Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UWMadison


 Loraine Tyler
 1 years ago
 Views:
Transcription
1 Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UWMadison CMPD & CMSO Winter School UCLA Jan 510, 2009
2 Magnetic perturbations can destroy the nestedsurface topology desired for magnetic confinement. Stochastic instability occurs when magnetic islands overlap, causing the field lines to wander randomly throughout the plasma volume. Parallel streaming along the stochastic field leads to radial transport. Astrophysical plasmas have weak ordered field (naturally tangled ) nested magnetic surfaces (ideal) magnetic island formation if islands overlap, stochastic field (B perturbations from instability or error components)
3 Projection of radial field yields intuitive estimate of stochastic transport. Recall parallel heat transport T t = χ ( ˆ b ) 2 T where ˆ b = B/ B If B = B 0 + B r r ˆ where B 0 = wellordered field, forming nested magnetic surfaces T t = χ ( b ˆ ) 2 B T = χ r 2 T B 0 r 2 2 effective perpendicular transport (not quite rigorous, ok for fluid limit)
4 Small fluctuation amplitudes can yield large transport. Recall for classical electron transport χ 2 ν c ~ λ mfp χ ρ ν c Small magnetic fluctuation amplitude yields substantial transport χ B r B 0 2 ~ χ for B r B 0 ~ 10 3
5 Outline. Model for stochastic transport Comparisons with experimental measurements (mostly from the RFP)
6 Fluctuationinduced transport fluxes. Linearizing the drift kinetic equation f t + v f = 0 f = f 0 + f f 0 t = v E f = B 0 2 B 0 B + v B 0 f drift associated with electrostatic fluctuations streaming associated with magnetic fluctuations
7 Fluctuationinduced transport fluxes. Moments of the d.k.e. lead to the fluctuationinduced transport fluxes particle Γ r = dv f E B 0 2 B 0 B + v B 0 r ˆ = n E / B 0 + J B r /eb 0 electrostatic magnetic energy Q r = dv v 2 f E B 0 2 B 0 B + v B 0 r ˆ = p E / B 0 + Q B r / B 0 where... denotes an appropriate average, e.g., over an unperturbed magnetic flux surface
8 Model for stochastic magnetic transport. Very few selfconsistent models for magnetic fluctuation induced transport have been developed. Most analysis has been for a static, imposed set of magnetic fluctuations Error fields from misaligned magnets and other stray fields Low frequency turbulence Stochastic magnetic transport is described by a double diffusion process 1. Random walk of the magnetic field lines 2. Collisional or other crossfield transport process is required for particles to lose memory of which field line they follow
9 Magnetic diffusion. Divergence of neighboring field lines: flux tube r 0 distance, s, along unperturbed field B 0 r(s) = r 0 e s/lk δ δ(s) = r 0 e s/l K L K = KolmogorovLyaponov length
10 Magnetic diffusion. Magnetic diffusion coefficient: D m = (Δr)2 Δs = 0 B r (0) B r (s)ds B 0 2 (units of length) = L ac B r 2 / B 0 2 L ac = autocorrelation length for B L ac is related to the width of the k spectrum, L ac π /Δk ( L K ) in general
11 Stochastic transport in the collisionless limit. Consider a test particle streaming along the magnetic field flux tube distance, s, along unperturbed field B 0 (Δr) 2 = D m Δs average radial displacement associated with field line diffusion For λ mfp >> L ac χ st = (Δr)2 Δt = D mλ mfp τ c = D m v T v T = T / m (thermal velocity) τ c = λ mfp /v T (collision time)
12 Stochastic transport in the collisional limit. For λ mfp << L ac Δs ~ L ac, test particle must first diffuse along the field The parallel diffusion is given by: χ = (Δs)2 Δt = λ 2 mfp τ c χ st = (Δr)2 Δt = D m Δs Δt = D m L ac L 2 ac / χ = D m v λ mfp T L ac B 2 = χ r B 0 2
13 Stochastic transport in the collisional limit. For λ mfp << L ac Δs ~ L ac, test particle must first diffuse along the field The parallel diffusion is given by: χ = (Δs)2 Δt = λ 2 mfp τ c χ st = (Δr)2 Δt = D m Δs Δt = D m L ac L 2 ac / χ = D m v λ mfp T L ac B 2 = χ r B 0 2 Smooth transitional form: χ st = v T L eff B r 2 B 0 2 with L 1 eff = L 1 1 ac + λ mfp Krommes et al. provided a unifying discussion of various collisional limits with respect to characteristic scale lengths.
