INTERNAL TRANSPORT BARRIERS WITH

Size: px
Start display at page:

Download "INTERNAL TRANSPORT BARRIERS WITH"

Transcription

1 INTERNAL TRANSPORT BARRIERS WITH COUNTER-NEUTRAL BEAM INJECTION IN C.M. GREENFIELD, E.J. SYNAKOWSKI, K.H. BURRELL, M.E. AUSTIN, D.R. BAKER, L.R. BAYLOR, T.A. CASPER, J.C. DeBOO, E.J. DOYLE, D. ERNST, J.R. FERRON, P. GOHIL, A.W. HYATT, G.L. JACKSON, T.C. JERNIGAN, G.R. McKEE, M. MURAKAMI, R.I. PINSKER, M. PORKOLAB, R. PRATER, C.L. RETTIG, G.L. SCHMIDT, T.L. RHODES, B.W. RICE, G.M. STAEBLER, B.W. STALLARD, E.J. STRAIT, M.R. WADE, W.P. WEST, and L. ZENG QWER UCLAUCLA UCLA R E S E A R C H C E N T E R UNIVERSITY OF TEXAS UNIVERSITY OF WISCONSIN M A DIS O N

2 Internal Transport Barriers with Counter-Neutral Beam Injection in * C.M. Greenfield, E.J. Synakowski, K.H. Burrell, M.E. Austin, # D.R. Baker, L.R. Baylor, T.A. Casper, J.C. DeBoo, E.J. Doyle, D. Ernst, J.R. Ferron, P. Gohil, A.W. Hyatt, G.L. Jackson, T.C. Jernigan, G.R. McKee, M. Murakami, R.I. Pinsker, M. Porkolab, R. Prater, C.L. Rettig, T.L. Rhodes, B.W. Rice, G.M. Staebler, B.W. Stallard, E.J. Strait, M.R. Wade, W.P. West, L. Zeng General Atomics, San Diego, California, USA Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA # University of Texas, Austin, Texas, USA Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Lawrence Livermore National Laboratory, Livermore, California, USA University of California, Los Angeles, California, USA University of Wisconsin, Madison, Wisconsin, USA Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Internal transport barriers are frequently formed in discharges with weak or negative central magnetic shear and moderate neutral beam (NBI) heating in the tokamak. In this regime, toroidal rotation, driven by co-directed (parallel to the plasma current) NBI, is the primary driver of the sheared E B velocity believed to suppress turbulence and its associated transport. With co-injection, the pressure gradient and toroidal rotation terms of the radial force balance equation ( E r = (Zien i) Pi νθibφ + νφibθ ) are in opposition, so that one must dominate in order to form a large radial electric field. Experiments are underway in to evaluate the potential for extending both the spatial extent and duration of these barriers through the use of counter-nbi. In these plasmas, the pressure gradient and rotation terms of the force balance add to each other, offering the potential for increased E B shear over an extended region of the plasma. At the same time, however, it is expected that the shearing rate ω E B will be smaller in the vicinity of the magnetic axis, suggesting a larger power threshold for establishing the barrier in this case. Experimental results thus far are consistent with this expectation. Transport barriers are difficult to form with moderate neutral beam heating, requiring a pellet trigger for formation, as was observed in TFTR 3 with balanced NBI. It is also expected that counter-nbi will aid efforts to extend the duration of the ITB by supporting an elevated minimum safety factor q min with counter-directed neutral beam current drive in the plasma core. Results of these experiments, both with higher power NBI and pellet assisted ITB formation will be discussed. * Work supported by U.S. Department of Energy under Contracts DE-AC3-99ER53, DE-AC- 7CH373, W-75-ENG-8, DE-AC5-9OR, and Grants DE-FG3-97ER55, DE-FG3-8ER535, and DE-FG3-9ER5373. C.M. Greenfield, et al., Phys. Plasmas, 59 (997). T.S. Hahm, K.H. Burrell, Phys. Plasmas, 8 (995). 3 M.G. Bell, et al., Phys. Plasmas, 7 (997).

3 OVERVIEW Internal transport barriers (ITB) have been formed with counter-neutral beam injection, with characteristics that contrast with co-injection experience. Barrier formation dynamics are fundamentally different than with co-injection. Alignment of p and rotation terms of radial force balance to maximize E r : E r = (Z i en i ) - p i - v θi B φ + v φi B θ Power threshold appearance may be consistent with expectations based on the familiar E B shear turbulence suppression hypothesis. Resulting ITBs may be a good target for efforts at transport barrier control. Nearly stationary q profiles maintained via counter-nbcd. Broader profiles May be more favorable for MHD stability. Pellet injection has been used to form an ITB with a strong barrier in the electron density and T i T e. Barriers formed both with high field side deuterium and low field side lithium pellets. These have been sustained for up to s. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

4 OUTLINE ECH preheat as a substitute for early neutral beams can form a target plasma with negative central magnetic shear (NCS). Internal transport barriers (ITB) have been formed with counter-neutral beam injection, with characteristics that contrast with co-injection experience. Power threshold. Nearly stationary q profiles. (Relatively) broad profiles. Pellet-triggered ITB characteristics. has been used to form an ITB with a strong barrier in the electron density and T i T e. Upgrades to pellet injection system for high-field side (HFS) deuterium pellet injection. ITBs with very strong density peaking. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

5 EARLY ELECTRON CYCLOTRON HEATING SLIGHTLY OFF- AXIS RESULTS IN INCREASED NEGATIVE CENTRAL SHEAR Poor beam ion confinement at low current contradicts the desire for a preheat phase to generate the conditions for ITB formation. Lost fast ions sputter carbon from walls. Large losses result in inefficient heating. Power from a single ECH gyrotron, applied early in the current ramp, produces the desired q profile without introducing fast ions to the plasma. Best results obtained when heating slightly off-axis (.5). On-axis absorption results in higher temperatures but drives instabilities. Little difference in q profile seen when resonance moved off-axis. Evidence that ECCD is dominant effect? MA MW kev I P P ECH T e () q q min qmin 9985 (ECH@3ms) 9983 (Ohmic) time (s) Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 3

