The RFP: Plasma Confinement with a Reversed Twist

 Maria McBride
 11 months ago
 Views:
Transcription
1 The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997
2 A tutorial on the Reversed Field Pinch (RFP). Worldwide research on the RFP has been ongoing since 196 s when a quiet period observed in ZETA device plasmas was correlated with reversed toroidal field at the edge of the plasma. Although the integrated effort in RFP research is much smaller than for the tokamak or stellarator, the RFP program continues to make progress in key areas important to establishing the viability of the concept for fusion energy. This tutorial will focus on answering What s an RFP? advantages as a fusion concept important physics results Key theme: Role of magnetic turbulence in plasmas a laboratory in nonlinear MHD magnetic dynamo transport from magnetic fluctuations reducing transport using physics understanding
3 RFP magnetic equilibrium has large shear with toroidal field, B φ poloidal field, B θ. Toroidally axisymmetric, currentcarrying plasma: ( r, θ, φ ) coordinates R = major radial poloidal θ R r Diffuse field and current: toroidal φ Bφ J φ B θ J θ Safety factor, radius, r reversal radius a Large magnetic shear, q(r) = rb φ RB θ = dφ dθ << 1 1 q dq dr q(r) Tokamak ~1 ~.2 RFP radius, r a
4 Smaller magnetic field makes the RFP conceptually compact, high power density fusion reactor. Key RFP reactor attributes: compact high beta β~1% high engineering beta (low field at plasma surface) low magnet forces, nonsuperconducting construction current disruptionfree operation; soft density limit free choice of aspect ratio R/a Relative Major Physics & Engineering Challenges: Emphasis improving confinement & beta 1 conducting shell stabilization.1 large current drive requirement.5 large wall loading (high power density).1
5 Modest international RFP program 2. m RFX (Italy) 2 MA design, 1 MA to date Operating 1.5 m 1.24 m MST (UWMadison).5 MA EXTRAPT2 (Sweden).3 MA, formerly OHTE (GA) TPE2M (Japan) <.1 MA, poloidal/toroidal divertor STE2 (Japan) <.1 MA In Construction 1.7 m TPERX (Japan) 1 MA Most Recent Reactor Study 3.9 m TITAN 18 MA Past medium sized experiments: HBTX Series (Culham), ZT4M (LANL), TPE Series (Japan), OHTE (GA), ETABETAII (Italy), REPUTE (Japan)
6 Toroidal field reversal guarantees large shear necessary for ideal MHD stability. Ideal kink stability generally requires either no shear minima or q > 1 (KruskalShafranov). Ideal interchange stability requires finite shear for q < 1 : destabilizing peaked pressure dp dr (1 q 2 r ) + B 2 φ 32π weak toroidicity in RFP (bad curvature) 1 q dq dr 2 > (Mercier criterion) stabilizing magnetic shear q(r) = rb φ RB θ Tokamak 1 KruskalShafranov intermediate RFP radius, r dq dr = possible instability a Ideal MHD beta limit ~4% < observed beta 12%
7 An apparent mystery: how is an RFP sustained? A resistive, steadystate, axisymmetric reversed toroidal field equilibrium is not possible : Bφ J θ radius, r a reversal implies: ( B) θ = 1 R B r φ B φ r J θ, which for finite η E θ = B t φ ds (non steadystate) But in an RFP, field reversal is maintained as long as toroidal current is sustained ( E θ = ) : noninductive poloidal current symmetry breaking turbulence The RFP dynamo
8 RFP seeks relaxed minimum energy state. A relaxed state is the minimum energy configuration of a finite resistance plasma subject to the global constraint of constant magnetic helcity [J.B. Taylor, PRL 33, 1139 (1974)]. magnetic helicity: K = V A BdV = constant of motion For a pressureless (forcefree) plasma within a closed, perfectly conducting shell, relaxed states are : B = λb where λ = µ o J B/B 2 =constant in a cylinder: B φ = B o J o (λr) B θ = B o J 1 (λr) B(r) B o B φ ~ J (λr) B θ ~ J 1 (λr) r reversal occurs when aλ > 2.44 a 2(a/R) q() = aλ o λ = µ o J B / B 2 RFP experiment relaxed state r a
9 Discrete event dynamo illustrates tendency toward relaxed state. Sudden relaxation events result in toroidal flux generation discrete dynamo cycle I φ B φ MST 5 ms B φ (a) Time before after λ = J / B peaking from: (1) E B maximum on axis (2) current diffusion to hot core radius, r a
10 Resistive MHD provides a detailed theory for the RFP dynamo mechanism. Essential behavior captured in pressureless limit A = SV B ηj (Ohm s law) t V t = SV V + SJ B + ν 2 V S Key MHD parameter Lundquist number: = τ res / τ Alfven Turbulent V B = ηj E sustains required for B φ > : essential for conventional, Ohmically driven RFP. converts poloidal flux into toroidal flux. Nonlinear, resistive MHD computational demonstration of RFP sustainment : J θ 3 E = E φ B φ / B E φ = constant Parallel Ohm s Law 2 1 ηj V B radius, r less current more current
