Validation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling


 Solomon Bryan
 1 years ago
 Views:
Transcription
1 Validation of Theoretical Models of Intrinsic Torque in DIIID and Projection to ITER by Dimensionless Scaling by B.A. Grierson1, C. Chrystal2, W.X. Wang1, J.A. Boedo3, J.S. degrassie2, W.M. Solomon2, G.M. Staebler2, D.J. Battaglia1, T. Tala4, A. Salmi4 SP. Pehkonen4 J. Ferreira5, C. Giroud6 and JET Contributors 1 PPPL, 2GA, 3UCSD, 4VTT, 5IST, 6CCFE Presented at the 26th IAEA Fusion Energy Conference Kyoto, Japan October 1722, 216 B.A. Grierson / IAEA FEC / Oct 216
2 Experiments on DIIID have Advanced the Predictive Capability for Intrinsic Rotation in ITER Toroidal rotation in ITER is expected to be strongly influenced by intrinsic sources Dimensionless Scaling ITER Norm. Intrinsic Torque Empirical dimensionless scalings provide extrapolation from multimachine databases Firstprinciples based predictions require momentum diffusion, pinch and residual fluxes plus boundary condition DIIID.1 JET.1.1 * Ω ϕ D Intrinsic Rotation (krad/s) GTS
3 Prediction of Toroidal Rotation Required to Assess Stability, Transport, ELM Suppression for ITER 11 Peaking 2 Impurity Ω (krad/s) Hollowing Notch DIIID ITER Baseline Electron Heating N Can we predict overall angular momentum? Can we predict the core gradients and structure? What is the role of the boundary condition? Overall rotation for MHD stability, W transport Core rotation gradients for E r shear and confinement improvement Rotation and E r in the pedestal for RMP ELM suppression 1 and access to QHmode 1 C. PazSoldan EX/12 2 C. Holland TH/61 3
4 Outline Dimensionless scaling of intrinsic torque Testing physics based models of core intrinsic rotation profile Dependence of Edge Flow on Geometry 4
5 Joint Experiment 1 with JET and ASDEXU Tests * Scaling of Intrinsic Torque * for DIIID, JET, ITER.1,.4,.2 ( 2.5, 2.) Dimensionless parameter scan used to match conditions 2 1 T. Tala (EPS 216) 2 Petty, Phys. Plasmas (29) 3 W.M. Solomon, Phys. Plasmas (21). 5
6 Joint Experiment 1 with JET and ASDEXU Tests * Scaling of Intrinsic Torque * for DIIID, JET, ITER.1,.4,.2 ( 2.5, 2.) Dimensionless parameter scan used to match conditions 2 Torque perturbation method used to extract intrinsic torque 3 1 T. Tala (EPS 216) 2 Petty, Phys. Plasmas (29) 3 W.M. Solomon, Phys. Plasmas (21). 6
7 Dimensionless Match Obtained on DIIID for Factor of 1.4 Variation in * ELMy Hmode conditions Low * 2.2 T (UnScaled) High * 1.4 T (scaled) Ip scaled with BT, n~bt 4/3, T~BT 2/3 same βn, q T e (kev) T i (kev) Good confinement H98(y,2) ~ n e (1 19 m 3 ) Low * ( ) High * Scaled ( ) 7
8 Intrinsic Torque Dominantly in Outer Region and Increases When Reducing * Higher torque at low * projects favorably to ITER Shape consistent with previous studies of intrinsic torque 1 r r intdv/t*1.1 Low * (16141) High * (16177) Region of sufficient measurement certainty Measurement crossvalidated with zero rotation technique 2 Norm. Int. Torque intdv (Nm) Int. Torque (Nm) Torque Pertub. (16168) Zero Rotation (161112) 1 W.M. Solomon, Nucl. Fusion (211) 2 W.M. Solomon, Nucl. Fusion (29)..2. B.A. B.A. Grierson / IAEA / IAEA FEC FEC / October / EX/P
9 Projecting the DIIID Intrinsic Torque to ITER Yields Approximately 45 Nm of Intrinsic Torque More than NBI Torque ITER has 33 Nm of available neutral beam torque Norm. Int. Torque Intrinsic torque is near available torque from NBI int dv Projection to ITER scaled using T i to dimensionalize Predicted 1 toroidal rotation from τ NBI +τ int Ω 12 krad/s 1% of Alfven speed, marginal for RWM stability.1 ITER = DIII = ±.79 =.85 * T i,diii D D ITER * DIII D T i,it ER 1 C. Chrystal Phys. Plasmas (submitted) 9
10 Multimachine Intrinsic Torque Scaling Confirms DIIID Results and Normalization Similar experiments executed on JET and ASDEXU 1 ITER Norm. Intrinsic Torque Scaling with ion temperature best organizes data set 1,2 Projection to ITER with multiple parameters in progress * We Project Relatively Low Toroidal Rotation Finite performance improvement for ITER 2 Details of the rotation profile matter DIIID JET 1 T. Tala (EPS 216) 2 C. Chrystal (APS 216) 1
11 Outline Dimensionless scaling of intrinsic torque Testing physics based models of core intrinsic rotation profile Dependence of Edge Flow on Geometry 11
12 Electron Heating Causes a Rotation Reversal and Global NL GTS Simulation Captures both Shape and Magnitude Rotation reversal occurs because of turbulence residual stress 1 5 Ω ϕ D (krad/s) GTS Validation of residual stress required to predict ITER rotation Simulations indicate lowk ITG with zonal flow E B and global effects responsible Ω D ϕ (krad/s) ECH MW MW 1 W.X. Wang TH/P
13 Rotation Profile Reversal Correlates with Onset of Temperature Profile Resilience and Confinement Degradation Density ne m 3 and no NBI promotes Te~Ti T e (kev) ECH Power.5.5 Direct electron heating raises both temperatures Between.5 MW power degradation sets in T i (kev) N 13