6 ECH PREHEAT CAN PRODUCE A NEGATIVE CENTRAL SHEAR (NCS) TARGET ECH startup shown to be a viable alternative, even with only one gyrotron. Might be even better with multiple gyrotrons with independent aiming. 8 9 (Co-NBI, no RF) 9985 (ECH@.3s) 9983 (Ohmic) Further analysis is needed to understand the roles of current drive and heating. ECH preheat was used in all counterinjection ITB experiments Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

7 ITB OPTIMIZATION WITH COUNTER-NBI Goal of experiment: create, optimize and characterize core transport barriers formed with counter-injected neutral beams alone (no pellets). Used ECH preheat, although one shot without preheat also produced an ITB. ITBs were formed, but required more power than expected with co-injection. At full field, power threshold is around MW. Power threshold <5MW with co-nbi. Not always a clear bifurcation above threshold. Differences in barrier characteristics (compared to co-injected) More evident in density profile. Perhaps less so in ion profiles. Broader, with less steep gradients. Nondisruptive barrier termination. Work on sustainment was started. ITB sustained for a hew hundreds of ms after power stepdown (until neutral beams turned off or stepped up). Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 5

8 INTERNAL TRANSPORT BARRIER FORMATION WITH COUNTER-INJECTED NEUTRAL BEAMS I P Internal transport barrier experiments with counter-nbi follow a new recipe. ECH at.5 starting at.3s. High power neutral beams applied at.s (I P.9 MA). Later injection tried also, but best results found when NBI applied with elevated q. MHD stability behavior contrasts with co-injection discharges. Minidisruptions dump energy from plasma, can be cured. True disruptions are relatively infrequent. Sign of weaker pressure gradient than co-injected ITB? MA MW 5 s S N P ECH P NBI 998 (7 sources) 9987 ( sources) 9989 (5 sources) 9985 ( sources) 9985 (3 sources) time (s) Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

9 ITB FORMATION WITH NEUTRAL BEAM COUNTER- INJECTION REQUIRES HIGH POWER With neutral beam co-injection, core transport barriers format very low power and expand when P NBI 5MW. With counter-injection, clear barriers are formed only when P NBI exceeds MW. Barrier formation is delayed or prevented when heating power is decreased. Formation occurs following a short ELMing or dithering H mode phase. Time shown at right is delay from high power onset to end of ELMing/dithering phase; ITB formation probably begins slightly earlier. Short-lived, more localized barriers are observed on some lower power discharges. seconds Time from high power onset to ITB formation No ITB formed Weak or no ITB High power NBI onset:.s.8s.s.s/no ECH preheat (ELMing H-mode) 8 P NBI (MW) Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 7

10 FLUCTUATIONS ARE DECREASED DURING ITB FORMATION Fluctuation amplitude drop during H- mode phase indicates ITB formation begins during H-mode phase. Does ITB starve the edge of power and trigger return to L-mode? Jump at H L transition probably due to increased fluctuations near the edge. Increase prior to terminating MHD event may indicate beginning of barrier degradation. Spatially localized data expected to show clearer signature of ITB. FIR scattering integrates over region.3 r/a, includes large contribution from outside barrier. BES, reflectometer data currently being evaluated. a.u. khz ( sources).. MHD event 9988 (5 sources) time (s) ELMing/dithering H-mode 9985 ( sources) MHD event 9985 (3 sources) RMS amplitude Mean frequency FIR scattering: k θ = cm - r/a =.3- source discharge: ITB forms later at.s. 3 source discharge: No fully developed ITB. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 8

11 HIGHER POWER THRESHOLDS MAY BE EXPECTED FOR ITB FORMATION WITH COUNTER-NBI The Hahm-Burrell formula for the E B shearing rate: can be rewritten as: where ω ω RBθ Er E B = ( ) B ψ RBθ RBθ E B = ( ) f p + frot B n p p f p = ne ψ ψ ne ψ [ ], and f rot = Ω. ψ Choosing the coordinate system so that the sign of f p is the same with either co- or counter-nbi, we find that near the axis (ψ ), f p is positive, and For co-injection: f rot is positive. For counter-injection: f rot is negative. This results in cancellation of the two terms and smaller values of the shearing rate near the axis with counter-injection, perhaps leading to a higher power threshold. Moving away from the axis, the two terms may add, rather than cancel, with counterinjection, thereby allowing larger shearing rates and more transport barrier expansion. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 9

12 ITB FORMATION WITH COUNTER-INJECTION ITB formation evident in increasing separation of ion temperatures between nearby channels. Formation nearly coincident with return to L mode following ELMing or dithering H mode phase. kev 8.77m.83m.87m.9m.93m.9m.99m.m.m.8m.m.5m T i (CER) ITB terminated by nondisruptive MHD event. Regrowth occurs following MHD event. ELMing or dithering H mode phase repeats prior to barrier regrowth. MW 5 s P NBI S N..8.. t (sec) 998 Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

13 PROFILE PEAKING IS SEEN IN ALL KINETIC PROFILES DURING ITB FORMATION Profiles from second ITB formation in 7-NBI source discharge Peaking evident in all kinetic channels q profile relatively stationary Central Z eff remains at.5 while edge carbon content is increasing. s - [ 5 ] kev T e Ω kev T i Z eff m -3 [ 9 ] q n e Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

14 NEOCLASSICAL ION DIFFUSIVITY RECOVERED WITH COUNTER-NBI χ e χ i Neoclassical levels obtained in ion thermal diffusivity. Some reduction seen in χ e, D e and χ ϕ. Smaller reductions: error analysis is in progress. m /s m /s.. D e 998B.9 998B.. χ ϕ χc-h neo i Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

15 IS THE ITB POSITION CONTROLLED BY CANCELLATION OF RADIAL ELECTRIC FIELD TERMS WITH CO-INJECTION? Shearing rate ω E B believed to control transport barrier behavior. In most co-injected discharges, the pressure gradient and rotation terms of the radial electric field cancel at some radius. Does this lock ITB position? qmin > ITB in co-nbi discharge shown. No such cancellation in counter-injected discharges. May allow broader profiles. qmin < ITB in counter-nbi discharge shown. kv/m kv/m E r total E p (ITB) (ctr) E p 9. (co) E v B E v B E r total q min 5 s - 5 s q (ITB) min - q min (ITB) ω E B (ITB) ω E B q min Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 3