14 How well does the static field model work? Few direct measurements of stochastic transport. Inferences via energetic particles in tokamak plasmas, exploiting expected velocity dependence. Selforganizing plasmas like the RFP and spheromak provide good opportunity to test expectations, because they exhibit a broad spectrum of low frequency magnetic fluctuations.
15 The Reversed Field Pinch plasma configuration. RFP Magnetic Geometry MST parameters: n ~ cm 3 T e < 2 kev T ion ~ T e B < 0.5 T ρ ion ~ 1 cm
16 The MST at UWMadison. R = 1.5 m a = 0.5 m Ip < 0.6 MA
17 Main source of symmetry breaking magnetic field in the RFP is MHD tearing instability. Linear stability analysis using force balance J B = p B k = m θ ˆ n r R ˆ r F + φ F + k 2 B r 0 F = k B 0 F F ~ B 0 J ~ r B 0 B yields Growth rate depends on r J and the plasmaʼs resistivity Mode resonance appears at the minor radius where k B 0 0 k B 0 = 0 m n = rb φ RB θ = q(r) B r B 0 (see 2008 Winter School lectures) rdl θ Rdl φ
18 Tearing permits the creation of magnetic islands. resonant layer k B 0 0 r = r s r = r s Tearing reconnection magnetic island forms to B 0 island width w m,n = 4 B r,m,n (r s )L s B 0 (r s )k
19 Chirikov threshold condition for stochastic instability. If neighboring magnetic islands overlap, the field lines are allowed to wander from islandtoisland randomly. s = 1 2 w n+1 + w n r s,n+1 r s,n stochasticity parameter (crudely the number of islands overlapping a given radial location) s < 1 : islands do not overlap, no stochastic transport (but transport across the island is typically enhanced by its topology) s ~ 1 : weakly stochastic, magnetic diffusion and transport are transitional (e.g., as discussed by Boozer and White) s >> 1 : magnetic field line wandering is well approximated as a randomwalk diffusion process
20 Many possible tearing resonances occur across the radius of the RFP configuration. q(r) = rb φ RB θ B n B 0 1% Observed Spectrum Toroidal Mode, n
21 Chirikov threshold is exceeded, particularly in the midradius region where the density of rational magnetic surfaces is large q(r) s
22 Magnetic puncture plot indicates widespread magnetic stochasticity. B r,m,n (r) Eigenfunctions from nonlinear resistive MHD computation, normalized to measured B m,n (r = a). Field is modeled using B m,n (r) eigenfunctions, combined with equilibrium reconstruction that provides B 0 (r).
23 Direct measurement of magnetic fluctuationinduced stochastic transport. Measurements were made in MST (RFP), CCT (tokamak), and TJII (stellarator)