11 Resistive MHD tearing modes are the dominant turbulence in the RFP. Tearing modes k = m θ driven by at r ˆ + n φ R ˆ dλ dr q=m/n resonant surfaces (k B=). growth rate: γ ~ S α [ β B r / B r ] jump jump in the 1st derivative across resonant surface B r + F F + k 2 B r F F ~ B B ~ d J F k B dr B = d λ dr Tearing refers to the reconnection of magnetic field lines allowed by finite resistivity. changes magnetic field topology, exactly what is required for the RFP dynamo q=m/n W ~ B r / B resonant surface magnetic island
12 Although mode amplitudes only ~1%, island overlap produces global stochasticity. Mode amplitudes, spectrum, eigenstructure, etc. agree well with theory. (%) B (n) B nspectrum MST B r,θ,φ B max Radial mode structure B φ B r B θ HBTX1A HBTX1A n radius, r Close spacing of resonant surfaces encourages island overlap global stochasticity. q(r) 1,5 (m,n) 1,6 typical island width 1,7 magnetic stochasticity
13 Energy transport in the RFP results from magnetic fluctuations. Well known expectation for transport in a stationary, stochastic magnetic field (Rechester & Rosenbluth,1978) χ ~ v T L c ( B r / B) 2 v T = thermal velocity L c = parallel B correlation length Global power loss correlates strongly with fluctuation amplitude P Ω (MW) ~ χ global B 2 (G) MST Time (ms)
14 Closer examination finds surprises in nature of transport. Generally, magneticfluctuationinduced radial fluxes from parallel motion are : J B Γ r = nv r ˆ = J B r ˆ qb = r particles: qb Q r = Q r ˆ = Q B r ˆ = Q B r heat: B B Q = 1 2 mv2 v f (v)dv ( ) Probe measurements of J B r and magneticfluctuationinduced transport Q B r identify expected but with surprises: Q e 2 3 T eγ e (convective transport) Γ e,q e ~ v Ti ( B r / B) 2 (ambipolar constrained) convective, ambipolar magnetic transport can occur when local magnetic fluctuation is dominantly generated by modes resonant at distant radii (P.W. Terry et al.)
15 Controlled reduction of magnetic fluctuations best path to improved RFP confinement. Possible ways to reduce tearing fluctuations: natural Sscaling (larger, hotter plasmas have smaller B) active current profile J(r)control (attack free energy) active feedback stabilization sheared flow (some experimental evidence) Natural Sscaling appears weaker at larger S = τ res / τ Alfven : best possible scaling if B ~ V ~ S 1 / 2 & Phase( V, B ) ~ S E + V B = S 1 J (dimensionless Ohm s law) weak scaling implies active fluctuation control 2 1 B rms / B (%) OHTE S.51 S.26 MST S = L / R τ A
16 Current profile control to reduce dynamo. Conventional RFP (MHD dynamo) Apply E φ peak λ = J / B m=1 tearing V B flatten dynamo λ = J / B heat & particle loss J(r)controlled RFP (reduce dynamo) adjust Apply E φ + J θ drive λ = J / B minimize m=1 tearing reduce heat & particle loss
17 MHD Simulated Current Profile Control Demonstrates B Suppression Ad hoc parallel force added to Ohm s law to simulate generic poloidal current drive : A F a b ˆ t + ne = V B ηj J B B π with J(r)control Standard RFP ad hoc force profile r/a Standard RFP log b B with J(r)control n RFP with J(r)Control 6π Nonlinear, 3D resistive MHD computation Standard RFP Stochastic Field φ Closed Flux Surfaces φ r / a r / a
18 Inductive J(r)control improves energy confinement fivefold in MST. Methods for J(r)control: inductive pulsed poloidal current drive (PPCD) electrostatic current injection (in progress) RF current drive (future) Fluctuation, Energy Confinement, Poloidal Beta, b rms B τ E β θ Conventional RFP PPCD 1.5%.5.8% 1 ms 5 5 ms 6% 1.5 9% E θ (a) (V/m) b rms 3 B 2 (%) 1 PPCD MST Time (ms) Apply poloidal E θ to drive edge current. Reduces Magnetic Fluctuation
19 What s the MHD optimized RFP? Current profile: steadystate via electrostatic and RF current drive are or will be tested. Pressure profile: need auxiliary heating to test beta limit (separate from transport) with improved energy confinement from current profile control, pressure is increasing pressure profile control Shape and aspect ratio: all but a couple of RFPs have been circular toroids all RFPs have R / a 3; at small aspect ratio, there are fewer resonant modes possibly better confinement or easier active control. shape:?? aspect ratio:.2 q(r) n=5 n=6 n=1.5 q(r) n=2 n=3 n=4