16 COUNTER-INJECTION CALCULATED TO SUPPRESS TURBULENCE WITHIN A LARGE RADIUS cm/s 3 Transport barrier region ω E B γ max Calculated linear growth rate γ max for low-k turbulence (ITG modes) negligible at <.5. Shearing rate ω E B exceeds calculated linear growth rate at <.7. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

17 8 NEUTRAL BEAM COUNTER-CURRENT DRIVE INHIBITS CURRENT PROFILE EVOLUTION DURING THE ITB PHASE 8 Co-NBI (9) Counter-NBI (998).s.s.3s.85s.95s.5s In a ms interval in the presence of an ITB, the entire q profile significantly decreases due to current diffusion. This is an eventual limitation to ITB performance, as the barrier is always terminated if q min reaches unity. Counter-NBI provides central counter-current drive, which can maintains an elevated q profile. Necessary, but not sufficient, for ITB sustainment Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 5

18 POWER STEPDOWN EXPERIMENTS ARE A PROMISING BEGINNING TO ITB CONTROL EFFORTS An element of the ITB experiment plan was to use neutral beam power modulation to control the ITB position. Although we did not have time for extensive studies, we had a few shots where the power was stepped down from to either or 5 sources. Difference in performance between two - source discharges may point to TFTR-like bifurcation. Highest performance was obtained on a discharge which stepped down from to sources, and back up to 5. Finer control of beam power is needed to exploit this technique as a control mechanism. MA MW 5 s I P S N P ECH 9987 ( sources) ( sources) ( 5 sources) 998 ( 5 sources) P NBI time (s) Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

19 PROFILES ARE BROADER WITH COUNTER-NBI Similar discharges Lower current in counter- NBI discharge since data taken earlier in current ramp. Both discharges have absorbed NB power 9- MW and similar stored energies ~MJ. Peak values of profiles lower with counter, but profiles are broader. kev s - [ 5 ] T e Ω CTR: 9989B.s CO: 873F8.8s kev Z eff T i m -3 [ 9 ] Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 7 q n e

20 PREHEAT IS NOT A NECESSARY CONDITION FOR ITB FORMATION Identical discharges, except 9988 has no ECH preheat. Initial profiles (dashed) very similar. Broader, flattened region in core of T e profile after end of ECH pulse applied at.5. q profile more reversed with ECH q profiles nearly identical at peak performance. ECH preheat discharge rotates faster, slightly higher T i. s - [ 5 ] kev A5 (no ECH) 9989B (ECH preheat) 8 T e Ω kev Z eff T i m -3 [ 9 ] 8 q t=. s t=. s Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 8 n e

21 PELLETS CAN BE USED TO TRIGGER ITB FORMATION WITH DIFFERENT BARRIER CHARACTERISTICS Recent modifications to the pellet injection system allow deep penetration of deuterium pellets. Both deuterium and lithium pellets have been used to trigger formation of the ITB. Similar to PEP regimes previously observed in other devices. Barriers exhibit high gradients in both the density and temperature profiles. Lower temperatures and higher densities observed. T i / T e.5, much lower than observed with neutral beams alone. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 9

22 PELLET INJECTION PROGRAM Modifications to injector (previously on JET, ) Three.7 mm guns. Variety of pellet velocities possible. Two independent guide tubes on centerpost (HFS). Can be connected to any of the guns or a gas valve. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

23 HIGH FIELD SIDE (HFS 5 ) PELLET INJECTION YIELDS DEEPER PARTICLE DEPOSITION THAN LFS INJECTION.7 mm Pellets - HFS 5 vs LFS HFS 5 V+ LFS n e ( m -3 )..5 DIII-D measured n e HFS 5 v p = 8 m/s t = 5 ms HFS mid Calculated Penetration LFS v p = 58 m/s t = ms Four positions of pellet injection guide tubes installed on DIII-D Net deposition is much deeper for the lower velocity HFS 5 pellets. The pellets were injected into the same discharge under the same conditions (ELMing H- mode,.5mw NBI, T e () = 3keV). Net deposition profile measured by Thomson scattering -5 ms after injection. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

24 n e ( 9 m -3 ) P NBI (MW) H_L89P 5 5 DIII-D 9978 HFS PELLETS DURING CURRENT RISE FORM AN INTERNAL TRANSPORT BARRIER Time (s).7 mm pellets injected during current rise from the HFS 5 location produces peaked density profile for ITB studies with T i T e. MW of counter-nbi applied to produce ITB in L mode. ne ( 9 m -3 ) Te, Ti (kev) T e - TS DIII-D 9978.s n e - TS T i - CER Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

25 DENSITY AND PRESSURE PROFILES ARE STRONGLY PEAKED ne (m -3 ) s DIII-D Counter NBI MW 9978 PEP.9s P (Pa) e+5 8e+ e+ e+ e s DIII-D Counter NBI MW 9978 PEP.9s Density profile from.7mm pellet is strongly peaked with steep density gradient formed at =. that persists for.7s. Pressure profile is also strongly peaked with a steep gradient at =. with T i T e. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 3

26 ION THERMAL TRANSPORT IS REDUCED IN THE PELLET TRIGGERED ITB χ e χ i m /s 9978.s (pellet) s (no pellet) χ i neo Ion thermal diffusivity is reduced in the core following introduction of the deuterium pellet. Little or no reduction is seen in the electron channel. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

27 STRONG OFF-AXIS BOOTSTRAP CURRENT AND NEGATIVE CENTRAL SHEAR OBSERVED IN PEP MODE JBS (A/cm ) PEP.9s s DIII-D Counter NBI MW q PEP.9s DIII-D Counter NBI MW Bootstrap current calculated with NCLASS shows strong off-axis contribution to current density profile. q profile determined using MSE indicates strong negative magnetic central shear during PEP phase. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 5

