The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is"

Transcription

1 and Stability of Field-Reversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California P.O. APS Annual APS Meeting of the Division of Plasma Physics 42st City, October 23-28, Québec Yu. A. Omelchenko, M. Schaffer, P. Parks

2 The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is primarily confined by poloidal fields. The possibility of the of self-generated toroidal field inside the separatrix has been presence ignored in the previous stability analysis of such configurations. largely studies have not identified a physical mechanism that would Those Recent FRC formation and stability simulations [1] performed with a hybrid, PIC code FLAME [2] for a limited set of toroidal modes 3-D, Here we shift focus to demonstrating the enhanced stability of the FRCs toroidal fluxes to a number of kink modes, including the most with Abstract plasma current. explain the robust tilt stability of experimentally produced FRCs. (m = 0; 1) revealed the important role of toroidal field effects in mitigating FRC tilting. disruptive tilt mode. GENERAL ATOMICS

3 toroidal self-field in FRC-like compact toroids (CTs) as generating both in theoretical [5],[1] and experimental [6],[7] studies. shown Introduction The FRC kink instability (including the m=1 tilt) has been studied in MHD and kinetic regimes under the assumption of no toroidal both self-field inside the separatrix. MHD theory predicts FRC confinement degradation and destruction on Alfven timescale. Stabilization by profile shaping has been shown to the be eventually ineffective [3]. Kinetic simulations of FRC stability employ hybrid schemes but use a single-fluid Grad-Shafranov equilibrium (assuming traditionally = 0) as a starting point [4]. These studies focus only on the kinetic B resulting predominantly from large orbit phase mixing. effects This work examines the importance of the Hall term normally ignored in MHD description. This is the most significant mechanism in the GENERAL ATOMICS

4 is a hybrid, PIC code created to simulate plasma phenomena in the FLAME cylindrical (r; ;z) geometry. It follows low-frequency, quasi-neutral 3-D, motions described by the Maxwell equations in the Darwin plasma approximation: ion species are represented by full-orbit macro-particles and the Multiple electrons are modeled as a massless collisional fluid (Ohm's law): plasma Simulation = cr E; r B = 4ß c (j e + j i ) = j e + j e B E e c en rp e ; = 4ß(ν ei + ν en )! 2 : (2) pe en e 1 1 fl = fl 1 r(p ev e ) p e rv e + Q e ; Q e = j 2 e: (3) this work we ignore the electron thermal effects (p e = 0). In GENERAL ATOMICS

5 @B ^ r 1 = e en h c ( 4ß r B j i) B crp e the axisymmetric case ( = 0, B = rψ r + I r ; I = rb ) there are In physical drivers of B, i.e. the Hall effect (nonuniform poloidal B), several h r Λψ ψ; i r 2 h ri ; + predominant mechanism in generating B is through the Hall term. It The as scales v Hall v A B -Generation = 0) i nonlinear terms and ion/electron thermal = r2 n e r 2 I e r 2 n + S i + S e (5) where [X; Y ] = (rx r ) ry; r Λ = r 2 (6) cb ο c=! pi A 4ßenRv r ci R ' ' (7) R electron pressure effect is small: S e ο ^ (rn e rt e ) ο 0. The GENERAL ATOMICS

6 Axisymmetric FRCs with different values of parameter s Λ (the number ion gyroradii between the O-point and the separatrix) are formed by of Initialize a distribution of ion macro-particles with uniform 1. and density profiles. temperature Apply an external electric field in the -direction. Run the code until 2. field reversal on axis takes place. the Turn off the applied electric field, decrease the plasma resistivity and 3. the code until an approximate equilibrium is reached. run FRCs obtained in this work are similar to ones produced by simulating imploding -pinch discharge [1]. The FRC parameters used in this an FRCs with the same s Λ are generated twice: (1) by imposing B = 0; (2) solving the model equations self-consistently. by FRC Formation Setup applying a new numerical technique : study are summarized in Table 1. GENERAL ATOMICS

7 The simulation is run long enough to demonstrate nonlinear 1. of initially unstable kink modes. saturation Each self-consistent stability run is accompanied by a "reduced" 2. with B = 0. The comparative analysis of these runs is simulation in understanding the role of B in preventing rapid FRC helpful termination. 3-D FRC Equilibrium Setup Axisymmetric FRCs are projected into 3-D space by distributing the and particle inventory uniformly in the -dimension. The m» 4 field toroidal modes are currently enabled in the system. An initial m = 1 perturbation is applied to ion axial velocities (of order A ). Its amplitude is chosen to be proportional to ψ 2 (it vanishes at 0:02v the separatrix, ψ = 0). The purpose of this study is twofold: GENERAL ATOMICS