20 Summary RFP contributions to plasma science wide ranging: practical fusion power terrestrial laboratory for magnetic plasma dynamo behavior of plasmas with strong magnetic turbulence Practical fusion potential stems from low field, high beta: compact low magnet forces, nonsuperconducting disruptionfree operation, & free choice of aspect ratio Conventional RFP requires a magnetic dynamo: nonlinear, resistive MHD success story consequent strong magnetic turbulence Understanding of fundamental processes reverses stigma relaxation = poor confinement current profile control to circumvent dynamo preserves and enhances attractive reactor features Online RFP bibliography, including RFP reviews: or search: Madison Symmetric Torus
Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UWMadison
Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UWMadison CMPD & CMSO Winter School UCLA Jan 510, 2009 Magnetic perturbations can destroy the nestedsurface topology desired for
More informationEvaluation of CT injection to RFP for performance improvement and reconnection studies
Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi
More informationMST and the Reversed Field Pinch. John Sarff
MST and the Reversed Field Pinch John Sarff APAM Columbia University Sep 19, 2014 Outline Tutoriallevel review of tearing stability, magnetic relaxation, and transport in the RFP Ionrelated physics topics
More informationMomentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi
Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center  University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationarxiv: v1 [physics.plasmph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD selforganization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasmph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
More informationTomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversedfield pinch
PHYSICS OF PLASMAS 13, 012510 2006 Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversedfield pinch P. Franz, L. Marrelli, P. Piovesan, and I. Predebon Consorzio RFX,
More informationWhat is a reversed field pinch?
What is a reversed field pinch? Dominique Escande To cite this version: Dominique Escande. What is a reversed field pinch?. 2013. HAL Id: hal00909102 https://hal.archivesouvertes.fr/hal00909102
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationStellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK
Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices
More informationThe FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is
and Stability of FieldReversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 921865608 P.O. APS Annual APS Meeting of the Division of Plasma Physics
More informationSMR/ Summer College on Plasma Physics. 30 July  24 August, Introduction to Magnetic Island Theory.
SMR/18561 2007 Summer College on Plasma Physics 30 July  24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction
More informationExperimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration
Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration JennyAnn Malmberg DOCTORAL THESIS Alfvén Laboratory Royal Institute of Technology Stockholm
More informationSimulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015
Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all
More informationMeasuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor
PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University
More informationPlasma Stability in Tokamaks and Stellarators
Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1 May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,
More informationChapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective
Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density
More informationRotation and Neoclassical Ripple Transport in ITER
Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics
More informationTokamak/Helical Configurations Related to LHD and CHSqa
9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 2123, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHSqa
More informationToroidal confinement of nonneutral plasma. Martin Droba
Toroidal confinement of nonneutral plasma Martin Droba Contents Experiments with toroidal nonneutral plasma Magnetic surfaces CNT and IAPhigh current ring Conclusion 2. Experiments with toroidal nonneutral
More information22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 19
. tability of the straight tokamak.65, MHD Theory of Fusion ystems Prof. Freidberg Lecture 9. ressure driven modes (uydams Criterion). internal modes 3. external modes. Tokamak Ordering Bθ ar B μ q or
More informationEffects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal
Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.