28 TOROIDAL ROTATION PROFILE SHAPE DIFFERS BETWEEN CO- AND COUNTER-INJECTED PEP MODES Toroidal rotation ( rad/s) DIII-D t =.898s 9987 co-nbi Notch in co-injected rotation profiles similar to that seen in TFTR supershots. Attributed to neoclassical parallel momentum exchange counter-nbi Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99

29 SUMMARY Internal transport barriers (ITB) have been formed with counter-neutral beam injection, with characteristics that contrast with co-injection experience. Power threshold appearance may be consistent with expectations based on the familiar E B shear turbulence suppression hypothesis. Nearly stationary q profiles produced via counter-nbcd. Broader profiles May be more favorable for MHD stability. First attempts at barrier control are promising. Pellet injection has been used to form an ITB with a strong barrier in the electron density and T i T e. Barriers formed both with high field side deuterium and low field side lithium. These have been sustained for up to s. Greenfield 7th IAEA TCM on H-Mode and Transport Barrier Physics 9/99 7

DIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by

DIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN Presented by C.M. GREENFIELD for J.C. DeBOO, T.C. LUCE, B.W. STALLARD, E.J. SYNAKOWSKI, L.R. BAYLOR,3 K.H. BURRELL, T.A. CASPER, E.J.

More information

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 16th IAEA Fusion Conference

More information

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team* ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado

More information

GA A23428 IMPROVEMENT OF CORE BARRIERS WITH ECH AND COUNTER-NBI IN DIII D

GA A23428 IMPROVEMENT OF CORE BARRIERS WITH ECH AND COUNTER-NBI IN DIII D GA A348 IMPROVEMENT OF CORE BARRIERS WITH ECH by C.M. GREENFIELD, K.H. BURRELL, T.A. CASPER, J.C. DeBOO, E.J. DOYLE, P. GOHIL, R.J. GROEBNER, J.E. KINSEY, J. LOHR, M. MAKOWSKI, G.R. McKEE, M. MURAKAMI,

More information

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,

More information

Transport Improvement Near Low Order Rational q Surfaces in DIII D

Transport Improvement Near Low Order Rational q Surfaces in DIII D Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink

More information

GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D

GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D by E.J. DOYLE, J.C. DeBOO, T.A. CASPER, J.R. FERRON, R.J. GROEBNER, C.T. HOLCOMB, A.W. HYATT, G.L. JACKSON, R.J. LA HAYE, T.C. LUCE, G.R.

More information

PROGRESS TOWARDS SUSTAINMENT OF INTERNAL TRANSPORT BARRIERS IN DIII-D

PROGRESS TOWARDS SUSTAINMENT OF INTERNAL TRANSPORT BARRIERS IN DIII-D PROGRESS TOWARDS SUSTAINMENT OF INTERNAL TRANSPORT BARRIERS IN DIII-D by B.W. RICE, J.R. FERRON, K.H. BURRELL, T.A. CASPER, C.M. GREENFIELD, G.L. JACKSON, T.C. LUCE, R.L. MILLER, B.W. STALLARD, E.J. SYNAKOWSKI,

More information

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J.

More information

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D Studies of H Mode Plasmas Produced Directly by Pellet Injection in by P. Gohil in collaboration with L.R. Baylor,* K.H. Burrell, T.C. Jernigan,* G.R. McKee, *Oak Ridge National Laboratory University of

More information

Progress Toward High Performance Steady-State Operation in DIII D

Progress Toward High Performance Steady-State Operation in DIII D Progress Toward High Performance Steady-State Operation in DIII D by C.M. Greenfield 1 for M. Murakami, 2 A.M. Garofalo, 3 J.R. Ferron, 1 T.C. Luce, 1 M.R. Wade, 1 E.J. Doyle, 4 T.A. Casper, 5 R.J. Jayakumar,

More information

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report

More information

Development in DIII D Tokamak Hybrid Operation Scenarios

Development in DIII D Tokamak Hybrid Operation Scenarios Development in Tokamak Hybrid Operation Scenarios by R.J. Jayakumar in collaboration with M.R. Wade, T.C. Luce, P.A. Politzer, A.W. Hyatt, J.R. Ferron, C.M. Greenfield, E.H. Joffrin, M. Murakami, C.C.

More information

ABSTRACT, POSTER LP1 12 THURSDAY 11/7/2001, APS DPP CONFERENCE, LONG BEACH. Recent Results from the Quiescent Double Barrier Regime on DIII-D

ABSTRACT, POSTER LP1 12 THURSDAY 11/7/2001, APS DPP CONFERENCE, LONG BEACH. Recent Results from the Quiescent Double Barrier Regime on DIII-D ABSTRACT, POSTER LP1 1 THURSDAY 11/7/1, APS DPP CONFERENCE, LONG BEACH Recent Results from the Quiescent Double Barrier Regime on DIII-D E.J. Doyle, K.H. Burrell, T. Casper, J.C. DeBoo, A. Garofalo, P.

More information

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas EX/P5-35 L. Schmitz 1), A.E. White 1), G. Wang 1), J.C. DeBoo 2),

More information

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D GA A443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D by R.J. GROEBNER, T.N. CARLSTROM, K.H. BURRELL, S. CODA, E.J. DOYLE, P. GOHIL, K.W. KIM, Q. PENG, R. MAINGI, R.A. MOYER, C.L. RETTIG, T.L. RHODES,

More information

GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D

GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D GA A22571 REDUCTION OF TOROIDAL ROTATION BY FAST WAVE POWER IN DIII D by J.S. degrassie, D.R. BAKER, K.H. BURRELL, C.M. GREENFIELD, H. IKEZI, Y.R. LIN-LIU, C.C. PETTY, and R. PRATER APRIL 1997 This report

More information

STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIII-D WITHOUT INDUCTIVE CURRENT CONTROL

STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIII-D WITHOUT INDUCTIVE CURRENT CONTROL th IAEA Fusion Energy Conference Vilamoura, Portugal, to 6 November IAEA-CN-6/EX/P-7 STATIONARY, HIGH BOOTSTRAP FRACTION PLASMAS IN DIII-D WITHOUT INDUCTIVE CURRENT CONTROL P.A. POLITZER, A.W. HYATT, T.C.