14 Rotation Profile Reversal Correlates with Onset of Temperature Profile Resilience and Confinement Degradation Density ne m 3 and no NBI promotes Te~Ti T e (kev) ECH Power.5.5 Direct electron heating raises both temperatures Between.5 MW power degradation sets in T i (kev) N 14
15 Rotation Profile Reversal Correlates with Onset of Temperature Profile Resilience and Confinement Degradation Density ne m 3 and no NBI promotes Te~Ti T e (kev) ECH Power Direct electron heating raises both temperatures Between.5 MW power degradation sets in T i (kev) N 15
16 Rotation Profile Reversal Correlates with Onset of Temperature Profile Resilience and Confinement Degradation Density ne m 3 and no NBI promotes Te~Ti T e (kev) ECH Power Direct electron heating raises both temperatures Between.5 MW power degradation sets in T i (kev) N 16
17 Rotation Profile from Mainion CER Show Rotation Reversal When Power Degradation Sets In On DIIID direct measurements of the mainion (D) toroidal flow available 1 Other machines use impurities Deuterium carries energy, momentum fluxes Location where rotation gradient changes indicates nondiffusive flux Not necessarily the sign (+/) of rotation velocity Ω ϕ D (krad/s) Grierson et. al. Phys. Plasmas (214) 17
18 Rotation Profile from Mainion CER Show Rotation Reversal When Power Degradation Sets In On DIIID direct measurements of the mainion (D) toroidal flow available 1 Other machines use impurities Deuterium carries energy, momentum fluxes Location where rotation gradient changes indicates nondiffusive flux Not necessarily the sign (+/) of rotation velocity Ω ϕ D (krad/s) Grierson et. al. Phys. Plasmas (214) 18
19 Rotation Profile from Mainion CER Show Rotation Reversal When Power Degradation Sets In On DIIID direct measurements of the mainion (D) toroidal flow available 1 Other machines use impurities Deuterium carries energy, momentum fluxes Location where rotation gradient changes indicates nondiffusive flux Not necessarily the sign (+/) of rotation velocity Ω ϕ D (krad/s) Grierson et. al. Phys. Plasmas (214) 19
20 Rotation Profile from Mainion CER Show Rotation Reversal When Power Degradation Sets In On DIIID direct measurements of the mainion (D) toroidal flow available 1 Other machines use impurities Deuterium carries energy, momentum fluxes Location where rotation gradient changes indicates nondiffusive flux Not necessarily the sign (+/) of rotation velocity Ω ϕ D (krad/s) Boundary Effect Grierson et. al. Phys. Plasmas (214) 2
21 At Onset of Power Degradation Plasma Becomes Linearly Unstable to ITG at Radius where Rotation Gradient Increases Direct electron heating raises both Te, Ti with clear increase of a/lti at midradius Ω ϕ D TGLF 1 indicates excitation of ITG 2 turbulence (krad/s) T e (kev) T i (kev) G.M. Staebler et. al. Phys. Plasmas 12 (25) B.A. B.A. Grierson / IAEA / IAEA FEC FEC / October / C.L. Retting, et. al. Phys. Plasmas EX/P3 8 (21) 19 21
22 At Onset of Power Degradation Plasma Becomes Linearly Unstable to ITG at Radius where Rotation Gradient Increases Direct electron heating raises both Te, Ti with clear increase of a/lti at midradius Ω ϕ D TGLF 1 indicates excitation of ITG 2 turbulence (krad/s) T e (kev) T i (kev) Largest Increase in a/lti .3 Growth Rate γ(a/cs ) k θ s 1 G.M. Staebler et. al. Phys. Plasmas 12 (25) B.A. B.A. Grierson / IAEA / IAEA FEC FEC / October / C.L. Retting, et. al. Phys. Plasmas EX/P3 8 (21) Frequency ω(a/c s ) electron direction ion direction =.5 Meanfield E B (CER) γ E B 22
23 Global Nonlinear Gyrokinetic Simulation Shows Rotation Profile is Balance of Residual Stress and Diffusion Momentum flux ' = decomposed by series of simulations 1 Three simulations produce Π resid., V p, χ φ m i n i hr 2 r i ' d d V p ' 6 Residual Stress 4 Π ϕ resid + Resid. Diffusive Flux Π ϕ  Π ϕ resid Residual stress balanced by momentum diffusion 2 Momentum pinch small Spatial integration of Π φ + B.C. predicts intrinsic rotation profile W.X. Wang Phys. Plasmas 13 (26) 2 W.X. Wang APS (216) 23
24 Prediction of Intrinsic Rotation Profile from Electrostatic Turbulence Matches Both Shape and Magnitude of Experiment Prandtl number used to relate energy and momentum flux Rotation profile and χ φ is not available in ab. initio. prediction Experiment and theory Pr = χ φ /χ i.7 Qualitative shape and quantitative magnitude in agreement with experiment Ω ϕ D (krad/s) GTS Global Nonlinear GTS Simulation can Predict Intrinsic Rotation Profile from Electrostatic FluctuationInduced Residual Stress 24
25 Outline Dimensionless scaling of intrinsic torque Testing physics based models of core intrinsic rotation profile Dependence of Edge Flow on Geometry 25