More informationNonsolenoidal Startup and Plasma Stability at NearUnity Aspect Ratio in the Pegasus Toroidal Experiment
1 EXS/P207 Nonsolenoidal Startup and Plasma Stability at NearUnity Aspect Ratio in the Pegasus Toroidal Experiment R.J. Fonck 1), D.J. Battaglia 2), M.W. Bongard 1), E.T. Hinson 1), A.J. Redd 1), D.J.
More informationThe Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin
The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy
More informationTokamak Fusion Basics and the MHD Equations
MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers
More informationTokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^
Tokamak operation at low q and scaling toward a fusion machine R. Paccagnella^ Consorzio RFX, Associazione EuratomENEA sulla Fusione, Padova, Italy ^ and Istituto Gas Ionizzati del Consiglio Nazionale
More informationObservation of tearing mode deceleration and locking due to eddy currents induced in a conducting shell
PHYSICS OF PLASMAS VOLUME 11, NUMBER 5 MAY 2004 Observation of tearing mode deceleration and locking due to eddy currents induced in a conducting shell B. E. Chapman Department of Physics, University of
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationOverview of Pilot Plant Studies
Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology
More informationToroidal confinement devices
Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power
More informationModelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7/8// Modelling of the penetration process of externally applied helical magnetic perturbation
More informationImpact of EnergeticIonDriven Global Modes on Toroidal Plasma Confinements
Impact of EnergeticIonDriven Global Modes on Toroidal Plasma Confinements Kazuo TOI CHS & LHD Experimental Group National Institute for Fusion Science Toki 595292, Japan Special contributions from:
More information37. MHD RELAXATION: MAGNETIC SELFORGANIZATION
37. MHD RELAXATION: MAGNETIC SELFORGANIZATION Magnetized fluids and plasmas are observed to exist naturally in states that are relatively independent of their initial conditions, or the way in which the
More informationGA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER
GA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was
More informationGeneralized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration
Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration D.A. Kaltsas and G.N. Throumoulopoulos Department of Physics, University of Ioannina, GR 451 10 Ioannina,
More informationELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations
1 EXC/P502 ELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science
More informationMagnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan
The Sun Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan 2017 CNS Conference Niagara Falls, June 47, 2017 Tokamak Outline Fusion
More informationINITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS
INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation
More informationNeoclassical Tearing Modes
Neoclassical Tearing Modes O. Sauter 1, H. Zohm 2 1 CRPPEPFL, Lausanne, Switzerland 2 MaxPlanckInstitut für Plasmaphysik, Garching, Germany Physics of ITER DPG Advanced Physics School 2226 Sept, 2014,
More informationAmplification of magnetic fields in core collapse
Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo CerdáDurán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; MaxPlanckInstitut
More informationThe Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory
The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal
More informationChapter IX: Nuclear fusion
Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon
More informationLinjin Zheng, Infernal Modes at Tokamak H mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO)
International Sherwood Fusion Theory Conference, Austin, May 24, 2011 Infernal Modes at Tokamak H mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) Linjin Zheng, M. T. Kotschenreuther,
More informationBifurcated states of a rotating tokamak plasma in the presence of a static errorfield
Bifurcated states of a rotating tokamak plasma in the presence of a static errorfield Citation: Physics of Plasmas (1994present) 5, 3325 (1998); doi: 10.1063/1.873000 View online: http://dx.doi.org/10.1063/1.873000
More informationResearch of Basic Plasma Physics Toward Nuclear Fusion in LHD
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 5095292, Japan (Received 4 January 2010 / Accepted
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationGyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
More informationMHD Equilibrium and Stability of Tokamaks and RFP Systems with 3D Helical Cores
15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 MHD Equilibrium and Stability of Tokamaks and FP Systems with 3D Helical Cores W. A. Cooper Ecole Polytechnique Fédérale de
More informationEffect of local E B flow shear on the stability of magnetic islands in tokamak plasmas
Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994present) 16, 052502 (2009); doi: 10.1063/1.3126964
More informationCharacterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod
1 EX/P422 Characterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.
More informationAstrophysical Dynamos
Astrophysical Dynamos Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics April 19, 2016 These lecture notes are based off of Kulsrud, Cowling (1981), Beck et al.