More information

PROGRESS TOWARDS SUSTAINMENT OF ADVANCED TOKAMAK MODES IN DIIIÐD *

PROGRESS TOWARDS SUSTAINMENT OF ADVANCED TOKAMAK MODES IN DIIIÐD * PROGRESS TOWARDS SUSTAINMENT OF ADVANCED TOKAMAK MODES IN DIIIÐD * B.W. RICE, K.H. BURRELL, J.R. FERRON, C.M. GREENFIELD, G.L. JACKSON, L.L. LAO, R.J. LA HAYE, T.C. LUCE, B.W. STALLARD, E.J. STRAIT, E.J.

More information

GA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS

GA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS GA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS by T.C. LUCE, G.L. JACKSON, T.W. PETRIE, R.I. PINSKER, W.M. SOLOMON, F. TURCO, N. COMMAUX, J.R. FERRON, A.M. GAROFALO,

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

GA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS

GA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS GA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING by G.R. McKEE, C. HOLLAND, Z. YAN, E.J. DOYLE, T.C. LUCE, A. MARINONI, C.C. PETTY, T.L. RHODES, L. SCHMITZ, W.M. SOLOMON, B.J. TOBIAS, G.

More information

1999 RESEARCH SUMMARY

1999 RESEARCH SUMMARY 1999 RESEARCH SUMMARY by S.L. Allen Presented to DIII D Program Advisory Committee Meeting January 2 21, 2 DIII D NATIONAL FUSION FACILITY SAN DIEGO 3 /SLA/wj Overview of Physics Results from the 1999

More information

Reduced Electron Thermal Transport in Low Collisionality H-mode Plasmas in DIII-D and the Importance of Small-scale Turbulence

Reduced Electron Thermal Transport in Low Collisionality H-mode Plasmas in DIII-D and the Importance of Small-scale Turbulence 1 Reduced Electron Thermal Transport in Low Collisionality H-mode Plasmas in DIII-D and the Importance of Small-scale Turbulence L. Schmitz, 1 C. Holland, 2 T.L. Rhodes, 1 G. Wang, 1 L. Zeng, 1 A.E. White,

More information

CORE TURBULENCE AND TRANSPORT REDUCTION IN DIII-D DISCHARGES WITH WEAK OR NEGATIVE MAGNETIC SHEAR

CORE TURBULENCE AND TRANSPORT REDUCTION IN DIII-D DISCHARGES WITH WEAK OR NEGATIVE MAGNETIC SHEAR I JUL 2 5 m 7 GA-A22617 CORE TURBULENCE AND TRANSPORT REDUCTION IN DIII-D DISCHARGES WITH WEAK OR NEGATIVE MAGNETIC SHEAR by G.M. STAEBLER, C.M. GREENFIELD, D.P. SCHISSEL, K.H. BURRELL, T.A. CASPER, J.C.

More information

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory Localized Electron Cyclotron Current Drive in : Experiment and Theory by Y.R. Lin-Liu for C.C. Petty, T.C. Luce, R.W. Harvey,* L.L. Lao, P.A. Politzer, J. Lohr, M.A. Makowski, H.E. St John, A.D. Turnbull,

More information

Triggering Mechanisms for Transport Barriers

Triggering Mechanisms for Transport Barriers Triggering Mechanisms for Transport Barriers O. Dumbrajs, J. Heikkinen 1, S. Karttunen 1, T. Kiviniemi, T. Kurki-Suonio, M. Mantsinen, K. Rantamäki 1, S. Saarelma, R. Salomaa, S. Sipilä, T. Tala 1 Euratom-TEKES

More information

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D L. Schmitz1 with C. Holland2, T.L. Rhodes1, G. Wang1, J.C. Hillesheim1, A.E. White3, W. A. Peebles1, J. DeBoo4, G.R. McKee5, J. DeGrassie4,

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Characteristics of Internal Transport Barrier in JT-60U Reversed Shear Plasmas

Characteristics of Internal Transport Barrier in JT-60U Reversed Shear Plasmas Characteristics of Internal Transport Barrier in JT-6U Reversed Shear Plasmas Y. Sakamoto, Y. Kamada, S. Ide, T. Fujita, H. Shirai, T. Takizuka, Y. Koide, T. Fukuda, T. Oikawa, T. Suzuki, K. Shinohara,

More information

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES HIGH PERFORMANCE EXPERIMENTS IN JT-U REVERSED SHEAR DISCHARGES IAEA-CN-9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,

More information

Advances in the Physics Basis of the Hybrid Scenario on DIII-D

Advances in the Physics Basis of the Hybrid Scenario on DIII-D Advances in the Physics Basis of the Hybrid Scenario on DIII-D C.C. Petty 1), W.P. West 1), J.C. DeBoo 1), E.J. Doyle 2), T.E. Evans 1), M.E. Fenstermacher 3), M. Groth 3), J.R. Ferron 1), G.R. McKee 4),

More information

GA A27933 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS

GA A27933 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS GA A27933 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING by G.R. McKEE, C. HOLLAND, Z. YAN, E.J. DOYLE, T.C. LUCE, A. MARINONI, C.C. PETTY, T.L. RHODES, J.C. ROST, L. SCHMITZ, W.M. SOLOMON, B.J.

More information

GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY H-MODE PLASMAS IN DIII-D AND THE IMPORTANCE OF SMALL-SCALE TURBULENCE

GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY H-MODE PLASMAS IN DIII-D AND THE IMPORTANCE OF SMALL-SCALE TURBULENCE GA A26866 REDUCED ELECTRON THERMAL TRANSPORT IN LOW COLLISIONALITY H-MODE PLASMAS IN DIII-D AND THE IMPORTANCE OF SMALL-SCALE TURBULENCE by L. SCHMITZ, C. HOLLAND, T.L. RHODES, G. WANG, L. ZENG, A.E. WHITE,

More information

Particle transport results from collisionality scans and perturbative experiments on DIII-D

Particle transport results from collisionality scans and perturbative experiments on DIII-D 1 EX/P3-26 Particle transport results from collisionality scans and perturbative experiments on DIII-D E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck

More information

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY*

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY* by K.H. BURRELL Presented at the Transport Task Force Meeting Annapolis, Maryland April 3 6, 22 *Work supported by U.S. Department of Energy