26 Edge Velocity Layer Exhibits Novel Dependece on Boundary Shape  Maximized for ITER Configuration Edge velocity w/pinch possible source of intrinsic cocurrent angular momentum I p =+/.96 MA B T =2. T 5.. +I p V (km/s) Inverting plasma shape test orbitloss mechanism Find V always coip and maximized for LSN, favorable B 1 Same as ITER configuration I p ψ n 1 Boedo et. al. Phys. Plasmas accepted (216) 26
27 Edge Velocity Layer Exhibits Novel Dependece on Boundary Shape  Maximized for ITER Configuration Edge velocity w/pinch possible source of intrinsic cocurrent angular momentum I p =+/.96 MA B T =2. T 5.. +I p V (km/s) Inverting plasma shape test orbitloss mechanism Find V always coip and maximized for LSN, favorable B 1 Same as ITER configuration I p ψ n 1 Boedo et. al. Phys. Plasmas accepted (216) 27
28 Edge Velocity Layer Exhibits Novel Dependece on Boundary Shape  Maximized for ITER Configuration Edge velocity w/pinch possible source of intrinsic cocurrent angular momentum I p =+.96 MA B T =2. T 5.. +Ip LSN (15791) +Ip USN (157911) Ip USN (15798) V (km/s) Inverting plasma shape test orbitloss mechanism Find V always coip and maximized for LSN, favorable B 1 Same as ITER configuration Core rotation correlates with edge rotation layer 1,2 V CER (km/s) ψ n = Ip LSN (15796) ECH OH ψ n V Mach (km/s) ψ n = 1 Boedo et. al. Phys. Plasmas accepted (216) 2 S.R.Haksey APSDPP (216) 28
29 Rotation Experiments on DIIID Are Producing Scalings and Firstprinciplesbased Validation of Momentum Transport for ITER Scaling of increased intrinsic torque towards ITER * observed on DIIID and projects twice as much torque from NBI only Successful capture of hollow intrinsic rotation demonstrates ability to predict rotation profile selforganization Edge rotation where intrinsic torque is maximized correlates with core rotation Ω ϕ D ITER DIIID.1 JET.1.1 * (krad/s) GTS Norm. Intrinsic Torque B.A. Grierson / IAEA FEC / Oct 216
30 Bonus Slides B.A. Grierson / IAEA FEC / Oct 216
31 Predicted Intrinsic Rotation Improves ITER Performance via Direct E B and Indirect MultiChannel Effect (Density Peaking) C. Chrystal APSDPP (216) Invited Talk 31
32 How Does an Intrinsic Rotation Gradient Appear? Need a mechanism to break the toroidal symmetry Ω mean E B shear, ZF E B shear, up/down asymmetry, profile and turbulence intensity variation Intrinsic torque generated by residual stress Π resid. Lowk turbulence in the presence of symmetry breaking Πresid. η= Π 1 B.C. Both diffusion and pinch can balance residual stress here Ω adjusts with local rotation gradient creating Π diff. until total Π = Πdiff. Residual stress and momentum diffusion balance 32
33 Balance of Residual Stress and Momentum Diffusion Responsible for SteadyState Experimental Rotation Profile Qualitative balance residual stress and momentum diffusion producing a rotation hollowing" is realized in GTS simulation But quantitative, firstprinciples prediction of rotation profile requires additional information Time (v th /L Ti ) Πresid. Π resid. /Π norm Cannot use experimental rotation profile to derive diffusive flux, needs Pr η= Π Πdiff. Residual stress and momentum diffusion balance 33
Predicting the Rotation Profile in ITER
Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton
More informationITR/P119 Tokamak Experiments to Study the Parametric Dependences of Momentum Transport
Tokamak Experiments to Study the Parametric Dependences of Momentum Transport T. Tala 1, R.M. McDermott 2, J.E. Rice 3, A. Salmi 1, W. Solomon 4, C. Angioni 2, C. Gao 3, C. Giroud 5, W. Guttenfelder 4,
More informationOVERVIEW OF THE ALCATOR CMOD PROGRAM. IAEAFEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center
OVERVIEW OF THE ALCATOR CMOD PROGRAM IAEAFEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE CMod is compact, high field, high density, high power
More informationEdge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas
Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas by T.M. Wilks 1 with A. Garofalo 2, K.H. Burrell 2, Xi. Chen 2, P.H. Diamond 3, Z.B. Guo 3, X. Xu
More informationOverview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations
Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER
More informationGA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES
GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report
More informationMultiscale turbulence, electron transport, and Zonal Flows in DIIID
Multiscale turbulence, electron transport, and Zonal Flows in DIIID L. Schmitz1 with C. Holland2, T.L. Rhodes1, G. Wang1, J.C. Hillesheim1, A.E. White3, W. A. Peebles1, J. DeBoo4, G.R. McKee5, J. DeGrassie4,
More informationMultiMachine Experiments to Study the Parametric Dependences of Momentum Transport
EUROFUSION WPJET1PR(16) 15411 TJJ Tala et al. MultiMachine Experiments to Study the Parametric Dependences of Momentum Transport Preprint of Paper to be submitted for publication in 43rd European Physical
More informationCharacteristics of the Hmode H and Extrapolation to ITER
