Measured Energy Transport in the MST Reversed-Field Pinch. G.Fiksel University of Wisconsin-Madison. adison ymmetric orus

Size: px
Start display at page:

Download "Measured Energy Transport in the MST Reversed-Field Pinch. G.Fiksel University of Wisconsin-Madison. adison ymmetric orus"

Transcription

1 Measured Energy Transport in the MST Reversed-Field Pinch T.M. Biewer,, J.K. Anderson, B.E. Chapman, S.D. Terry 1, J.C. Reardon,, N.E. Lanier, G.Fiksel Fiksel,, D.J. Den Hartog,, S.C. Prager,, and C.B. Forest University of Wisconsin-Madison 1 University of California-Los Angeles Los Alamos National Lab M S T adison ymmetric orus Profile measurements in standard and improved confinement (Pulsed Poloidal Current Drive) plasmas have been made in the MST using recently installed or upgraded diagnostics. Estimates of electron thermal diffusivities based upon a diagonal transport relationship indicate a 5 fold reduction in core transport during. New profile information has been obtained from the following Department of Physics University diagnostics: of WisconsinT e from Thomson scattering, majority T i from Rutherford scattering, n e and n H from coupled FIR interferometry and D α arrays. Using equilibrium reconstructions, profiles are mapped onto magnetic flux coordinates, and thermodynamic fluxes (Γ, q) and forces ( n, T ) are estimated for energy and particle transport. Profile measurements are compared with theoretical models based on magnetic field stochasticity (such as those of Rechester-Rosenbluth and Harvey.) This work was supported by the U.S. D.O.E. APS DPP, UW-Madison Plasma Physics

2 Motivation Ongoing improvements to the diagnostic arsenal of the Madison Symmetric Torus have initiated new investigations into the plasma physics of MST transport. The use of Pulsed Poloidal Current Drive () in the past has demonstrated improved confinement in the MST, based on central electron temperature measurements and a hypothesized profile shape. Recent upgrades of the Thomson scattering system have facilitated measurements of the T e profile in the MST out to r/a=.88. These measurements, when coupled with density profiles from FIR Interferometry and MSTFIT reconstructed equilibria, have made it possible to calculate many transport quantities, including the electron thermal conductivity χ e. If the conductivity is assumed to behave as predicted by Rechester- Rosenbluth theory, then it is possible to make a direct comparison between the expected magnetic fluctuation profile and one calculated from the linear eigenfunction code, RESTER.

3 Outline Abstract Motivation Transport Equations Measured T e and n e Profiles MSTFIT Reconstructed Equilibrium Quantities Particle Flux and Radial Electric Field Calculations Heat Flux and Thermal Conductivity Magnetic Fluctuation Level Implications Conclusions

4 Transport Equations Including possible sources and sinks of energy and particles, the equations of continuity and energy balance with a radial, ambipolar electric field are: n 1 = ( rγ) + S t r p Solving for the particle and heat fluxes: 1 n e Γ 1 3 e = r rs ( pe, ) t Q= r( S + qe Γ ( nt) ) For electrons in a 3 component plasma (e -, p +, impurity Z), we can write: Spe, = nenh σiv SEe, = Pe Pei Pez Prad Pe = ηj Pei = me 4 ln( Λ) m ninee Te 3 3 Ti mete i 4ε ( ) / π P = me 4 ln( Λ) n n Z e ( T T ) / π m T ez 3 1 ( nt) = qe + t aγ ( rq) S r E 3 3 m z e 4ε e z e e Thus, an expression for E a would enable us to determine both particle and heat fluxes from measurable quantities. z r E a t Prad = Crad( r/ a) 8 Pe

5 Transport Equations (continued 1) The kinetically derived Fokker-Plank Equation for a plasma, including an ambipolar,, radial electric field is: v ( ) = + f par ( rdm ) qea ( rdm ) f qea f + t m r mv par v par mv par v par Taking the first two moments of this equation and comparing to the source n free continuity ( = 1 ( t r r Γ) ) and energy balance ( ( 3 nt) = qe 1 t aγ ( rq) r ) equations leads again to expressions for the particle and heat flux: ( 1 n 1 T ) Γ= Dn n + T qea T ( T qe a ) T T 1 n 3 1 Q = DnT n + By making the identification ( χ = vd t m = D), these expressions can be π combined to yield a relation for the convective and conductive parts of the heat flux: Q T n T conv cond = Γ χ Q Q r = + This process introduces two new equations, but only one additional, unknown quantity (the thermal conductivity), allowing us to solve the system and determine all the quantities of interest.