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

Heating and Current Drive by Electron Cyclotron Waves in JT-60U

Heating and Current Drive by Electron Cyclotron Waves in JT-60U EX/W- Heating and Current Drive by Electron Cyclotron Waves in JT-6U T. Suzuki ), S. Ide ), C. C. Petty ), Y. Ikeda ), K. Kajiwara ), A. Isayama ), K. Hamamatsu ), O. Naito ), M. Seki ), S. Moriyama )

More information

Measurements of Core Electron Temperature Fluctuations in DIII-D with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations

Measurements of Core Electron Temperature Fluctuations in DIII-D with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations Measurements of Core Electron Temperature Fluctuations in DIII-D with Comparisons to Density Fluctuations and Nonlinear GYRO Simulations A.E. White,a) L. Schmitz,a) G.R. McKee,b) C. Holland,c) W.A. Peebles,a)

More information

Time-dependent Modeling of Sustained Advanced Tokamak Scenarios

Time-dependent Modeling of Sustained Advanced Tokamak Scenarios Time-dependent Modeling of Sustained Advanced Tokamak Scenarios T. A. Casper, L. L. LoDestro and L. D. Pearlstein LLNL M. Murakami ORNL L.L. Lao and H.E. StJohn GA We are modeling time-dependent behavior

More information

UCLA. Broadband Magnetic and Density Fluctuation Evolution Prior to First ELM in DIII-D Edge Pedestal. Presented by G. Wang a, In collaboration with

UCLA. Broadband Magnetic and Density Fluctuation Evolution Prior to First ELM in DIII-D Edge Pedestal. Presented by G. Wang a, In collaboration with Broadband Magnetic and Density Fluctuation Evolution Prior to First ELM in DIII-D Edge Pedestal Presented by G. Wang a, In collaboration with W.A. Peebles a, P.B. Snyder b, T.L. Rhodes a, E.J. Doyle a,

More information

Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas

Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas R.D. Sydora, J.-N. Leboeuf, J. M. Dawson, V.K. Decyk, M.W. Kissick, C. L. Rettig, T. L. Rhodes,

More information

Experimental test of the neoclassical theory of poloidal rotation

Experimental test of the neoclassical theory of poloidal rotation Experimental test of the neoclassical theory of poloidal rotation Presented by Wayne Solomon with contributions from K.H. Burrell, R. Andre, L.R. Baylor, R. Budny, P. Gohil, R.J. Groebner, C.T. Holcomb,

More information

Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas

Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas D. Borba 1,9, R. Nazikian 2, B. Alper 3, H.L. Berk 4, A. Boboc 3, R.V. Budny 2, K.H. Burrell 5, M. De Baar

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak

Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIII-D Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General

More information

GA A23430 ADVANCED TOKAMAK PHYSICS IN DIII D

GA A23430 ADVANCED TOKAMAK PHYSICS IN DIII D GA A343 ADVANCED TOKAMAK PHYSICS IN DIII D by C.C. PETTY, T.C. LUCE, P.A. POLITZER, M.R. WADE, S.L. ALLEN, M.E. AUSTIN, B. BRAY, K.H. BURRELL, T.A. CASPER, M.S. CHU, J.R. FERRON, E.D. FREDRICKSON, A.M.

More information

GA A23403 GAS PUFF FUELED H MODE DISCHARGES WITH GOOD ENERGY CONFINEMENT ABOVE THE GREENWALD DENSITY LIMIT ON DIII D

GA A23403 GAS PUFF FUELED H MODE DISCHARGES WITH GOOD ENERGY CONFINEMENT ABOVE THE GREENWALD DENSITY LIMIT ON DIII D GA A23403 GAS PUFF FUELED H MODE DISCHARGES WITH GOOD ENERGY CONFINEMENT ABOVE THE GREENWALD DENSITY LIMIT ON DIII D by T.H. OSBORNE, M.A. MAHDAVI, M.S. CHU, M.E. FENSTERMACHER, R.J. La HAYE, A.W. LEONARD,

More information

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod D. Kwak, A. E. White, J. E. Rice, N. T. Howard, C. Gao, M. L. Reinke, M. Greenwald, C. Angioni, R. M. McDermott, and the C-Mod and ASDEX

More information

GA A27418 THE ROLE OF ZONAL FLOWS AND PREDATOR- PREY OSCILLATIONS IN THE FORMATION OF CORE AND EDGE TRANSPORT BARRIERS

GA A27418 THE ROLE OF ZONAL FLOWS AND PREDATOR- PREY OSCILLATIONS IN THE FORMATION OF CORE AND EDGE TRANSPORT BARRIERS GA A27418 THE ROLE OF ZONAL FLOWS AND PREDATOR- PREY OSCILLATIONS IN THE FORMATION OF CORE AND EDGE TRANSPORT BARRIERS by L. SCHMITZ, L. ZENG, T.L. RHODES, J.C. HILLESHEIM, W.A. PEEBLES, R.J. GROEBNER,

More information

GA A22993 EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE STABILITY IN DIII D

GA A22993 EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE STABILITY IN DIII D GA A22993 EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE by L.L. LAO, V.S. CHAN, L. CHEN, E.J. DOYLE, J.R. FERRON, R.J. GROEBNER, G.L. JACKSON, R.J. LA HAYE, E.A. LAZARUS, G.R. McKEE, R.L. MILLER, M. MURAKAMI,

More information

EVIDENCE FOR ANOMALOUS EFFECTS ON THE CURRENT EVOLUTION IN TOKAMAK OPERATING SCENARIOS

EVIDENCE FOR ANOMALOUS EFFECTS ON THE CURRENT EVOLUTION IN TOKAMAK OPERATING SCENARIOS GA A25580 EVIDENCE FOR ANOMALOUS EFFECTS ON THE CURRENT EVOLUTION IN TOKAMAK OPERATING SCENARIOS by T.A. CASPER, R.J. JAYAKUMAR, S.L. ALLEN, C.T. HOLCOMB, M.A. MAKOWSKI, L.D. PEARLSTEIN, H.L. BERK, C.M.