24 Measured electron heat flux in the edge of MST plasmas.
25 Measured islandinduced heat flux in CCT (tokamak at UCLA). Heat flux in the magnetic island scales as if stochastic
26 The amplitude of the tearing fluctuations in the RFP can be reduced using current profile control (PPCD). ~5X reduction of most modes B n B 0 allows tests of χ st ~ B 2 r scaling and dependence on spectral features
27 Region of stochastic field shrinks with current profile control. Standard PPCD Toroidal, φ Toroidal, φ r / a r / a
28 Power balance measurements provide the experimental electron heat conductivity profile. Electron heat flux Q e = χ e n r T e Te 0.6 (KeV) PPCDImproved PPCD Standard r/a χe (m2/s) Standard PPCDImproved PPCD PPCD r/a
29 Measured heat diffusivity consistent with collisionless stochastic transport model (where the field is stochastic). Standard PPCD 1000 Magnetic diffusivity is evaluated directly from an ensemble of magnetic field lines. 100 L ac << λ mfp χ e 10 χ st ~1 m ~10ʼs m χ st χ st = D m v T r/a r/a 1
30 Magnetic diffusivity as expressed by RechesterRosenbluth, PRL ʼ78. D m = πr m,n B r,m,n (r) 2 B z 2 δ[ m /n q(r) ] autocorrelation length, L ac RMS fluctuation amplitude^2 but only k = 0 modes resonant nearby r
31 Estimate of the autocorrelation length from the spectral width. For a tokamak B φ >> B θ k = k B B 1 m B φ r B θ + n R B φ = 1 m R q + n Δk ~ Δr k = n r rs R Δr 1 dq q dr rs ~ 1 mode radial width ~ 1 R (n=1 typically dominant)
32 RechesterRosenbluth magnetic diffusivity overestimates χ st for regions with low s.
33 Electron temperature gradient correlates with amplitude of tearing modes resonant at midradius T e (0) 0.8 (kev) 0.6 PPCD 0.4 Standard B rms = 15 n=8 B 2 n (a) midradius modes m =1, n 8
34 Electron temperature gradient does not correlate with largest mode, resonant in the core T e (0) 0.8 (kev) 0.6 PPCD T e (0) 0.8 (kev) Standard B rms = 15 n=8 B 2 n (a) m = 1, n = Dominant Mode B 1,6
35 Though parallel streaming transport is nonlocal, the tearing reconnection process is local B r B 2 1,6 linear eigenmodes D m ~ m,n B r,m,n (r) 2 B z 2 δ[ m /n q(r) ] RMS m =1, n =815 illustrates importance of k = r/a 1,6
36 Stochastic particle transport is affected by its inherent nonambipolar character. Since the thermal velocity is massdependent, electron and ion stochastic diffusion are not automatically ambipolar (unlike E B 0 motion). Harvey derived from the drift kinetic equation (collisionless limit) 1 Γ r ~ D m v T n 1 Q r ~ D m v T n n r + 1 2T n r + 3 2T T r + ee A T T r + ee A T n nt Setting and Γ r,e 0 Q r,e ~ D m v T n T r yields the ambipolar electric field E A = T e e r ln(nt 1/2 e )
37 Nonambipolar transport predicts a radially outward directed electrostatic field due to the high mobility of electrons. Heavy ion beam probe observes the positive potential in the core. Lei et al. MST plasma
38 In astrophysical plasmas, stochastic field can reduce heat transport. Reflects large transport anisotropy in a magnetized plasma. Consider collisionless limit L ac << λ mfp : D χ st = D m v T = χ m L = χ ac B r λ mfp λ mfp B 0 2 < 1, even for B ~ B 0 Has been applied to cooling flows in galactic clusters to argue small heat conduction.
39 References 1. Rosenbluth, Sagdeev, Taylor, Nucl. Fusion 6, 297 (1966) 2. Jokipii and Parker, Ap. J. 155, 777 (1969) 3. Rechester and Rosenbluth, Phys. Rev. Lett. 40, 38 (1978) 4. Harvey, McCoy, Hsu, Mirin, Phys. Rev. Lett. 47, 102 (1981) 5. Boozer and White, Phys. Rev. Lett. 49, 786 (1982) 6. Krommes, Oberman, Kleva, J. Plasma Physics 30, 11 (1983) 7. Liewer, Nucl. Fusion 25, 543 (1985) 8. Prager, Plasma Phys. Control. Fusion 32, 903 (1990) 9. Stoneking et al., Phys. Rev. Lett. 73, 549 (1994) 10. Fiksel et al., Plasma Phys. Control. Fusion 38, A213 ( 1996) 11. Chandran and Cowley, Phys. Rev. Lett 80, 3077 (1998) 12. Biewer et al., Phys. Rev. Lett 91, (2003) 13. Fiksel et al, Phys. Rev. Lett 95, (2005)
40 Homework problem a) Consider the RFP magnetic equilibrium. Using the Chirikov stochasticity parameter, derive from the threshold condition, s=1, the recursion relation below for the width of the magnetic island associated with toroidal mode, n, so that it just touches its nearest neighbors (assume m=1 for all modes): w n = 1 1 q n n(n +1) where q n = dq and r n is the minor radius of the dr r=rn resonant surface b) Estimate the stochastic heat diffusivity, χ st, for a fluctuation spectrum described by the recursion relation above. c) For fusion parameters, discuss the magnitude of χ st relative to other transport mechanisms, such as classical (or neoclassical) transport and anomalous transport as observed in tokamak plasmas. For what n is χ e,st < 1 m 2 /s?
