONTROLLED FUSION PII: S0741-3335(02)06592-2 TOPICAL REVIEW Density limits in toroidal plasmas Martin Greenwald

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

Nonaxisymmetric field effects on Alcator C-Mod a

Nonaxisymmetric field effects on Alcator C-Mod a PHYSICS OF PLASMAS 12, 056110 2005 Nonaxisymmetric field effects on Alcator C-Mod a S. M. Wolfe, b I. H. Hutchinson, R. S. Granetz, J. Rice, and A. Hubbard Plasma Science and Fusion Center, Massachusetts

More information

High-performance discharges in the Small Tight Aspect Ratio Tokamak (START)

High-performance discharges in the Small Tight Aspect Ratio Tokamak (START) High-performance discharges in the Small Tight Aspect Ratio Tokamak (START) D. A. Gates, R. Akers, L. Appel, P. G. Carolan, N. Conway et al. Citation: Phys. Plasmas 5, 1775 (1998); doi: 10.1063/1.872819

More information

Enhanced con nement discharges in DIII-D with neon and argon induced radiation

Enhanced con nement discharges in DIII-D with neon and argon induced radiation Journal of Nuclear Materials 266±269 (1999) 380±385 Enhanced con nement discharges in DIII-D with neon and argon induced radiation G.L. Jackson a, *, M. Murakami b, G.M. Staebler a, M.R. Wade b, A.M. Messiaen

More information

Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch

Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch PHYSICS OF PLASMAS 13, 012510 2006 Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch P. Franz, L. Marrelli, P. Piovesan, and I. Predebon Consorzio RFX,

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team* ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak Plasma Physics Reports, Vol. 7, No.,, pp.. Translated from Fizika Plazmy, Vol. 7, No.,, pp. 9 9. Original Russian Text Copyright by Lashkul, Budnikov, Vekshina, D yachenko, Ermolaev, Esipov, Its, Kantor,

More information

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod PFC/JA-94-15 Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod J.A. Goetz, B. Lipschultz, M.A. Graf, C. Kurz, R. Nachtrieb, J.A. Snipes, J.L. Terry Plasma

More information

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density

More information

Princeton University, Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey , USA. Abstract

Princeton University, Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey , USA. Abstract PPPL-3151 - Preprint Date: December 1995, UC-420,426 Enhanced Loss of Fast Ions During Mode Conversion Ion Bernstein Wave Heating in TFTR D. S. Darrow, R. Majeski, N. J. Fisch, R. F. Heeter, H. W. Herrmann,

More information

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information