Characteristics of the Hmode H Pedestal and Extrapolation to ITER The Hmode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference
More informationOn tokamak plasma rotation without the neutral beam torque
On tokamak plasma rotation without the neutral beam torque Antti Salmi (VTT) With contributions from T. Tala (VTT), C. Fenzi (CEA) and O. Asunta (Aalto) 2 Motivation: Toroidal rotation Plasma rotation
More informationUnderstanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation. Abstract
Understanding and Predicting Profile Structure and Parametric Scaling of Intrinsic Rotation W. X. Wang, B. A. Grierson, S. Ethier, J. Chen, and E. Startsev Plasma Physics Laboratory, Princeton University,
More informationTuomas Tala. Core Density Peaking Experiments in JET, DIIID and CMod in Various Operational Scenarios Driven by Fueling or Transport?
Tuomas Tala Core Density Peaking Experiments in JET, DIIID and CMod in Various Operational Scenarios Driven by Fueling or Transport? Core Density Peaking Experiments in JET, DIIID and CMod in Various
More informationCMod Transport Program
CMod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where CMod
More informationParticle transport results from collisionality scans and perturbative experiments on DIIID
1 EX/P326 Particle transport results from collisionality scans and perturbative experiments on DIIID E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck
More informationGA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS
GA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING by G.R. McKEE, C. HOLLAND, Z. YAN, E.J. DOYLE, T.C. LUCE, A. MARINONI, C.C. PETTY, T.L. RHODES, L. SCHMITZ, W.M. SOLOMON, B.J. TOBIAS, G.
More informationDependences of Critical Rotational Shear in DIIID QHmode Discharges
Dependences of Critical Rotational Shear in DIIID QHmode Discharges by T.M. Wilks 1 with K.H. Burrell 2, Xi. Chen 2, A. Garofalo 2, R.J. Groebner 2, P. Diamond 3, Z. Guo 3, and J.W. Hughes 1 1 MIT 2
More informationInfluence of Beta, Shape and Rotation on the Hmode Pedestal Height
Influence of Beta, Shape and Rotation on the Hmode Pedestal Height by A.W. Leonard with R.J. Groebner, T.H. Osborne, and P.B. Snyder Presented at FortyNinth APS Meeting of the Division of Plasma Physics
More informationExperimental Evidence of Inward Momentum Pinch on JET and Comparison with Theory
Experimental Evidence of Inward Momentum Pinch on JET and Comparison with Theory Tuomas Tala, Association EuratomTekes, VTT, Finland JETEFDA Culham Science Centre Abingdon, UK 22nd IAEA Fusion Energy
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationDIII D Research in Support of ITER
Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 1318, 28 DIIID Research Has Made Significant Contributions in the Design
More informationInvestigation of Intrinsic Rotation Dependencies in Alcator CMod
Investigation of Intrinsic Rotation Dependencies in Alcator CMod D. Kwak, A. E. White, J. E. Rice, N. T. Howard, C. Gao, M. L. Reinke, M. Greenwald, C. Angioni, R. M. McDermott, and the CMod and ASDEX
More informationObservation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H and QHmode Plasmas
Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H and QHmode Plasmas EX/P535 L. Schmitz 1), A.E. White 1), G. Wang 1), J.C. DeBoo 2),
More informationReduced Electron Thermal Transport in Low Collisionality Hmode Plasmas in DIIID and the Importance of Smallscale Turbulence
1 Reduced Electron Thermal Transport in Low Collisionality Hmode Plasmas in DIIID and the Importance of Smallscale Turbulence L. Schmitz, 1 C. Holland, 2 T.L. Rhodes, 1 G. Wang, 1 L. Zeng, 1 A.E. White,
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More informationMHD Pedestal Paradigm (Conventional Wisdom)
Pedestal Transport D. R. Hatch M. Kotschenreuther, X. Liu, S. M. Mahajan, (Institute for Fusion Studies, University of Texas at Austin) S. Saarelma, C. Maggi, C. Giroud, J. Hillesheim (CCFE) J. Hughes
More informationTURBULENT TRANSPORT THEORY
ASDEX Upgrade MaxPlanckInstitut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical
More informationGA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY HMODE PLASMAS IN DIIID AND THE IMPORTANCE OF SMALLSCALE TURBULENCE
GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY HMODE PLASMAS IN DIIID AND THE IMPORTANCE OF SMALLSCALE TURBULENCE by L. SCHMITZ, C. HOLLAND, T.L. RHODES, G. WANG, L. ZENG, A.E. WHITE,
More informationLowcollisionality densitypeaking in GYRO simulations of CMod plasmas
Lowcollisionality densitypeaking in GYRO simulations of CMod plasmas D. R. Mikkelsen, M. Bitter, K. Hill, PPPL M. Greenwald, J.W. Hughes, J. Rice, MIT J. Candy, R. Waltz, General Atomics APS Division
More informationStationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control
Stationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J.