41 Homework problem (illustration and partial answer) n=6 w n = 4 B r,n (r n )r n B θ (r n )n q n (a=plasma minor radius)
The RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationMST and the Reversed Field Pinch. John Sarff
MST and the Reversed Field Pinch John Sarff APAM Columbia University Sep 19, 2014 Outline Tutoriallevel review of tearing stability, magnetic relaxation, and transport in the RFP Ionrelated physics topics
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationMomentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi
Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center  University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center
More informationGyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
More informationSMR/ Summer College on Plasma Physics. 30 July  24 August, Introduction to Magnetic Island Theory.
SMR/18561 2007 Summer College on Plasma Physics 30 July  24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction
More informationAdvances in stellarator gyrokinetics
Advances in stellarator gyrokinetics Per Helander and T. Bird, F. Jenko, R. Kleiber, G.G. Plunk, J.H.E. Proll, J. Riemann, P. Xanthopoulos 1 Background Wendelstein 7X will start experiments in 2015 optimised
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationReduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri
More informationResearch of Basic Plasma Physics Toward Nuclear Fusion in LHD
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 5095292, Japan (Received 4 January 2010 / Accepted
More informationEvaluation of CT injection to RFP for performance improvement and reconnection studies
Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi
More informationModelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7/8// Modelling of the penetration process of externally applied helical magnetic perturbation
More informationImpact of neutral atoms on plasma turbulence in the tokamak edge region
Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International
More informationTowards Multiscale Gyrokinetic Simulations of ITERlike Plasmas
Frank Jenko MaxPlanckInstitut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITERlike Plasmas 23 rd IAEA Fusion Energy Conference 1116 October 2010, Daejeon,
More informationThe Virial Theorem, MHD Equilibria, and ForceFree Fields
The Virial Theorem, MHD Equilibria, and ForceFree Fields Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely
More informationActive and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod
Active and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationConfinement of pure electron plasmas in the CNT stellarator
Confinement of pure electron plasmas in the CNT stellarator Thomas Sunn Pedersen CNT Columbia University In the City of New York Overview Background/introductory remarks CNT s magnetic topology (a stellarator)
More informationPer Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald
Rotation and zonal flows in stellarators Per Helander Wendelsteinstraße 1, 17491 Greifswald Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos What is a stellarator? In a tokamak
More informationSupported by. Role of plasma edge in global stability and control*
NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U
More informationStellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK
Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More informationFast Secondary Reconnection and the Sawtooth Crash
Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEAIRFM, SaintPaullezDurance (France) 2 Université de Lorraine, Institut Jean Lamour UMRCNRS 7198, Nancy
More information14. Energy transport.
Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. ChapmanEnskog theory. ([8], p.5175) We derive macroscopic properties of plasma by calculating moments of the kinetic equation
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationTomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversedfield pinch
PHYSICS OF PLASMAS 13, 012510 2006 Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversedfield pinch P. Franz, L. Marrelli, P. Piovesan, and I. Predebon Consorzio RFX,
More informationarxiv: v1 [physics.plasmph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD selforganization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasmph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
More informationComparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIIID Tokamak
Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIIID Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General
More informationRotation and Neoclassical Ripple Transport in ITER
Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics
More informationSpace Plasma Physics Thomas Wiegelmann, 2012
Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description
More informationParticle Transport and Density Gradient Scale Lengths in the Edge Pedestal
Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract
More informationPlasma instability during ITBs formation with pellet injection in tokamak
Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,
More informationCosmic Rays in CMSO. Ellen Zweibel University of WisconsinMadison Santa Fe, 2014
Cosmic Rays in CMSO Ellen Zweibel University of WisconsinMadison Santa Fe, 2014 Galaxies are Pervaded by Magnetic Fields & Relativistic Particles Synchrotron radiation from M51 (MPIfR/NRAO) Galactic molecular
More informationThe FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is
and Stability of FieldReversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 921865608 P.O. APS Annual APS Meeting of the Division of Plasma Physics
More informationCharacterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod
1 EX/P422 Characterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.
More informationSelected Topics in Plasma Astrophysics
Selected Topics in Plasma Astrophysics Range of Astrophysical Plasmas and Relevant Techniques Stellar Winds (Lecture I) Thermal, Radiation, and MagnetoRotational Driven Winds Connections to Other Areas
More informationRESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY
Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 07413335/87$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE
More informationA kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva
A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP  EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak
More informationGA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME
GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.
More informationTokamak Edge Turbulence background theory and computation
ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts
More informationEffects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal
Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.
More informationSimulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015
Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all
More informationEffect of local E B flow shear on the stability of magnetic islands in tokamak plasmas
Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994present) 16, 052502 (2009); doi: 10.1063/1.3126964
More informationITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model
1 THC/33 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California
More informationSTABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK
GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This
More informationDPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni
MaxPlanckInstitut für Plasmaphysik DPG School The Physics of ITER Physikzentrum Bad Honnef, 23.09.2014 Energy Transport, Theory (and Experiment) Clemente Angioni Special acknowledgments for material
More informationTokamak/Helical Configurations Related to LHD and CHSqa
9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 2123, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHSqa
More informationMechanisms for ITB Formation and Control in Alcator CMod Identified through Gyrokinetic Simulations of TEM Turbulence
th IAEA Fusion Energy Conference Vilamoura, Portugal, 16 November IAEACN116/TH/1 Mechanisms for ITB Formation and Control in Alcator CMod Identified through Gyrokinetic Simulations of TEM Turbulence
More informationImpact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak
Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak M. GarciaMunoz M. A. Van Zeeland, S. Sharapov, Ph. Lauber, J. Ayllon, I. Classen, G. Conway, J. Ferreira,
More informationProduction of Overdense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device
Production of Overdense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group
More informationHybrid Simulations: Numerical Details and Current Applications
Hybrid Simulations: Numerical Details and Current Applications Dietmar KraussVarban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space
More informationInternational Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence.
195343 International Workshop on the Frontiers of Modern Plasma Physics 1425 July 2008 On the Nature of Plasma Core Turbulence. F. Jenko MaxPlanck Institute fuer Plasmaphysik Garching bei Munchen Germany
More informationTH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)
1 TH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,
More informationCompound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift
Compound Perpendicular Diffusion of Cosmic Rays and Field Line Random Walk, with Drift G.M. Webb, J. A. le Roux, G. P. Zank, E. Kh. Kaghashvili and G. Li Institute of Geophysics and Planetary Physics,
More informationToroidal confinement of nonneutral plasma. Martin Droba
Toroidal confinement of nonneutral plasma Martin Droba Contents Experiments with toroidal nonneutral plasma Magnetic surfaces CNT and IAPhigh current ring Conclusion 2. Experiments with toroidal nonneutral
More informationFUSION and PLASMA PHYSICS
FUSION and PLASMA PHYSICS My objectives: to explain why Nuclear Fusion is worth pursuing to describe some basic concepts behind magnetic confinement to summarize the history of fusion to describe some
More informationMODERN PHYSICS OF PLASMAS (19 lectures)
UNIT OF STUDY OUTLINE (PHYS 3021, 3921, 3024, 3924, 3025, 3925) MODERN PHYSICS OF PLASMAS (19 lectures) Course coordinator and principal lecturer: Dr Kostya (Ken) Ostrikov Lecturer (normal student stream,
More informationGA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER
GA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was
More informationMicroturbulence in optimised stellarators
Q Josefine H. E. Proll, Benjamin J. Faber, Per Helander, Samuel A. Lazerson, Harry Mynick, and Pavlos Xanthopoulos Many thanks to: T. M. Bird, J. W. Connor, T. Go rler, W. Guttenfelder, G.W. Hammett, F.