6 Transport Equations (continued ) measurements estimates measurements n H (r,t) n e (r,t) T e (r,t) T i T z Z eff F θ I p Γ e r rspe, n t e = 1 ( ) n i (r), n z (r), T i (r), T z (r) MSTFIT equilibrium reconstruction S E j, η, f t, B, etc. χ n n ( 1 n 1 ) T T qe T a Γ= + Q = ΓT χn T Q = 1 r( S + qe Γ ( 3nT) ) r E a t Q e,γ e, χ e, E a

7 Measured T e and n e Profiles T (ev) Stan.-Te Ti Tz -Te Ti Tz T e (r) is measured via 6 radial points of Thomson scattering and via an insertable Langmuir probe at the edge. The combined data is fit to a cubic spline. Majority T i (~) is measured with Rutherford scattering, and the profile is estimated as T i (r)=.75*t e (r). Impurity T z is measured for C V using Ion Doppler Spectrometry, and the profile is estimated as T z (r)=.5*t e (r). n (m -3 ) Stan.-ne ni nz -ne ni nz n e (r) is measured with an 11 chord Far InfraRed Interferometer and Abel inverted using the MSTFIT code. Experimental evidence suggests Z eff ~ in the MST. With this approximation and the assumption that C V is the dominant impurity everywhere, then charge balance determines n i (r) and n z (r) from n e (r): ni + Z n n n Zjnj eni + Zenz ene = Z eff = e e z

8 MSTFIT Reconstructed Equilibrium j (A/m ) resistivity (ohm m) trapped particle fraction B (T) B_t B_p B_t B_p -.5

9 Interchange Mode Stability Limit - - dp/dr (N/m 3 ) dp/dr (N/m 3 ) Suydam limit Suydam limit During the measured pressure gradient drops below the calculated Suydam critical pressure gradient near the edge, meaning that the plasma becomes stable to interchange modes. plasmas (and plasmas at the core) are at the limit of stability to these modes.

10 Particle Flux and Radial Electric Field gamma e (particles/m ) E r (V/m) Stan.(gamma=) (gamma=) -5 Particle flux is calculated from an FIR interferometer (n( e ) that is co-linear with a D α array (S( p ). During there is a significant reduction in the particle source, which is manifest as a reduction in the particle flux. The core value is unresolvable with this diagnostic setup. To first approximation, the ambipolar electric field can be calculated by setting the particle flux to zero. In this case: Te ne T E a Harvey 1 e n + 1 T e, ( ) e e The deviation from the Γ e = approximation is important even at low values of flux. Γ= Dn 1 n + 1 T n T qea T

11 Heat Flux and Thermal Conductivity Q (W/m ) Stan_cond Stan_conv _cond _conv Because the particle flux is largest in the edge of plasmas, it is not surprising to find that heat transport is dominated by convective losses in that region. In the region where the dominant magnetic modes of the MST are resonant conductive heat transport is very large. chi e (m /s) Magnetic fluctuations are observed to decrease with the application of, and we see a corresponding drop in the conductive transport of heat. Electron thermal conductivity is consequently improved during, dropping by roughly a factor of 5 over the bulk of the plasma radius.

12 Expected Magnetic Fluctuation Level b r, calculated q (safety factor) m=1, n=6 m=1, n=7 m=1, n=8 m=1, n=1 m=1, n= m=, any n If the thermal conductivity has a Rechester-Rosenbluth Rosenbluth type from, we can calculate a profile of the expected magnetic fluctuation level: χ = D= v D t m D L b π m = eff r L = L + λ eff par mfp Lpar a λ mfp >> a χ T π m abr It is experimentally observed that the magnitude of magnetic fluctuations (as measured at the edge with pick-up coils) drops during, which is consistent with this calculation, especially in the region of.15<ρ<.35 <.35 where the largest MST modes (n=6,7,8) are expected to be resonant. D m ab r

13 Expected Magnetic Fluctuation Level (continued).1.1 b r, calculated b r (normalized RESTER) RESTER calculated linear eigenfunctions for b r (m=1, n=1-14) are normalized via the measured B r gradient (divb( divb= enforced pickup coils) at the edge and summed to produce the profile on the right. Though the results differ by an order of magnitude, the general trends (rising inboard of the B T reversal surface, then falling towards the core) are similar.