More informationObservations of Rotation Reversal and Fluctuation Hysteresis in Alcator CMod Plasmas
Observations of Rotation Reversal and Fluctuation Hysteresis in Alcator CMod Plasmas N.M. Cao 1, J.E. Rice 1, A.E. White 1, S.G. Baek 1, M.A. Chilenski 1, P.H. Diamond 2, A.E. Hubbard 1, J.W. Hughes 1,
More informationOverview of results from MAST Presented by: Glenn Counsell, for the MAST team
Overview of results from MAST Presented by: Glenn Counsell, for the MAST team This work was jointly funded by the UK Engineering & Physical Sciences Research Council and Euratom Focus on 4 areas The LH
More informationFirst Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIIID MatchedShape Plasmas
1 PD/11 First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIIID MatchedShape Plasmas R. Nazikian 1, W. Suttrop 2, A. Kirk 3, M. Cavedon 2, T.E. Evans
More informationGA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D
GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D by J.S. degrassie, D.R. BAKER, K.H. BURRELL, C.M. GREENFIELD, H. IKEZI, Y.R. LINLIU, C.C. PETTY, and R. PRATER APRIL 1997 This report
More informationIMPURITY ANALYSIS AND MODELING OF DIIID RADIATIVE MANTLE DISCHARGES
IMPURITY ANALYSIS AND MODELING OF DIIID RADIATIVE MANTLE DISCHARGES J. Mandrekas, W.M. Stacey Georgia Institute of Technology M. Murakami, M.R. Wade ORNL G. L. Jackson General Atomics Presented at the
More informationDIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by
UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN Presented by C.M. GREENFIELD for J.C. DeBOO, T.C. LUCE, B.W. STALLARD, E.J. SYNAKOWSKI, L.R. BAYLOR,3 K.H. BURRELL, T.A. CASPER, E.J.
More informationRole of Magnetic Configuration and Heating Power in ITB Formation in JET.
Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA
More informationQTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.
LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 16th IAEA Fusion Conference
More informationCMod Core Transport Program. Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center
CMod Core Transport Program Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly
More informationHmode Pedestal Enhancement and Improved Confinement in DIIID with Lithium Injection
Hmode Pedestal Enhancement and Improved Confinement in DIIID with Lithium Injection by G.L. Jackson, with R. Maingi, T.H. Osborne, D.K. Mansfield, C.P. Chrobak, B.A. Grierson, A.G. McLean, Z. Yan, S.L.
More informationRotation and Neoclassical Ripple Transport in ITER
Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics
More informationFormation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )
Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 3110102, Japan 1) University
More informationEffect of Ion Orbit Loss on Rotation and the Radial Electric Field in the DIIID Tokamak
Effect of Ion Orbit Loss on Rotation and the Radial Electric Field in the DIIID Tokamak by T.M. Wilks 1 with W.M. Stacey 1 and T.E. Evans 2 1 Georgia Institute of Technology 2 General Atomics Presented
More informationDIII D. by F. Turco 1. New York, January 23 rd, 2015
Modelling and Experimenting with ITER: the MHD Challenge by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, F. Carpanese 3, C. PazSoldan 2, C.C. Petty 2, T.C. Luce 2, W.M. Solomon 4,
More informationHigh fusion performance at high T i /T e in JETILW baseline plasmas with high NBI heating power and low gas puffing
High fusion performance at high T i /T e in JETILW baseline plasmas with high NBI heating power and low gas puffing HyunTae Kim, A.C.C. Sips, C. D. Challis, F. Rimini, L. Garzotti, E. Lerche, L. Frassinetti,
More informationW.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29November 2, 2012
Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty
More informationNondiffusive Momentum Transport in JET Hmode Regimes: Modeling and Experiment
TH/P7 Nondiffusive Momentum Transport in JET Hmode Regimes: Modeling and Experiment H. Weisen, Y. Camenen, A. Salmi, M. Gelfusa, T.W. Versloot, P.C. devries, M. Maslov, T. Tala 7, M. Beurskens, C. Giroud
More informationSummary of CDBM Joint Experiments
11th Meeting of the ITPA CDBM TG, Chengdu, 2324 Oct. 2006 Summary of CDBM Joint Experiments Mon. 23 Oct, morning T. Takizuka (JAEA) CDB2: Confinement scaling in ELMy Hmodes; β degradation C.C. Petty
More informationReduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection
Reduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.