More informationJ. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA
PFC/JA8838 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted
More informationDYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL
DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL MAGNETIC FIELD OF THE EARTH DIPOLE Field Structure Permanent magnetization of Core? 80% of field is dipole 20 % is non dipole 2)
More informationRESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY
Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 07413335/87$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE
More informationAdvancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment
Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment E. T. Hinson J. L. Barr, M. W. Bongard, M. G. Burke, R. J. Fonck, J. M. Perry, A. J. Redd,
More informationThe Magnetorotational Instability
The Magnetorotational Instability Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley
More informationInitial Experimental Program Plan for HSX
Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UWMadison HSX Plasma Laboratory Team The Helically
More informationGA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID
GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,
More informationDIII D Research in Support of ITER
Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 1318, 28 DIIID Research Has Made Significant Contributions in the Design
More informationSaturated ideal modes in advanced tokamak regimes in MAST
Saturated ideal modes in advanced tokamak regimes in MAST IT Chapman 1, MD Hua 1,2, SD Pinches 1, RJ Akers 1, AR Field 1, JP Graves 3, RJ Hastie 1, CA Michael 1 and the MAST Team 1 EURATOM/CCFE Fusion
More informationControl of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain
Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain arxiv:146.5245v1 [physics.plasmph] 2 Jun 214 D. P. Brennan and J. M. Finn June 23, 214 Department of Astrophysical
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More informationJacob s Ladder Controlling Lightning
Host: Fusion specialist: Jacob s Ladder Controlling Lightning PART 1 Jacob s ladder demonstration Video Teacher resources Phil Dooley European Fusion Development Agreement Peter de Vries European Fusion
More informationELM control with RMP: plasma response models and the role of edge peeling response
ELM control with RMP: plasma response models and the role of edge peeling response Yueqiang Liu 1,2,3,*, C.J. Ham 1, A. Kirk 1, Li Li 4,5,6, A. Loarte 7, D.A. Ryan 8,1, Youwen Sun 9, W. Suttrop 10, Xu
More informationarxiv:physics/ v1 [physics.plasmph] 14 Nov 2005
arxiv:physics/0511124v1 [physics.plasmph] 14 Nov 2005 Early nonlinear regime of MHD internal modes: the resistive case M.C. Firpo Laboratoire de Physique et Technologie des Plasmas (C.N.R.S. UMR 7648),
More informationActive and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod
Active and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J
More informationTokamak/Stellarator (vs. FRC) : Transport and Other Fundamentals
Tokamak/Stellarator (vs. FRC) : Transport and Other Fundamentals Y. Kishimoto + and T. Tajima *,** + Kyoto university, Uji, Kyoto, Japan, 611 11, Japan * University of California, Irvine, CA 92697, USA
More informationq(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5
EX/P1 MHD issues in Tore Supra steadystate fully noninductive scenario P Maget 1), F Imbeaux 1), G Giruzzi 1), V S Udintsev ), G T A Huysmans 1), H Lütjens 3), JL Ségui 1), M Goniche 1), Ph Moreau
More informationTransport at high beta in the NSTX spherical tokamak
Transport at high beta in the NSTX spherical tokamak Walter Guttenfelder 1, R.E. Bell 1, E. Belova 1, J. Candy 2, J.M. Canik 3,N. Crocker 4, E. Fredrickson 1, S.P. Gerhardt 1, N. Gorelenkov 1, S.M. Kaye
More informationHOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden
HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS Paul Garabedian and Geoffrey McFadden 1. Summary Runs of the NSTAB equilibrium and stability code show there are many 3D solutions of the advanced
More informationFUSION and PLASMA PHYSICS
FUSION and PLASMA PHYSICS My objectives: to explain why Nuclear Fusion is worth pursuing to describe some basic concepts behind magnetic confinement to summarize the history of fusion to describe some
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationImpact of neutral atoms on plasma turbulence in the tokamak edge region
Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International
More informationM. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2
P1.015 Nonlinear Modeling Benchmarks of Forced Magnetic Reconnection with NIMROD and M3DC1 M. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2 1 Department of Engineering
More informationJ.C. Sprott. Plasma Studies. University of Wisconsin
BOOTSTRAPCURRENTDRIVEN STEADYSTATE TOKAMAK J.C. Sprott PLP 891 January 1983 Plasma Studies University of Wisconsin These PLP Reports are informal and preliminary and as such may contain errors not yet
More informationThreedimensional MHD simulations of counterhelicity spheromak merging in the Swarthmore Spheromak Experiment
Threedimensional MHD simulations of counterhelicity spheromak merging in the Swarthmore Spheromak Experiment C. E. Myers, 1, a) E. V. Belova, 1 M. R. Brown, 2 T. Gray, 2 C. D. Cothran, 2, b) and M. J.