14 Conclusions Improved particle confinement in the edge of MST (transport barrier?) during results in reduced overall particle flux and reduced convective heat transport. More evidence has been presented that reinforces the notion that heat transport in the MST is driven by magnetic fluctuations. Reducing magnetic fluctuations through the application of results in the reduction of both convective but primarily conductive heat transport and a consequent increase in the overall electron temperature. The resultant pressure profile is skirting the calculated Suydam-critical limit, and suggests that residual transport in the MST during may be due to Interchange and G modes.

15 Reprints Full color version of this poster is available online at:

First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch

First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch Title Abs. TS over. MStFIt j 2kA Te ne Zeff 4kA Te ne Zeff Pohm, W, TauE,beta Xe,D Mot. FIR pola. Monte Carlo Un. An.

More information

Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch

Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch W.X.Ding, L. Lin, D.L. Brower, A. Almagri, B. Chapman, G. Fiksel, D.J. Den Hartog, J. Reusch,

More information

channel system which covers both sides of the laser line. Coverage on both sides of the spectrum allows for

channel system which covers both sides of the laser line. Coverage on both sides of the spectrum allows for Large-Area Avalanche Photodiode Detector Array Upgrade for a Ruby-Laser Thomson Scattering System T.M. Biewer, D.J. Den Hartog, D.J. Holly Department of Physics, University of Wisconsin-Madison M.R. Stoneking

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

CONFINEMENT IN THE RFP: LUNDQUIST NUMBER SCALING, PLASMA FLOW, AND REDUCED TRANSPORT

CONFINEMENT IN THE RFP: LUNDQUIST NUMBER SCALING, PLASMA FLOW, AND REDUCED TRANSPORT CONFINEMENT IN THE RFP: LUNDQUIST NUMBER SCALING, PLASMA FLOW, AND REDUCED TRANSPORT G. Fiksel, 1 A.F. Almagri, 1 J.K. Anderson, 1 T.M. Biewer, 1 D.L. Brower, 2 C-S. Chiang, 1 B.E. Chapman, 1 J.T. Chapman,

More information

Electron Thermal Transport Within Magnetic Islands in the RFP

Electron Thermal Transport Within Magnetic Islands in the RFP Electron Thermal Transport Within Magnetic Islands in the RFP Hillary Stephens University of Wisconsin Madison APS-DPP Meeting November 3, 2009 J.R. Amubel, M.T. Borchardt, D.J. Den Hartog, C.C. Hegna,

More information

Progress Towards Confinement Improvement Using Current Profile Modification In The MST Reversed Field Pinch

Progress Towards Confinement Improvement Using Current Profile Modification In The MST Reversed Field Pinch Progress Towards Confinement Improvement Using Current Profile Modification In The MST Reversed Field Pinch C.B. Forest 1), J.K. Anderson 1), T.M. Biewer 1), D. Brower 2), B.E. Chapman 1), P.K. Chattopadhyay

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri

More information

Particle Transport and Edge Dynamo in the MST RFP

Particle Transport and Edge Dynamo in the MST RFP Particle Transport and Edge Dynamo in the ST RFP International RFP Workshop 28 February 2000, adison, WI D. J. Den Hartog Department of Physics University of Wisconsin adison In collaboration with J. K.

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

Fast Ion Confinement in the MST Reversed Field Pinch

Fast Ion Confinement in the MST Reversed Field Pinch Fast Ion Connement in the MST Reversed Field Pinch Gennady Fiksel B. Hudson, D.J. Den Hartog, R.M. Magee, R. O'Connell, S.C. Prager MST Team - University of Wisconsin - Madison Center for Magnetic Self-Organization

More information

Oscillating-Field Current-Drive Experiment on MST

Oscillating-Field Current-Drive Experiment on MST Oscillating-Field Current-Drive Experiment on MST K. J. McCollam, J. K. Anderson, D. J. Den Hartog, F. Ebrahimi, J. A. Reusch, J. S. Sarff, H. D. Stephens, D. R. Stone University of Wisconsin-Madison D.