More informationProgressing Performance Tokamak Core Physics. Marco Wischmeier MaxPlanckInstitut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.
Progressing Performance Tokamak Core Physics Marco Wischmeier MaxPlanckInstitut für Plasmaphysik 85748 Garching marco.wischmeier at ipp.mpg.de Joint ICTPIAEA College on Advanced Plasma Physics, Triest,
More informationGyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma
Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma F.J. Casson, A.G. Peeters, Y. Camenen, W.A. Hornsby, A.P. Snodin, D. Strintzi, G.Szepesi CCFE Turbsim, July
More informationOn the Physics of Intrinsic Flow in Plasmas Without Magnetic Shear
On the Physics of Intrinsic Flow in Plasmas Without Magnetic Shear J. C. Li, R. Hong, P. H. Diamond, G. R. Tynan, S. C. Thakur, X. Q. Xu Acknowledgment: This material is based upon work supported by the
More informationModeling of ELM Dynamics for ITER
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015
More informationUnderstanding Confinement in Advanced Inductive Scenario Plasmas Dependence on Gyroradius and Rotation
1 Understanding Confinement in Advanced Inductive Scenario Plasmas Dependence on Gyroradius and Rotation P.A. Politzer 1, C.D. Challis 2, E. Joffrin 3, T.C. Luce 1, M. Beurskens 2, P. Buratti 4, F. Crisanti
More informationGA A THERMAL ION ORBIT LOSS AND RADIAL ELECTRIC FIELD IN DIIID by J.S. degrassie, J.A. BOEDO, B.A. GRIERSON, and R.J.
GA A27822 THERMAL ION ORBIT LOSS AND RADIAL ELECTRIC FIELD IN DIIID by J.S. degrassie, J.A. BOEDO, B.A. GRIERSON, and R.J. GROEBNER JUNE 2014 DISCLAIMER This report was prepared as an account of work
More informationITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model
1 THC/33 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California
More informationMHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELMfree QH and RMP Discharges
MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELMfree QH and RMP Discharges P.B. Snyder 1 Contributions from: H.R. Wilson 2, D.P. Brennan 1, K.H.
More informationDIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH
DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK
More informationGA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D
GA A443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D by R.J. GROEBNER, T.N. CARLSTROM, K.H. BURRELL, S. CODA, E.J. DOYLE, P. GOHIL, K.W. KIM, Q. PENG, R. MAINGI, R.A. MOYER, C.L. RETTIG, T.L. RHODES,
More informationCore and edge toroidal rotation study in JT60U
Core and edge toroidal rotation study in JT6U Japan Atomic Energy Agency M. Yoshida, Y. Sakamoto, M. Honda, Y. Kamada, H. Takenaga, N. Oyama, H. Urano, and the JT6 team JT6U EXC/32 1 23rd IAEA Fusion
More informationECH Density Pumpout and Small Scale Turbulence in DIIID
ECH Density Pumpout and Small Scale Turbulence in DIIID By K.L. Wong, T.L. Rhodes, R. Prater, R. Jayakumar, R. Budny, C.C. Petty, R. Nazikian, and W.A. Peebles Background It has been known for more than
More informationGyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
More informationHIGH PERFORMANCE EXPERIMENTS IN JT60U REVERSED SHEAR DISCHARGES
HIGH PERFORMANCE EXPERIMENTS IN JTU REVERSED SHEAR DISCHARGES IAEACN9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,
More information2017 US/EU Transport Task Force Workshop April 26 th 2017 Williamsburg, VA
Pablo RodriguezFernandez 1, A. E. White 1, N. M. Cao 1, A. J. Creely 1, M. J. Greenwald 1, N. T. Howard 1, A. E. Hubbard 1, J. W. Hughes 1, J. H. Irby 1, C. C. Petty 2, J. E. Rice 1 1 Plasma Science and
More informationITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK
ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:
More informationGA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS
GA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS by T.C. LUCE, G.L. JACKSON, T.W. PETRIE, R.I. PINSKER, W.M. SOLOMON, F. TURCO, N. COMMAUX, J.R. FERRON, A.M. GAROFALO,
More informationEdge Momentum Transport by Neutrals
1 TH/P318 Edge Momentum Transport by Neutrals J.T. Omotani 1, S.L. Newton 1,2, I. Pusztai 1 and T. Fülöp 1 1 Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 CCFE,
More informationIntrinsic Rotation and Toroidal Momentum Transport: Status and Prospects (A Largely Theoretical Perspective)
Intrinsic Rotation and Toroidal Momentum Transport: Status and Prospects (A Largely Theoretical Perspective) P.H. Diamond [1] WCI Center for Fusion Theory, NFRI, Korea [2] CMTFO and CASS, UCSD, USA Thought
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationLocal Plasma Parameters and HMode Threshold in Alcator CMod
PFC/JA9642 Local Plasma Parameters and HMode Threshold in Alcator CMod A.E. Hubbard, J.A. Goetz, I.H. Hutchinson, Y. In, J. Irby, B. LaBombard, P.J. O'Shea, J.A. Snipes, P.C. Stek, Y. Takase, S.M.