More informationStudy of neoclassical transport and bootstrap current for W7X in the 1/ν regime, using results from the PIES code
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 46 (2004) 179 191 PLASMA PHYSICS AND CONTROLLED FUSION PII: S07413335(04)65723X Study of neoclassical transport and bootstrap current for
More informationModélisation de sources plasma froid magnétisé
Modélisation de sources plasma froid magnétisé Gerjan Hagelaar Groupe de Recherche Energétique, Plasma & Hors Equilibre (GREPHE) Laboratoire Plasma et Conversion d Énergie (LAPLACE) Université Paul Sabatier,
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationIdeal Magnetohydrodynamics (MHD)
Ideal Magnetohydrodynamics (MHD) Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics
More informationPlasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi
Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi Lecture No. # 03 DC Conductivity and Negative Differential Conductivity Well friends, in this lecture, I
More informationCollaborators: A. Almagri, C. Forest, M. Nornberg, K. Rahbarnia, J. Sarff UW Madison S. Prager, Y. Ren PPPL D. Hatch, F. Jenko IPP G.
Dissipa&on Range Turbulent Cascades in Plasmas P.W. Terry Center for Magne,c Self Organiza,on in Laboratory and Astrophysical Plasmas University of Wisconsin Madison Collaborators: A. Almagri, C. Forest,
More informationGA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D
GA A271 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LINLIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER AUGUST 2001 DISCLAIMER This
More informationTwofluid magnetic island dynamics in slab geometry
Twofluid magnetic island dynamics in slab geometry Richard Fitzpatrick and François L. Waelbroeck Institute for Fusion Studies Department of Physics University of Texas at Austin Austin, TX 78712 A novel
More informationEffect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT2 Tokamak
Plasma Physics Reports, Vol. 7, No.,, pp.. Translated from Fizika Plazmy, Vol. 7, No.,, pp. 9 9. Original Russian Text Copyright by Lashkul, Budnikov, Vekshina, D yachenko, Ermolaev, Esipov, Its, Kantor,
More informationSmallScale Dynamo and the Magnetic Prandtl Number
MRI Turbulence Workshop, IAS, Princeton, 17.06.08 SmallScale Dynamo and the Magnetic Prandtl Number Alexander Schekochihin (Imperial College) with Steve Cowley (Culham & Imperial) Greg Hammett (Princeton)
More informationPresentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 14, 2015
Review of Theory Papers at 14 th IAEA technical meeting on Engertic Particles in Magnetic Confinement systems Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna,
More informationLow Temperature Plasma Technology Laboratory
Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP6 June, Electrical Engineering Department Los Angeles, California
More informationPlasma Spectroscopy Inferences from Line Emission
Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often
More informationq(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5
EX/P1 MHD issues in Tore Supra steadystate fully noninductive scenario P Maget 1), F Imbeaux 1), G Giruzzi 1), V S Udintsev ), G T A Huysmans 1), H Lütjens 3), JL Ségui 1), M Goniche 1), Ph Moreau
More informationNonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department
Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical
More informationSolar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona)
Solar Flares Solar Flare A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Flares release 10271032 ergs energy in tens of minutes. (Note: one Hbomb: 10
More informationComparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry
Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado
More information1 EX/P59 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries
1 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),
More informationTAE induced alpha particle and energy transport in ITER
TAE induced alpha particle and energy transport in ITER K. Schoepf 1, E. Reiter 1,2, T. Gassner 1 1 Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria;
More informationarxiv: v1 [physics.plasmph] 9 Sep 2011
Correlation length scalings in fusion edge plasma turbulence computations S. Konzett 1, D. Reiser 2, A. Kendl 1 arxiv:119.1997v1 [physics.plasmph] 9 Sep 211 1) Institut für Ionenphysik und Angewandte
More informationWhat place for mathematicians in plasma physics
What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 1519 September 2008 Eric Sonnendrücker (U. Strasbourg) Math