More information

Differential Interferometry for Measurement of Density Fluctuations and Fluctuation Induced Transport

Differential Interferometry for Measurement of Density Fluctuations and Fluctuation Induced Transport Differential Interferometry for Measurement of Density Fluctuations and Fluctuation Induced Transport Liang Lin University of California, Los Angeles, California, USA in collaboration with W. X. Ding,

More information

AC loop voltages and MHD stability in RFP plasmas

AC loop voltages and MHD stability in RFP plasmas AC loop voltages and MHD stability in RFP plasmas K. J. McCollam, D. J. Holly, V. V. Mirnov, J. S. Sar, D. R. Stone UW-Madison 54rd Annual Meeting of the APS-DPP October 29th - November 2nd, 2012 Providence,

More information

Measurement of core velocity fluctuations and the

Measurement of core velocity fluctuations and the Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch D. J. Den Hartog 1, J. T. Chapman 2, D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics,

More information

Tokamak-like confinement at a high beta and low toroidal field in the MST reversed field pinch*

Tokamak-like confinement at a high beta and low toroidal field in the MST reversed field pinch* INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (23) 1684 1692 PII: S29-5515(3)7949-1 Tokamak-like confinement at a high beta and low toroidal field

More information

Reduction of fluctuations and edge current during PPCD in MST. B. E. Chapman and the MST group

Reduction of fluctuations and edge current during PPCD in MST. B. E. Chapman and the MST group Reduction of fluctuations and edge current during PPCD in MST B. E. Chapman and the MST group Outline -- The key to sustained fluctuation reduction during PPCD -- Magnetic fluctuations (including single

More information

Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP

Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP Plasma Phys. Control. Fusion 38 (1996) A213 A225. Printed in the UK Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP G Fiksel, Roger D Bengtson, M Cekic, D Den Hartog, S C

More information

Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques

Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques J.S. Sarff, A.F. Almagri, J.K. Anderson, B.E. Chapman, D. Craig, C-S. Chiang, N.A. Crocker, D.J. Den Hartog,

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

Impurity expulsion in an RFP plasma and the role of temperature screening

Impurity expulsion in an RFP plasma and the role of temperature screening Impurity expulsion in an RFP plasma and the role of temperature screening S. T. A. Kumar, D. J. Den Hartog, R. M. Magee, G. Fiksel, D. Craig Department of Physics, University of Wisconsin-Madison, Madison,Wisconsin,

More information

The Linear Theory of Tearing Modes in periodic, cyindrical plasmas. Cary Forest University of Wisconsin

The Linear Theory of Tearing Modes in periodic, cyindrical plasmas. Cary Forest University of Wisconsin The Linear Theory of Tearing Modes in periodic, cyindrical plasmas Cary Forest University of Wisconsin 1 Resistive MHD E + v B = ηj (no energy principle) Role of resistivity No frozen flux, B can tear

More information

Flow and dynamo measurements in the HIST double pulsing CHI experiment

Flow and dynamo measurements in the HIST double pulsing CHI experiment Innovative Confinement Concepts (ICC) & US-Japan Compact Torus (CT) Plasma Workshop August 16-19, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.

More information

Magnetic Fluctuation Induced Particle Transport and Parallel Ion Velocity Fluctuations on MST. Weixing Ding, D.L. Brower, T.Yates

Magnetic Fluctuation Induced Particle Transport and Parallel Ion Velocity Fluctuations on MST. Weixing Ding, D.L. Brower, T.Yates Magnetic Fluctuation Induced Paticle Tanspot and Paallel Ion Velocity Fluctuations on MST Weixing Ding, D.L. owe, T.Yates Univesity of Califonia, Los Angeles G. Fiksel, D. Den Hatog, S.C. Page, J.S. Saff

More information

Pedestals and Fluctuations in C-Mod Enhanced D α H-modes

Pedestals and Fluctuations in C-Mod Enhanced D α H-modes Pedestals and Fluctuations in Enhanced D α H-modes Presented by A.E.Hubbard With Contributions from R.L. Boivin, B.A. Carreras 1, S. Gangadhara, R. Granetz, M. Greenwald, J. Hughes, I. Hutchinson, J. Irby,

More information

The Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation

The Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation The Role of Dynamo Fluctuations in Anomalous Ion Heating, Mode Locking, and Flow Generation P. W. Terry 1), R. Gatto 1), R. Fitzpatrick 2), C.C. Hegna 3), and G. Fiksel 1) 1) Department of Physics, University

More information

Neoclassical transport

Neoclassical transport Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX 1 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1), D.L. Brower 2), C. Deng 2), D.T. Anderson 1), F.S.B. Anderson 1), A.F.