More informationIntrinsic rotation due to non Maxwellian equilibria in tokamak plasmas. Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I.
Intrinsic rotation due to non Maxwellian equilibria in tokamak plasmas Jungpyo (J.P.) Lee (Part 1) Michael Barnes (Part 2) Felix I. Parra MIT Plasma Science & Fusion Center. 1 Outlines Introduction to
More informationEnergeticIonDriven MHD Instab. & Transport: Simulation Methods, V&V and Predictions
EnergeticIonDriven MHD Instab. & Transport: Simulation Methods, V&V and Predictions 7th APTWG Intl. Conference 58 June 2017 Nagoya Univ., Nagoya, Japan Andreas Bierwage, Yasushi Todo 14.1MeV 10 kev
More informationTriggering Mechanisms for Transport Barriers
Triggering Mechanisms for Transport Barriers O. Dumbrajs, J. Heikkinen 1, S. Karttunen 1, T. Kiviniemi, T. KurkiSuonio, M. Mantsinen, K. Rantamäki 1, S. Saarelma, R. Salomaa, S. Sipilä, T. Tala 1 EuratomTEKES
More informationVariation of Turbulence and Transport with the Te/Ti Ratio in HMode Plasmas
Variation of Turbulence and Transport with the Te/Ti Ratio in HMode Plasmas by G.R. McKee with C.H. Holland, C.C. Petty, H. Reimerdes,5, T.R. Rhodes6,L. Schmitz6, S. Smith, I.U. UzunKaymak, G. Wang6,
More informationGA A27398 COMPARISON OF DEUTERIUM TOROIDAL AND POLOIDAL ROTATION TO NEOCLASSICAL THEORY
GA A27398 COMPARISON OF DEUTERIUM TOROIDAL AND POLOIDAL ROTATION TO NEOCLASSICAL THEORY by B.A. GRIERSON, K.H. BURRELL and W.M. SOLOMON OCTOBER 212 DISCLAIMER This report was prepared as an account of
More informationRelating the LH Power Threshold Scaling to Edge Turbulence Dynamics
Relating the LH Power Threshold Scaling to Edge Turbulence Dynamics Z. Yan 1, G.R. McKee 1, J.A. Boedo 2, D.L. Rudakov 2, P.H. Diamond 2, G. Tynan 2, R.J. Fonck 1, R.J. Groebner 3, T.H. Osborne 3, and
More informationGA A27933 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS
GA A27933 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING by G.R. McKEE, C. HOLLAND, Z. YAN, E.J. DOYLE, T.C. LUCE, A. MARINONI, C.C. PETTY, T.L. RHODES, J.C. ROST, L. SCHMITZ, W.M. SOLOMON, B.J.
More informationTHE DIII D PROGRAM THREEYEAR PLAN
THE PROGRAM THREEYEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is wellaligned
More informationCMOD PAC FEBRUARY, 2005 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER
TRANSPORT PROGRAM CMod CMOD PAC FEBRUARY, 2005 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT IS A BROAD TOPIC WHERE DO WE FOCUS? We emphasize areas where CMod  Has unique
More informationIntegrated Heat Transport Simulation of High Ion Temperature Plasma of LHD
1 TH/P638 Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD S. Murakami 1, H. Yamaguchi 1, A. Sakai 1, K. Nagaoka 2, H. Takahashi 2, H. Nakano 2, M. Osakabe 2, K. Ida 2, M. Yoshinuma
More informationExperimental test of the neoclassical theory of poloidal rotation
Experimental test of the neoclassical theory of poloidal rotation Presented by Wayne Solomon with contributions from K.H. Burrell, R. Andre, L.R. Baylor, R. Budny, P. Gohil, R.J. Groebner, C.T. Holcomb,
More informationRole of Density Gradient Driven Trapped Electron Mode Turbulence in the Hmode Inner Core with Electron Heating a)
Role of Density Gradient Driven Trapped Electron Mode Turbulence in the Hmode Inner Core with Electron Heating a) D. R. Ernst, K. H. Burrell, W. Guttenfelder, T. L. Rhodes, A. M. Dimits 5, R. Bravenec,
More informationEX/P331. Scalings of Spontaneous Rotation in the JET Tokamak
1 Scalings of Spontaneous Rotation in the JET Tokamak M. F. F. Nave 1, L.G. Eriksson, C. Giroud 3, J. S. de Grassie 4, T. Hellsten,T. Johnson, K, Kirov 3,Y. Lin 6, J. Mailoux 3, P. Mantica 11, M.L. Mayoral
More informationScaling of divertor heat flux profile widths in DIIID
1 Scaling of divertor heat flux profile widths in DIIID C.J. Lasnier 1, M.A. Makowski 1, J.A. Boedo 2, N.H. Brooks 3, D.N. Hill 1, A.W. Leonard 3, and J.G. Watkins 4 email:lasnier@llnl.gov 1 Lawrence
More informationBO NonLocal Heat Transport, Rotation Reversals and Up/Down Impurity Density Asymmetries in Alcator CMod Ohmic Lmode Plasmas. J.E.