More information

Resistive Wall Mode Control in DIII-D

Resistive Wall Mode Control in DIII-D Resistive Wall Mode Control in DIII-D by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil

More information

DYNAMICS OF THE FORMATION, SUSTAINMENT, AND DESTRUCTION OF TRANSPORT BARRIERS IN MAGNETICALLY CONTAINED FUSION PLASMAS

DYNAMICS OF THE FORMATION, SUSTAINMENT, AND DESTRUCTION OF TRANSPORT BARRIERS IN MAGNETICALLY CONTAINED FUSION PLASMAS GA A23775 DYNAMICS OF THE FORMATION, SUSTAINMENT, AND DESTRUCTION OF TRANSPORT BARRIERS IN MAGNETICALLY CONTAINED FUSION PLASMAS by P. GOHIL NOVEMBER 2001 QTYUIOP DISCLAIMER This report was prepared as

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES J. Mandrekas, W.M. Stacey Georgia Institute of Technology M. Murakami, M.R. Wade ORNL G. L. Jackson General Atomics Presented at the

More information

GA A26474 SYNERGY IN TWO-FREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIII-D

GA A26474 SYNERGY IN TWO-FREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIII-D GA A26474 SYNERGY IN TWO-FREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIII-D by R.I. PINSKER, W.W. HEIDBRINK, M. PORKOLAB, F.W. BAITY, M. CHOI, J.C. HOSEA, and Y. ZHU JULY 2009 DISCLAIMER This

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIII-D HIGH PERFORMANCE DISCHARGES

IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIII-D HIGH PERFORMANCE DISCHARGES IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIII-D HIGH PERFORMANCE DISCHARGES by L.L. LAO, J.R. FERRON, E.J. STRAIT, V.S. CHAN, M.S. CHU, E.A. LAZARUS, TIC. LUCE, R.L. MILLER,

More information

WITH AN INTERNAL TRANSPORT BARRIER

WITH AN INTERNAL TRANSPORT BARRIER GAA22990 colvf4g I DbIL BEHAVIOR OF ELECTRON AND ION TRANSPORT IN DISCHARGES WITH AN INTERNAL TRANSPORT BARRIER IN THE DIIID TOKAMAK by C.M. GREENFIELD C.L. REITIG G.M. STAEBLER B.W. STALLAR M.E. AUSTIN

More information

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier EX/C-Rb Relationship between particle and heat transport in JT-U plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),

More information

ELMs and Constraints on the H-Mode Pedestal:

ELMs and Constraints on the H-Mode Pedestal: ELMs and Constraints on the H-Mode Pedestal: A Model Based on Peeling-Ballooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,

More information

Rotation Speed Differences of Impurity Species in the DIII-D Tokamak and Comparison with Neoclassical Theory

Rotation Speed Differences of Impurity Species in the DIII-D Tokamak and Comparison with Neoclassical Theory Rotation Speed Differences of Impurity Species in the DIII-D Tokamak and Comparison with Neoclassical Theory L.R. Baylor, K.H. Burrell*, R.J. Groebner*, D.R. Ernst #, W.A. Houlberg, M. Murakami, and The

More information

Predicting the Rotation Profile in ITER

Predicting the Rotation Profile in ITER Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

DIII D Research in Support of ITER

DIII D Research in Support of ITER Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 13-18, 28 DIII-D Research Has Made Significant Contributions in the Design

More information

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER

More information

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges by J.R. Ferron with T.C. Luce, P.A. Politzer, R. Jayakumar, * and M.R. Wade *Lawrence Livermore

More information

THE DIII D PROGRAM THREE-YEAR PLAN

THE DIII D PROGRAM THREE-YEAR PLAN THE PROGRAM THREE-YEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is well-aligned

More information

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D GA A271 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LIN-LIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER AUGUST 2001 DISCLAIMER This

More information

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Z. Yan 1, G.R. McKee 1, J.A. Boedo 2, D.L. Rudakov 2, P.H. Diamond 2, G. Tynan 2, R.J. Fonck 1, R.J. Groebner 3, T.H. Osborne 3, and

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

Electron Transport and Improved Confinement on Tore Supra

Electron Transport and Improved Confinement on Tore Supra Electron Transport and Improved Confinement on Tore Supra G. T. Hoang, C. Bourdelle, X. Garbet, T. Aniel, G. Giruzzi, M. Ottaviani. Association EURATOM-CEA. CEA-Cadarache, 38, St Paul-lez-Durance, France

More information

Characteristics of the H-mode H and Extrapolation to ITER

Characteristics of the H-mode H and Extrapolation to ITER Characteristics of the H-mode H Pedestal and Extrapolation to ITER The H-mode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference

More information

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012 Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty

More information

Electron temperature barriers in the RFX-mod experiment

Electron temperature barriers in the RFX-mod experiment Electron temperature barriers in the RFX-mod experiment A. Scaggion Consorzio RFX, Padova, Italy Tuesday 5 th October 2010 ADVANCED PHYSICS LESSONS 27/09/2010 07/10/2010 IPP GARCHING JOINT EUROPEAN RESEARCH

More information

Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas

Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas Dynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas K. Ida 1), Y. Sakamoto 2), M. Yoshinuma 1), H. Takenaga 2), K. Nagaoka 1), N. Oyama 2), M. Osakabe 1), M. Yokoyama

More information

Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges

Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges R. C. Wolf, J. Hobirk, G. Conway, O. Gruber, A. Gude, S. Günter, K. Kirov, B. Kurzan, M. Maraschek, P. J.