More information

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

More information

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch 1 Two Fluid Dynamo and Edge-Resonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of Wisconsin-Madison, Madison,

More information

Current Profile Control by ac Helicity Injection

Current Profile Control by ac Helicity Injection Current Profile Control by ac Helicity Injection Fatima Ebrahimi and S. C. Prager University of Wisconsin- Madison APS 2003 Motivations Helicity injection is a method to drive current in plasmas in which

More information

Ion Temperature Measurements in the

Ion Temperature Measurements in the Ion Temperature Measurements in the PEGASUS Toroidal Experiment M.G. Burke, M.W. Bongard, R.J. Fonck, D.J. Schlossberg, A.J. Redd 52 nd Annual APS-DPP University of Wisconsin-Madison Chicago, IL November

More information

Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch*

Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch* PHYSICS OF PLASMAS VOLUME 6, NUMBER 5 MAY 1999 Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch* D. J. Den Hartog,,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana,

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Microtearing Simulations in the Madison Symmetric Torus

Microtearing Simulations in the Madison Symmetric Torus Microtearing Simulations in the Madison Symmetric Torus D. Carmody, P.W. Terry, M.J. Pueschel - University of Wisconsin - Madison dcarmody@wisc.edu APS DPP 22 Overview PPCD discharges in MST have lower

More information

Equilibrium Evolution in the ZaP Flow Z-Pinch

Equilibrium Evolution in the ZaP Flow Z-Pinch Equilibrium Evolution in the ZaP Flow Z-Pinch U. Shumlak, B.A. Nelson, C.S. Adams, D.J. Den Hartog, R.P. Golingo, S. L. Jackson, S.D. Knecht, J. Pasko, and D.T. Schmuland University of Washington, Seattle

More information

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES J. Mandrekas, W.M. Stacey Georgia Institute of Technology M. Murakami, M.R. Wade ORNL G. L. Jackson General Atomics Presented at the

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

Oscillating Field Current Drive on MST

Oscillating Field Current Drive on MST Oscillating Field Current Drive on MST John Sarff A. Blair, K. McCollam, P. Nonn, J. Anderson, D. Brower 1, D. Craig, B. Deng 1, D. Den Hartog, W. Ding 1, F. Ebrahimi, D. Ennis, G. Fiksel, S. Gangadhara,

More information

Initial Experimental Program Plan for HSX

Initial Experimental Program Plan for HSX Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UW-Madison HSX Plasma Laboratory Team The Helically

More information

The Sheared Flow Stabilized Z-Pinch

The Sheared Flow Stabilized Z-Pinch The Sheared Flow Stabilized Z-Pinch U. Shumlak, J. Chadney, R.P. Golingo, D.J. Den Hartog, M.C. Hughes, S.D. Knecht, B.A. Nelson, W. Lowrie, R.J. Oberto, M.P. Ross, J.L. Rohrbach, and G.V. Vogman Aerospace

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Non-solenoidal startup using point-source DC helicity injectors

More information

Magnetic Self-Organization in the RFP

Magnetic Self-Organization in the RFP Magnetic Self-Organization in the RFP Prof. John Sarff University of Wisconsin-Madison Joint ICTP-IAEA College on Plasma Physics ICTP, Trieste, Italy Nov 7-18, 2016 The RFP plasma exhibits a fascinating

More information

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod Alcator C-Mod Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod B. LaBombard, R.L. Boivin, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S.

More information

Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS

Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS G. Taylor 1, J.B. Caughman 2, M.D. Carter 2, S. Diem 1, P.C. Efthimion 1, R.W. Harvey 3, J. Preinhaelter 4, J.B. Wilgen 2, T.S. Bigelow 2, R.A.