8 s Λ = 4 s Λ = 10 Run Radius 15 cm 15 cm Wall B z 1:8 kg 5 kg Background Density cm 3 0: cm 3 Peak Temperature 160 ev 200 ev Ion Length 40 cm 40 cm Separatrix Radius 10:5 cm 10 cm Separatrix Radius 7:5 cm 7 cm O-Point 2 2 Elongation Gyroradius 0:7 cm 0:3 cm Ion Velocity 1: cm=s 1: cm=s Alfven Growth Time 1:6 μs 1:3 μs MHD Size (z; r; m) Grid PIC (3-D) 700; ; 000 N Table 1 (Summary of FRC Runs)

9 We focus on the enhanced stability properties of FRC-like with a certain amount of toroidal field generated during configurations The most significant effect in generating toroidal field is the Hall effect. terms of the MHD energy principle this corresponds to adding In Since the Hall term tends to bend field lines predominantly in the direction (in contrast to Alfven-driven plasma motion), this toroidal not result in increasing poloidal field curvature. Therefore, this does is always stabilizing. effect The magnitude of the Hall effect scales as r ci =R (R is the characteristic gradient length). Thus, the self-generated toroidal field should magnetic FRC Global Stability I (Theory) the FRC formation. another stabilizing field-bending term to the energy equation. be an important stabilizing factor in low-s (kinetic) plasmas. We also explore stability properties of "fusion-scale" FRCs (s Λ ο 10). GENERAL ATOMICS

10 run. Time histories of magnetic field modes self-consistent 5(a,b,c)) corraborate this finding. (Fig. FRC Global Stability II (Results) All simulations have been run long enough to demonstrate the nonlinear of the kink/tilt instability through kinetic phase mixing and saturation FRC shape relaxation. As shown in Fig. 1(a,b) the low-s self-consistent FRC does not exhibit confinement degradation during the instability. significant Fig. 2(a,b) illustrates the dynamics of the "zero-b " kinetic FRC. Its poloidal structure undergoes more deformation compared to the internal The "fluid-like" FRCs are shown in Fig. 3(a,b,c) and Fig. 4(a,b). The FRC is still more robust in conserving its poloidal flux. self-consistent In all cases the kinks are stabilized by virtue of ion phase mixing in the dimension and FRC plasma axial expansion (Fig. 7). toroidal GENERAL ATOMICS

11 The kink modes are the most disruptive toroidal modes that can cause FRC confinement degradation. The ideal MHD theory predicts rapid FRC termination. On the contrary, this study demonstrates the fast robustness with respect to generating such modes, including the FRC The FRC tilt stabilization is achieved through nonlinear kinetic ion (toroidal phase mixing) resulting in an FRC plasma relaxation motion The tilt-driven confinement degradation is effectively prevented in the FRC and reduced in the high-s case by virtue of toroidal self-field low-s (the Hall term effect), which increases the CT local helicity generation destabilizing bad field curvature regions. without The results of this study are in good agreement with available evidence of robust kinetic FRC stability and existence of experimental Conclusion most feared tilt mode. in the poloidal plane and expansion in the axial direction. toroidal fluxes in the FRC-like configurations. GENERAL ATOMICS