BO75 NonLocal Heat Transport, Rotation Reversals and Up/Down Impurity Density Asymmetries in Alcator CMod Ohmic Lmode Plasmas J.E.Rice with thanks to Plasma Science and Fusion Center, MIT M.L.Reinke,
More informationICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak
23 rd IAEA Fusion Energy Conference, EXW/4 1 ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak Yijun Lin, J.E. Rice, S.J. Wukitch, M.L. Reinke, M. Greenwald, A. E. Hubbard, E.S. Marmar, Y. Podpaly,
More informationDevelopment and Validation of a Predictive Model for the Pedestal Height (EPED1)
Development and Validation of a Predictive Model for the Pedestal Height (EPED1) P.B. Snyder 1 with R.J. Groebner 1, A.W. Leonard 1, T.H. Osborne 1, M. Beurskens 3, L.D. Horton 4, A.E. Hubbard 5, J.W.
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationDensity Peaking At Low Collisionality on Alcator CMod
Density Peaking At Low Collisionality on Alcator CMod APSDPP Meeting Philadelphia, 10/31/2006 M. Greenwald, D. Ernst, A. Hubbard, J.W. Hughes, Y. Lin, J. Terry, S. Wukitch, K. Zhurovich, Alcator Group
More informationValidating Simulations of MultiScale Plasma Turbulence in ITERRelevant, Alcator CMod Plasmas
Validating Simulations of MultiScale Plasma Turbulence in ITERRelevant, Alcator CMod Plasmas Nathan Howard 1 with C. Holland 2, A.E. White 1, M. Greenwald 1, J. Candy 3, P. Rodriguez Fernandez 1, and
More informationSpontaneous tokamak rotation: observations turbulent momentum transport has to explain
Spontaneous tokamak rotation: observations turbulent momentum transport has to explain Ian H Hutchinson Plasma Science and Fusion Center and Nuclear Science and Engineering Massachusetts Institute of Technology
More informationELMs and Constraints on the HMode Pedestal:
ELMs and Constraints on the HMode Pedestal: A Model Based on PeelingBallooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,
More informationHmode performance and pedestal studies with enhanced particle control on Alcator CMod
Hmode performance and pedestal studies with enhanced particle control on Alcator CMod J.W. Hughes, B. LaBombard, M. Greenwald, A. Hubbard, B. Lipschultz, K. Marr, R. McDermott, M. Reinke, J.L. Terry
More informationElectron Transport Stiffness and Heat Pulse Propagation on DIIID
Electron Transport Stiffness and Heat Pulse Propagation on DIIID by C.C. Petty, J.C. DeBoo, C.H. Holland, 1 S.P. Smith, A.E. White, 2 K.H. Burrell, J.C. Hillesheim 3 and T.C. Luce 1 University of California
More informationIntegrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport
1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibarakiken, 3110193 Japan
More informationResistive Wall Mode Control in DIIID
Resistive Wall Mode Control in DIIID by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil
More informationMechanisms of intrinsic toroidal rotation tested against ASDEX Upgrade observations
Mechanisms of intrinsic toroidal rotation tested against ASDEX Upgrade observations William A. Hornsby C. Angioni, E. Fable, P. Manas, R. McDermott, Z.X. Lu, S. Grosshauser 2, A. G. Peeters 2 and the ASDEX
More informationComparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )
Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Kenichi NAGAOKA 1,2), Hiromi TAKAHASHI 1,2), Kenji TANAKA 1), Masaki OSAKABE 1,2), Sadayoshi MURAKAMI
More informationComparison of Deuterium Toroidal and Poloidal Rotation to Neoclassical Theory in the DIIID Tokamak
1 EX/P319 omparison of Deuterium Toroidal and Poloidal Rotation to Neoclassical Theory in the DIIID Tokamak B.A. Grierson 1, K.H. Burrell and W.M. Solomon 1 1 Princeton Plasma Physics Laboratory, Princeton
More informationTransport Improvement Near Low Order Rational q Surfaces in DIII D
Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink
More information