More information

RFP helical equilibria reconstruction with V3FIT-VMEC

RFP helical equilibria reconstruction with V3FIT-VMEC RFP helical equilibria reconstruction with V3FIT-VMEC D. Terranova 1 J.D. Hanson 2, S.P. Hirshman 3, L. Marrelli 1 1 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova, Italy 2 Auburn University,

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM STATUS OF THE HIT-II EXPERIMENTAL PROGRAM Roger J. Smith and the HIT-II Team Plasma Dynamics Group University of Washington, Seattle, Washington HIT-II Team Faculty/Staff Support Staff Graduate Students

More information

Current Drive Experiments in the Helicity Injected Torus (HIT II)

Current Drive Experiments in the Helicity Injected Torus (HIT II) Current Drive Experiments in the Helicity Injected Torus (HIT II) A. J. Redd, T. R. Jarboe, P. Gu, W. T. Hamp, V. A. Izzo, B. A. Nelson, R. G. O Neill, R. Raman, J. A. Rogers, P. E. Sieck and R. J. Smith

More information

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 16th IAEA Fusion Conference

More information

Current-driven instabilities

Current-driven instabilities Current-driven instabilities Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 21 st February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously In the last

More information

Experimental test of the neoclassical theory of poloidal rotation

Experimental test of the neoclassical theory of poloidal rotation Experimental test of the neoclassical theory of poloidal rotation Presented by Wayne Solomon with contributions from K.H. Burrell, R. Andre, L.R. Baylor, R. Budny, P. Gohil, R.J. Groebner, C.T. Holcomb,

More information

MST and the Reversed Field Pinch. John Sarff

MST and the Reversed Field Pinch. John Sarff MST and the Reversed Field Pinch John Sarff APAM Columbia University Sep 19, 2014 Outline Tutorial-level review of tearing stability, magnetic relaxation, and transport in the RFP Ion-related physics topics

More information

Prospects for Driven Particle Convection Tests in LDX. Abstract

Prospects for Driven Particle Convection Tests in LDX. Abstract Prospects for Driven Particle Convection Tests in LDX M.E. Mauel, A.C. Boxer, J.L. Ellsworth, D.T. Garnier, J. Kesner Columbia University and Plasma Science and Fusion Center, MIT 49th Meeting of the APS

More information

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Z. Lin 1, Y. Xiao 1, W. J. Deng 1, I. Holod 1, C. Kamath, S. Klasky 3, Z. X. Wang 1, and H. S. Zhang 4,1 1 University

More information

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,

More information

Operational Phase Space of the Edge Plasma in Alcator C-Mod

Operational Phase Space of the Edge Plasma in Alcator C-Mod Operational Phase Space of the Edge Plasma in B. LaBombard, T. Biewer, M. Greenwald, J.W. Hughes B. Lipschultz, N. Smick, J.L. Terry, Team Contributed talk RO.00008 Presented at the 47th Annual Meeting

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

Reconstruction of Pressure Profile Evolution during Levitated Dipole Experiments

Reconstruction of Pressure Profile Evolution during Levitated Dipole Experiments Reconstruction of Pressure Profile Evolution during Levitated Dipole Experiments M. E. Mauel, A. Boxer, J. Ellsworth, D. Garnier, J. Kesner ICC Conference: Reno, Nevada (June 24, 28) 1 Abstract Magnetic

More information

Heating and Current Drive by Electron Cyclotron Waves in JT-60U

Heating and Current Drive by Electron Cyclotron Waves in JT-60U EX/W- Heating and Current Drive by Electron Cyclotron Waves in JT-6U T. Suzuki ), S. Ide ), C. C. Petty ), Y. Ikeda ), K. Kajiwara ), A. Isayama ), K. Hamamatsu ), O. Naito ), M. Seki ), S. Moriyama )

More information

Internal Magnetic Field Measurements and Langmuir Probe Results for the HIT-SI Experiment

Internal Magnetic Field Measurements and Langmuir Probe Results for the HIT-SI Experiment Internal Magnetic Field Measurements and Langmuir Probe Results for the HIT-SI Experiment (First Evidence of Spheromak Generation and Sustainment) Roger J. Smith Plasma Dynamics Group University of Washington,

More information

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations PHYSICS OF PLASMAS 12, 072513 2005 Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations J. N. Talmadge and S. P. Gerhardt a HSX Plasma Laboratory, University

More information

Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer

Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer Alcator C-Mod Particle Transport in the Alcator C-Mod Scrape-off Layer B. LaBombard, R.L. Boivin, B. Carreras, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L. Terry, S.J. Zweben,