12 Figure 1a: Poloidal Flux (s Λ = 4, B 6= 0)

13 Figure 1b: Plasma Density (s Λ = 4, B 6= 0)

14 Figure 1c: Toroidal Field (s Λ = 4, B 6= 0)

15 Figure 2a: Poloidal Flux (s Λ = 4, B = 0)

16 Figure 2b: Plasma Density (s Λ = 4, B = 0)

17 Figure 3a: Poloidal Flux (s Λ = 10, B 6= 0)

18 Figure 3b: Plasma Density (s Λ = 10, B 6= 0)

19 Figure 3c: Toroidal Field (s Λ = 10, B 6= 0)

20 Figure 4a: Poloidal Flux (s Λ = 10, B = 0)

21 Figure 4b: Plasma Density (s Λ = 10, B = 0)

22 Figure 5a: Mode Evolution (s Λ = 4, B 6= 0)

23 Figure 5b: Mode Evolution (s Λ = 4, B 6= 0)

24 Figure 5c: Mode Evolution (s Λ = 4, B = 0)

25 Figure 6a: Mode Evolution (s Λ = 10, B 6= 0)

26 Figure 6b: Mode Evolution (s Λ = 10, B 6= 0)

27 Figure 6c: Mode Evolution (s Λ = 10, B = 0)

28 Figure 7: FRC Axial Expansion

29 Yu.A. Omelchenko and R.N. Sudan, J. Comp. Phys. 133, [2] (1997). 146 E.J. Horowitz, D.E. Shumaker, and D.V. Anderson, J. [4] Phys. 84, 279 (1989). Comp. References [1] Y.A. Omelchenko, Phys. Plasmas 7, 1443 (2000). [3] L.C. Steinhauer, Phys. Plasmas 6, 2734 (1999). [5] D.W. Hewett, Nucl. Fusion 24, 349 (1984). [6] K. Wira and Z.A. Pietrzyk, Phys. Fluids B 2, 561 (1990). [7] G. Durance and I.R. Jones, Phys. Fluids 29, 1196 (1986).

30 FIGURE CAPTIONS Figure 1: Time evolution of the self-consistent kinetic FRC: (a) poloidal flux function ψ; (b) plasma density; (c) toroidal field. Figure 2: Time evolution of the "zero-b " kinetic FRC: (a) poloidal flux function ψ; (b) plasma density. Figure 3: Time evolution of the self-consistent fluid-like FRC: (a) poloidal flux function ψ; (b) plasma density; (c) toroidal field.

31 Figure 4: Time evolution of the "zero-b " fluid-like FRC: (a) poloidal flux function ψ; (b) plasma density. Figure 5: Time histories of magnetic energy modes of the kinetic FRC: (a) poloidal field; (b) toroidal field; (c) B = 0. Figure 6: Time histories of magnetic energy modes of the fluid-like FRC: (a) poloidal field; (b) toroidal field; (c) B = 0. Figure 7: Time history of FRC plasma axial length evolution. The kink instability saturates through FRC axial expansion.

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

arxiv: v1 [physics.plasm-ph] 11 Mar 2016

arxiv: v1 [physics.plasm-ph] 11 Mar 2016 1 Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasm-ph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

More information

Three-dimensional MHD simulations of counter-helicity spheromak merging in the Swarthmore Spheromak Experiment

Three-dimensional MHD simulations of counter-helicity spheromak merging in the Swarthmore Spheromak Experiment Three-dimensional MHD simulations of counter-helicity spheromak merging in the Swarthmore Spheromak Experiment C. E. Myers, 1, a) E. V. Belova, 1 M. R. Brown, 2 T. Gray, 2 C. D. Cothran, 2, b) and M. J.

More information

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory. SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction

More information

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

ADVANCES IN NOVEL FRC PLASMAS

ADVANCES IN NOVEL FRC PLASMAS GA A23824 ADVANCES IN NOVEL FRC PLASMAS by M.J. SCHAFFER, M.R. BROWN, J.A. LEUER, P.B. PARKS, and C.D. COTHRAN APRIL 22 DISCLAIMER This report was prepared as an account of work sponsored by an agency

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

Tokamak Edge Turbulence background theory and computation

Tokamak Edge Turbulence background theory and computation ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts

More information

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport

Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport 1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193 Japan

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,

More information

Fast Secondary Reconnection and the Sawtooth Crash

Fast Secondary Reconnection and the Sawtooth Crash Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEA-IRFM, Saint-Paul-lez-Durance (France) 2 Université de Lorraine, Institut Jean Lamour UMR-CNRS 7198, Nancy

More information

Magnetic Deflection of Ionized Target Ions

Magnetic Deflection of Ionized Target Ions Magnetic Deflection of Ionized Target Ions D. V. Rose, A. E. Robson, J. D. Sethian, D. R. Welch, and R. E. Clark March 3, 005 HAPL Meeting, NRL Solid wall, magnetic deflection 1. Cusp magnetic field imposed

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas

Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas 1 Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas N. Hayashi 1), T. Takizuka 1), N. Aiba 1), N. Oyama 1), T. Ozeki 1), S. Wiesen 2), V. Parail 3) 1) Japan Atomic Energy Agency,

More information

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015 Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all

More information

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations 1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science

More information

Overview of FRC-related modeling (July 2014-present)

Overview of FRC-related modeling (July 2014-present) Overview of FRC-related modeling (July 2014-present) Artan Qerushi AFRL-UCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling

More information

Vertical Displacement Events in Shaped Tokamaks. Abstract

Vertical Displacement Events in Shaped Tokamaks. Abstract Vertical Displacement Events in Shaped Tokamaks A. Y. Aydemir Institute for Fusion Studies The University of Texas at Austin Austin, Texas 78712 USA Abstract Computational studies of vertical displacement

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

Plasma models for the design of the ITER PCS

Plasma models for the design of the ITER PCS Plasma models for the design of the ITER PCS G. De Tommasi 1,2 on behalf of the CREATE team 1 Consorzio CREATE, Naples, Italy 2 Department of Electrical Engineering and Information Technology, University

More information

Thermonuclear Fusion with the Sheared Flow Stabilized Z-Pinch. F. Winterberg and L. F. Wanex

Thermonuclear Fusion with the Sheared Flow Stabilized Z-Pinch. F. Winterberg and L. F. Wanex Thermonuclear Fusion with the Sheared Flow Stabilized Z-Pinch F. Winterberg and L. F. Wanex University of Nevada Reno, Department of Physics / MS 37, Reno, Nevada, 89557, USA ABSTRACT Two basic approaches

More information

Toroidal confinement of non-neutral plasma. Martin Droba

Toroidal confinement of non-neutral plasma. Martin Droba Toroidal confinement of non-neutral plasma Martin Droba Contents Experiments with toroidal non-neutral plasma Magnetic surfaces CNT and IAP-high current ring Conclusion 2. Experiments with toroidal non-neutral

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Tokamak/Helical Configurations Related to LHD and CHS-qa

Tokamak/Helical Configurations Related to LHD and CHS-qa 9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 21-23, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHS-qa

More information

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was

More information

Flow dynamics and plasma heating of spheromaks in SSX

Flow dynamics and plasma heating of spheromaks in SSX Flow dynamics and plasma heating of spheromaks in SSX M. R. Brown and C. D. Cothran, D. Cohen, J. Horwitz, and V. Chaplin Department of Physics and Astronomy Center for Magnetic Self Organization Swarthmore

More information

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

More information

Tokamak Fusion Basics and the MHD Equations

Tokamak Fusion Basics and the MHD Equations MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

More information

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation

More information

On existence of resistive magnetohydrodynamic equilibria

On existence of resistive magnetohydrodynamic equilibria arxiv:physics/0503077v1 [physics.plasm-ph] 9 Mar 2005 On existence of resistive magnetohydrodynamic equilibria H. Tasso, G. N. Throumoulopoulos Max-Planck-Institut für Plasmaphysik Euratom Association

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP-6 June, Electrical Engineering Department Los Angeles, California

More information

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low

More information

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

arxiv:physics/ v1 [physics.plasm-ph] 14 Nov 2005

arxiv:physics/ v1 [physics.plasm-ph] 14 Nov 2005 arxiv:physics/0511124v1 [physics.plasm-ph] 14 Nov 2005 Early nonlinear regime of MHD internal modes: the resistive case M.C. Firpo Laboratoire de Physique et Technologie des Plasmas (C.N.R.S. UMR 7648),

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

37. MHD RELAXATION: MAGNETIC SELF-ORGANIZATION

37. MHD RELAXATION: MAGNETIC SELF-ORGANIZATION 37. MHD RELAXATION: MAGNETIC SELF-ORGANIZATION Magnetized fluids and plasmas are observed to exist naturally in states that are relatively independent of their initial conditions, or the way in which the

More information

ELM control with RMP: plasma response models and the role of edge peeling response

ELM control with RMP: plasma response models and the role of edge peeling response ELM control with RMP: plasma response models and the role of edge peeling response Yueqiang Liu 1,2,3,*, C.J. Ham 1, A. Kirk 1, Li Li 4,5,6, A. Loarte 7, D.A. Ryan 8,1, Youwen Sun 9, W. Suttrop 10, Xu

More information

Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration

Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration D.A. Kaltsas and G.N. Throumoulopoulos Department of Physics, University of Ioannina, GR 451 10 Ioannina,

More information

Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas

Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994-present) 16, 052502 (2009); doi: 10.1063/1.3126964

More information

Plasma Stability in Tokamaks and Stellarators

Plasma Stability in Tokamaks and Stellarators Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1- May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,

More information

RESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY

RESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 0741-3335/87$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.

Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, P. Maget 1, N. Mellet 1, G. Dif-Pradalier 1, G. Latu 1, C. Passeron

More information

Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance

Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance M.Okabayashi, M. Chance, M. Chu* and R. Hatcher A. Garofalo**, R. La Haye*, H. Remeirdes**, T. Scoville*, and T.