More information

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139 Alcator C-Mod Double Transport Barrier Plasmas in Alcator C-Mod J.E. Rice for the C-Mod Group MIT PSFC, Cambridge, MA 139 IAEA Lyon, Oct. 17, Outline Double Barrier Plasma Profiles and Modeling Conditions

More information

ECH Density Pumpout and Small Scale Turbulence in DIII-D

ECH Density Pumpout and Small Scale Turbulence in DIII-D ECH Density Pumpout and Small Scale Turbulence in DIII-D By K.L. Wong, T.L. Rhodes, R. Prater, R. Jayakumar, R. Budny, C.C. Petty, R. Nazikian, and W.A. Peebles Background It has been known for more than

More information

GA A22489 STABILITY IN HIGH GAIN PLASMAS IN DIII D

GA A22489 STABILITY IN HIGH GAIN PLASMAS IN DIII D GA A489 by E.A. LAZARUS, G.A. NAVRATIL, E.J. STRAIT, B.W. RICE, J.R. FERRON, C.M. GREENFIELD, M.E. AUSTIN, D.R. BAKER, K.H. BURRELL, T.A. CASPER, V.S. CHAN, J.C. DeBOO, E.J. DOYLE, R. DURST, C.B. FOREST,

More information

Electron Transport Stiffness and Heat Pulse Propagation on DIII-D

Electron Transport Stiffness and Heat Pulse Propagation on DIII-D Electron Transport Stiffness and Heat Pulse Propagation on DIII-D by C.C. Petty, J.C. DeBoo, C.H. Holland, 1 S.P. Smith, A.E. White, 2 K.H. Burrell, J.C. Hillesheim 3 and T.C. Luce 1 University of California

More information

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations 1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science

More information

W.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA

W.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA INTRINSICALLY STEADY STATE TOKAMAKS K.C. SHAING, A.Y. AYDEMIR, R.D. HAZELTINE Institute for Fusion Studies, The University of Texas at Austin, Austin TX 78712 USA W.A. HOULBERG Oak Ridge National Lab.,

More information

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-1 TOKAMAK PLASMAS V. Vershkov, L.G. Eliseev, S.A. Grashin. A.V. Melnikov, D.A. Shelukhin, S.V. Soldatov, A.O. Urazbaev and T-1 team

More information

GA A24340 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII D: EXPERIMENT AND THEORY

GA A24340 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII D: EXPERIMENT AND THEORY GA A ELECTRON CYCLOTRON CURRENT DRIVE IN DIII D: EXPERIMENT AND THEORY by R. PRATER, C.C. PETTY, T.C. LUCE, R.W. HARVEY, M. CHOI, R.J. LA HAYE, Y.-R. LIN-LIU, J. LOHR, M. MURAKAMI, M.R. WADE, and K.-L.

More information

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co Transport Studies in Alcator C-Mod Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co With Contributions from: I. Bespamyatnov, P. T. Bonoli*, D. Ernst*, M.

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri

More information

Physics of Confinement Improvement of Plasma with Impurity Injection in DIII-D

Physics of Confinement Improvement of Plasma with Impurity Injection in DIII-D Physics of Confinement Improvement of Plasma with Impurity Injection in DIII-D M. Murakami, G.R. McKee, G.L.Jackson, 3 G.M. Staebler, 3 D.A. Alexander, D.R. Baker, 3 G. Bateman, 5 L.R. Baylor, J.A. Boedo,

More information

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was

More information

GA A27235 EULERIAN SIMULATIONS OF NEOCLASSICAL FLOWS AND TRANSPORT IN THE TOKAMAK PLASMA EDGE AND OUTER CORE

GA A27235 EULERIAN SIMULATIONS OF NEOCLASSICAL FLOWS AND TRANSPORT IN THE TOKAMAK PLASMA EDGE AND OUTER CORE GA A27235 EULERIAN SIMULATIONS OF NEOCLASSICAL FLOWS AND TRANSPORT IN THE TOKAMAK PLASMA EDGE AND OUTER CORE by E.A. BELLI, J.A. BOEDO, J. CANDY, R.H. COHEN, P. COLELLA, M.A. DORF, M.R. DORR, J.A. HITTINGER,

More information

Studies of Turbulence and Transport in Alcator C- Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO*

Studies of Turbulence and Transport in Alcator C- Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO* Studies of Turbulence and Transport in C- Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO* M. Porkolab 1, L. Lin 1, E.M. Edlund 1, J.C. Rost 1, C.L. Fiore 1, M. Greenwald 1, Y.

More information

Enhanced con nement discharges in DIII-D with neon and argon induced radiation

Enhanced con nement discharges in DIII-D with neon and argon induced radiation Journal of Nuclear Materials 266±269 (1999) 380±385 Enhanced con nement discharges in DIII-D with neon and argon induced radiation G.L. Jackson a, *, M. Murakami b, G.M. Staebler a, M.R. Wade b, A.M. Messiaen

More information

C-Mod Transport Program

C-Mod Transport Program C-Mod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where C-Mod

More information

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Kenichi NAGAOKA 1,2), Hiromi TAKAHASHI 1,2), Kenji TANAKA 1), Masaki OSAKABE 1,2), Sadayoshi MURAKAMI

More information

MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges

MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges P.B. Snyder 1 Contributions from: H.R. Wilson 2, D.P. Brennan 1, K.H.

More information

Recent results from lower hybrid current drive experiments on Alcator C-Mod

Recent results from lower hybrid current drive experiments on Alcator C-Mod Recent results from lower hybrid current drive experiments on Alcator C-Mod R. R. Parker, S.-G. Baek, C. Lau, Y. Ma, O. Meneghini, R. T. Mumgaard, Y. Podpaly, M. Porkolab, J.E. Rice, A. E. Schmidt, S.

More information

Comparison of theory-based and semi-empirical transport modelling in JET plasmas with ITBs

Comparison of theory-based and semi-empirical transport modelling in JET plasmas with ITBs INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion (). p. PLASMA PHYSICS AND CONTROLLED FUSION PII: S7-()9-X Comparison of theory-based and semi-empirical transport modelling in JET plasmas with

More information

GA A23698 ELECTRON CYCLOTRON WAVE EXPERIMENTS ON DIII D

GA A23698 ELECTRON CYCLOTRON WAVE EXPERIMENTS ON DIII D GA A23698 ELECTRON CYCLOTRON WAVE EXPERIMENTS ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LIN-LIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER JUNE 21 DISCLAIMER

More information

Advanced Tokamak Research in JT-60U and JT-60SA

Advanced Tokamak Research in JT-60U and JT-60SA I-07 Advanced Tokamak Research in and JT-60SA A. Isayama for the JT-60 team 18th International Toki Conference (ITC18) December 9-12, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development

More information