More information

Particle transport results from collisionality scans and perturbative experiments on DIII-D

Particle transport results from collisionality scans and perturbative experiments on DIII-D 1 EX/P3-26 Particle transport results from collisionality scans and perturbative experiments on DIII-D E.J. Doyle 1), L. Zeng 1), G.M. Staebler 2), T.E. Evans 2), T.C. Luce 2), G.R. McKee 3), S. Mordijck

More information

Confinement of toroidal non-neutral plasma

Confinement of toroidal non-neutral plasma 10th International Workshop on Non-neutral Plasmas 28 August 2012, Greifswald, Germany 1/20 Confinement of toroidal non-neutral plasma in magnetic dipole RT-1: Magnetospheric plasma experiment Visualized

More information

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING

DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING V.S. Chan, S.C. Chiu, Y.A. Omelchenko General Atomics, San Diego, CA, U.S.A. 43rd Annual APS Division of Plasma Physics Meeting

More information

Comparison of Plasma Flows and Currents in HSX to Neoclassical Theory

Comparison of Plasma Flows and Currents in HSX to Neoclassical Theory 1 EX/P3-30 Comparison of Plasma Flows and Currents in HSX to Neoclassical Theory D.T. Anderson 1, A.R. Briesemeister 1, J.C. Schmitt 2, F.S.B. Anderson 1, K.M. Likin 1, J.N. Talmadge 1, G.M. Weir 1, K.

More information

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics The Plasma Phase Chapter 1. An experiment - measure and understand transport processes in a plasma Three important vugraphs What we have just talked about The diagnostics Chapter 2. An introduction to

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

First Experiments Testing the Working Hypothesis in HSX:

First Experiments Testing the Working Hypothesis in HSX: First Experiments Testing the Working Hypothesis in HSX: Does minimizing neoclassical transport also reduce anomalous transport? J. N. Talmadge HSX Plasma Laboratory University of Wisconsin-Madison Special

More information

Abstract. The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N

Abstract. The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N Abstract The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N regime (I N > 12). Access to this regime requires a small centerpost

More information

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg. Progressing Performance Tokamak Core Physics Marco Wischmeier Max-Planck-Institut für Plasmaphysik 85748 Garching marco.wischmeier at ipp.mpg.de Joint ICTP-IAEA College on Advanced Plasma Physics, Triest,

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

More information

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas EX/P5-35 L. Schmitz 1), A.E. White 1), G. Wang 1), J.C. DeBoo 2),

More information

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod PFC/JA-96-42 Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod A.E. Hubbard, J.A. Goetz, I.H. Hutchinson, Y. In, J. Irby, B. LaBombard, P.J. O'Shea, J.A. Snipes, P.C. Stek, Y. Takase, S.M.

More information

Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch

Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch PHYSICS OF PLASMAS 13, 012510 2006 Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch P. Franz, L. Marrelli, P. Piovesan, and I. Predebon Consorzio RFX,

More information

Transport Improvement Near Low Order Rational q Surfaces in DIII D

Transport Improvement Near Low Order Rational q Surfaces in DIII D Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink

More information

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D 1 L.E. Sugiyama 1), W. Park 2), H.R. Strauss 3), S.R. Hudson 2), D. Stutman 4), X-Z. Tang 2) 1) Massachusetts Institute of Technology,

More information

Cluster fusion in a high magnetic field

Cluster fusion in a high magnetic field Santa Fe July 28, 2009 Cluster fusion in a high magnetic field Roger Bengtson, Boris Breizman Institute for Fusion Studies, Fusion Research Center The University of Texas at Austin In collaboration with:

More information

Total Flow Vector in the C-Mod SOL

Total Flow Vector in the C-Mod SOL Total Flow Vector in the SOL N. Smick, B. LaBombard MIT Plasma Science and Fusion Center APS-DPP Annual Meeting Atlanta, GA November 3, 2009 Motivation and Goals Measurements have revealed high parallel

More information

Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas

Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas D. Borba 1,9, R. Nazikian 2, B. Alper 3, H.L. Berk 4, A. Boboc 3, R.V. Budny 2, K.H. Burrell 5, M. De Baar

More information

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 26-28, 2007 The RFP fusion development