More informationGeneralized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration
Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration D.A. Kaltsas and G.N. Throumoulopoulos Department of Physics, University of Ioannina, GR 451 10 Ioannina,
More informationNote the diverse scales of eddy motion and selfsimilar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size
L Note the diverse scales of eddy motion and selfsimilar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous
More informationGyrokinetic Turbulence Simulations at High Plasma Beta
Gyrokinetic Turbulence Simulations at High Plasma Beta Moritz J. Pueschel Thanks to F. Jenko and M. Kammerer Ringberg Theory Meeting, Nov. 18, 2008 1 Motivation 2 3 The Beta Parameter Definition β β e
More informationJ. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA
PFC/JA8838 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted
More informationStability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye
Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,
More informationGyrokinetic simulations of collisionless magnetic reconnection
PHYSICS OF PLASMAS 14, 09110 007 Gyrokinetic simulations of collisionless magnetic reconnection B N Rogers a and S Kobayashi Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire
More informationControlling chaotic transport in Hamiltonian systems
Controlling chaotic transport in Hamiltonian systems Guido Ciraolo Facoltà di Ingegneria, Università di Firenze via S. Marta, I50129 Firenze, Italy Cristel Chandre, Ricardo Lima, Michel Vittot CPTCNRS,
More informationOverview of FRCrelated modeling (July 2014present)
Overview of FRCrelated modeling (July 2014present) Artan Qerushi AFRLUCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling
More informationPlasma Stability in Tokamaks and Stellarators
Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1 May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,
More informationBRIEF COMMUNICATION. Nearmagneticaxis Geometry of a Closely QuasiIsodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany
BRIEF COMMUNICATION Nearmagneticaxis Geometry of a Closely QuasiIsodynamic Stellarator M.I. Mikhailov a, J. Nührenberg b, R. Zille b a Russian Research Centre Kurchatov Institute, Moscow,Russia b MaxPlanckInstitut
More informationMHD RELATED TO 2FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION
MHD RELATED TO 2FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2fluid theory Level of MHD depends
More informationTokamak Fusion Basics and the MHD Equations
MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers
More informationSaturated ideal modes in advanced tokamak regimes in MAST
Saturated ideal modes in advanced tokamak regimes in MAST IT Chapman 1, MD Hua 1,2, SD Pinches 1, RJ Akers 1, AR Field 1, JP Graves 3, RJ Hastie 1, CA Michael 1 and the MAST Team 1 EURATOM/CCFE Fusion
More informationarxiv:physics/ v1 [physics.plasmph] 5 Nov 2004
Ion Resonance Instability in the ELTRAP electron plasma G. Bettega, 1 F. Cavaliere, 2 M. Cavenago, 3 A. Illiberi, 1 R. Pozzoli, 1 and M. Romé 1 1 INFM Milano Università, INFN Sezione di Milano, Dipartimento
More informationarxiv:physics/ v1 [physics.plasmph] 14 Nov 2005
arxiv:physics/0511124v1 [physics.plasmph] 14 Nov 2005 Early nonlinear regime of MHD internal modes: the resistive case M.C. Firpo Laboratoire de Physique et Technologie des Plasmas (C.N.R.S. UMR 7648),
More informationFinal Agenda HEPP Colloquium 2013
Final Agenda HEPP Colloquium 2013 Date 16 19 September 2012 Location The Lakeside BURGHOTEL zu Strausberg Gielsdorfer Chaussee 6 15344 Strausberg Monday, 13:00 14:00 Arrivals and lunch 14.00 14:15 Registration
More informationMHD instability driven by suprathermal electrons in TJII stellarator
MHD instability driven by suprathermal electrons in TJII stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. JiménezGómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov
More informationThe Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin
The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy
More informationModel for humpback relaxation oscillations
Model for humpback relaxation oscillations F. Porcelli a,b,c.angioni a,r.behn a,i.furno a,t.goodman a,m.a.henderson a, Z.A. Pietrzyk a,a.pochelon a,h.reimerdes a, E. Rossi c,o.sauter a a Centre de Recherches
More informationKINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS
KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low
More information