More informationVertical Displacement Events in Shaped Tokamaks. Abstract
Vertical Displacement Events in Shaped Tokamaks A. Y. Aydemir Institute for Fusion Studies The University of Texas at Austin Austin, Texas 78712 USA Abstract Computational studies of vertical displacement
More informationD 3 He HA tokamak device for experiments and power generations
D He HA tokamak device for experiments and power generations USJapan Fusion Power Plant Studies Contents University of Tokyo, Japan January , 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism,
More informationThe Virial Theorem, MHD Equilibria, and ForceFree Fields
The Virial Theorem, MHD Equilibria, and ForceFree Fields Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely
More informationModel based optimization and estimation of the field map during the breakdown phase in the ITER tokamak
Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università
More informationSTABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK
GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationReduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri
More informationPHYSICS DESIGN FOR ARIESCS
PHYSICS DESIGN FOR ARIESCS L. P. KU, a * P. R. GARABEDIAN, b J. LYON, c A. TURNBULL, d A. GROSSMAN, e T. K. MAU, e M. ZARNSTORFF, a and ARIES TEAM a Princeton Plasma Physics Laboratory, Princeton University,
More informationGA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME
GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.
More informationProgress in characterization of the Hmode pedestal
Journal of Physics: Conference Series Progress in characterization of the Hmode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and
More informationComparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry
Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado
More informationFast Secondary Reconnection and the Sawtooth Crash
Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEAIRFM, SaintPaullezDurance (France) 2 Université de Lorraine, Institut Jean Lamour UMRCNRS 7198, Nancy
More informationCurrent density modelling in JET and JT60U identity plasma experiments. Paula Sirén
Current density modelling in JET and JT60U identity plasma experiments Paula Sirén 1/12 1/16 EuratomTEKES EuratomTekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET
More informationImproved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)
Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen
More informationEffect of Biasing on Electron Temperature in IRT1 Tokamak
Effect of Biasing on Electron Temperature in IRT1 Tokamak Sakineh Meshkani 1, Mahmood Ghoranneviss 1 and Mansoureh Lafouti 2 1 Plasma Physics Research Center, Science and Research Branch, Islamic Azad
More informationNonlinear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.
Nonlinear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, P. Maget 1, N. Mellet 1, G. DifPradalier 1, G. Latu 1, C. Passeron
More informationInitiatives in NonSolenoidal Startup and Hmode Physics at NearUnity A
Initiatives in NonSolenoidal Startup and Hmode Physics at NearUnity A M.W. Bongard, J.L. Barr, M.G. Burke, R.J. Fonck, E.T. Hinson, B.T. Lewicki, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome,
More informationEX/C35Rb Relationship between particle and heat transport in JT60U plasmas with internal transport barrier
EX/CRb Relationship between particle and heat transport in JTU plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),
More informationCMod Core Transport Program. Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center
CMod Core Transport Program Presented by Martin Greenwald CMod PAC Feb. 68, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly
More informationConfinement Studies during LHCD and LHW Ion Heating on HL1M
Confinement Studies during LHCD and LHW Ion Heating on HL1M Y. Liu, X.D.Li, E.Y. Wang, J. Rao, Y. Yuan, H. Xia, W.M. Xuan, S.W. Xue, X.T. Ding, G.C Guo, S.K. Yang, J.L. Luo, G.Y Liu, J.E. Zeng, L.F. Xie,
More informationConfinement of pure electron plasmas in the CNT stellarator
Confinement of pure electron plasmas in the CNT stellarator Thomas Sunn Pedersen CNT Columbia University In the City of New York Overview Background/introductory remarks CNT s magnetic topology (a stellarator)
More informationPhysics fundamentals for ITER
Plasma Phys. Control. Fusion 41 (1999) A99 A113. Printed in the UK PII: S07413335(99)975127 Physics fundamentals for ITER ITERJCT, ITER San Diego Joint Work Site, 11025 North Torrey Pines Rd, La Jolla,
More informationSmallScale Dynamo and the Magnetic Prandtl Number
MRI Turbulence Workshop, IAS, Princeton, 17.06.08 SmallScale Dynamo and the Magnetic Prandtl Number Alexander Schekochihin (Imperial College) with Steve Cowley (Culham & Imperial) Greg Hammett (Princeton)
More information1 EX/P59 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries
1 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),
More information