More information

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D

Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D Multi-scale turbulence, electron transport, and Zonal Flows in DIII-D L. Schmitz1 with C. Holland2, T.L. Rhodes1, G. Wang1, J.C. Hillesheim1, A.E. White3, W. A. Peebles1, J. DeBoo4, G.R. McKee5, J. DeGrassie4,

More information

Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod *

Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod * Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod * Miklos Porkolab in collabora.on with J. Dorris, P. Ennever, D. Ernst, C. Fiore, M. Greenwald, A. Hubbard, E. Marmar, Y. Ma,

More information

The measurement of plasma equilibrium and fluctuations near the plasma edge using a Rogowski probe in the TST-2 spherical tokamak

The measurement of plasma equilibrium and fluctuations near the plasma edge using a Rogowski probe in the TST-2 spherical tokamak The measurement of plasma equilibrium and fluctuations near the plasma edge using a Rogowski probe in the TST-2 spherical tokamak H. Furui, Y. Nagashima 2, A. Ejiri, Y. Takase, N. Tsujii, C. Z. Cheng,

More information

GA A THERMAL ION ORBIT LOSS AND RADIAL ELECTRIC FIELD IN DIII-D by J.S. degrassie, J.A. BOEDO, B.A. GRIERSON, and R.J.

GA A THERMAL ION ORBIT LOSS AND RADIAL ELECTRIC FIELD IN DIII-D by J.S. degrassie, J.A. BOEDO, B.A. GRIERSON, and R.J. GA A27822 THERMAL ION ORBIT LOSS AND RADIAL ELECTRIC FIELD IN DIII-D by J.S. degrassie, J.A. BOEDO, B.A. GRIERSON, and R.J. GROEBNER JUNE 2014 DISCLAIMER This report was prepared as an account of work

More information

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod I. Cziegler J.L. Terry, B. LaBombard, J.W. Hughes MIT - Plasma Science and Fusion Center th 19 Plasma

More information

Toroidal confinement of non-neutral plasma. Martin Droba

Toroidal confinement of non-neutral plasma. Martin Droba Toroidal confinement of non-neutral plasma Martin Droba Contents Experiments with toroidal non-neutral plasma Magnetic surfaces CNT and IAP-high current ring Conclusion 2. Experiments with toroidal non-neutral

More information

n=1 RESISTIVE MODES in REVERSED MAGNETIC SHEAR ALCATOR C-MOD PLASMAS

n=1 RESISTIVE MODES in REVERSED MAGNETIC SHEAR ALCATOR C-MOD PLASMAS October 10, 2000 n=1 RESISTIVE MODES in REVERSED MAGNETIC SHEAR ALCATOR C-MOD PLASMAS Y. IN, J.J.RAMOS, A.E.HUBBARD, I.H.HUTCHINSON, M. PORKOLAB, J. SNIPES, S. WOLFE, A. BONDESON MIT Plasma Science and

More information

Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations

Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations A. Pochelon, and the TCV team 1 Ecole Polytechnique de Lausanne (EPFL)

More information

THE SHEARED-FLOW STABILIZED Z-PINCH

THE SHEARED-FLOW STABILIZED Z-PINCH THE SHEARED-FLOW STABILIZED Z-PINCH U. Shumlak* J. Chadney R.P. Golingo D.J. Den Hartog M.C. Hughes S.D. Knecht W. Lowrie V.S. Lukin B.A. Nelson R.J. Oberto J.L. Rohrbach M.P. Ross and G.V. Vogman *University

More information

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer N. Smick, B. LaBombard MIT Plasma Science and Fusion Center PSI-19 San Diego, CA May 25, 2010 Boundary flows

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Toroidal confinement devices

Toroidal confinement devices Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power

More information

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Aaron J. Redd for the Pegasus Team 2008 Innovative Confinement Concepts Workshop Reno, Nevada June 24-27,

More information

The Levitated Dipole Experiment: Towards Fusion Without Tritium

The Levitated Dipole Experiment: Towards Fusion Without Tritium The Levitated Dipole Experiment: Towards Fusion Without Tritium Jay Kesner MIT M.S. Davis, J.E. Ellsworth, D.T. Garnier, M.E. Mauel, P.C. Michael, P.P. Woskov MCP I3.110 Presented at the EPS Meeting, Dublin,

More information