More information

Magnetized Target Fusion collaboration 2004: recent progress

Magnetized Target Fusion collaboration 2004: recent progress Magnetized Target Fusion collaboration 2004: recent progress T. Intrator for the MTF collaboration Los Alamos National Laboratory Los Alamos, NM 87545 USA Innovative Confinement Concepts Workshop 25-28

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012 Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty

More information

Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain

Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain arxiv:146.5245v1 [physics.plasm-ph] 2 Jun 214 D. P. Brennan and J. M. Finn June 23, 214 Department of Astrophysical

More information

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado

More information

PHYSICS DESIGN FOR ARIES-CS

PHYSICS DESIGN FOR ARIES-CS PHYSICS DESIGN FOR ARIES-CS L. P. KU, a * P. R. GARABEDIAN, b J. LYON, c A. TURNBULL, d A. GROSSMAN, e T. K. MAU, e M. ZARNSTORFF, a and ARIES TEAM a Princeton Plasma Physics Laboratory, Princeton University,

More information

What is a reversed field pinch?

What is a reversed field pinch? What is a reversed field pinch? Dominique Escande To cite this version: Dominique Escande. What is a reversed field pinch?. 2013. HAL Id: hal-00909102 https://hal.archives-ouvertes.fr/hal-00909102

More information

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries 1 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),

More information

generalfusion Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop

generalfusion Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop Aaron Froese, Charlson Kim, Meritt Reynolds, Sandra Barsky, Victoria Suponitsky, Stephen Howard, Russ Ivanov, Peter O'Shea,

More information

HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden

HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS Paul Garabedian and Geoffrey McFadden 1. Summary Runs of the NSTAB equilibrium and stability code show there are many 3D solutions of the advanced

More information

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade 1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Plasma instability during ITBs formation with pellet injection in tokamak

Plasma instability during ITBs formation with pellet injection in tokamak Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,

More information

Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH)

Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH) INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) S613 S624 Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH) doi:10.1088/0029-5515/46/8/s07

More information

Gyrokinetic Transport Driven by Energetic Particle Modes

Gyrokinetic Transport Driven by Energetic Particle Modes Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)

More information

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2. Magnetohydrodynamics and MHD models SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

More information

Progress in characterization of the H-mode pedestal

Progress in characterization of the H-mode pedestal Journal of Physics: Conference Series Progress in characterization of the H-mode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and

More information

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device Production of Over-dense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Supported by. Role of plasma edge in global stability and control*

Supported by. Role of plasma edge in global stability and control* NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

Microturbulence in optimised stellarators

Microturbulence in optimised stellarators Q Josefine H. E. Proll, Benjamin J. Faber, Per Helander, Samuel A. Lazerson, Harry Mynick, and Pavlos Xanthopoulos Many thanks to: T. M. Bird, J. W. Connor, T. Go rler, W. Guttenfelder, G.W. Hammett, F.

More information

11. Discharges in Magnetic Fields

11. Discharges in Magnetic Fields Contrib. Plasma Phys. 26 (1986) 1, 13-17 Sudden Jumps, Hysteresis, and Negative Resistance in an Argon Plasma Discharge 11. Discharges in Magnetic Fields R. A. BOSCR and R. L. MERLINO Department of Physics

More information

The Sheared Flow Stabilized Z-Pinch

The Sheared Flow Stabilized Z-Pinch The Sheared Flow Stabilized Z-Pinch U. Shumlak, J. Chadney, R.P. Golingo, D.J. Den Hartog, M.C. Hughes, S.D. Knecht, B.A. Nelson, W. Lowrie, R.J. Oberto, M.P. Ross, J.L. Rohrbach, and G.V. Vogman Aerospace

More information

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,

More information

INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS

INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS G.W. Hammett, Princeton Plasma Physics Lab w3.pppl.gov/ hammett Fusion Simulation

More information

Bifurcated states of a rotating tokamak plasma in the presence of a static error-field

Bifurcated states of a rotating tokamak plasma in the presence of a static error-field Bifurcated states of a rotating tokamak plasma in the presence of a static error-field Citation: Physics of Plasmas (1994-present) 5, 3325 (1998); doi: 10.1063/1.873000 View online: http://dx.doi.org/10.1063/1.873000

More information

Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves

Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves -,.*w Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves F. W. Perkins 1-2, R. B. White 2, and P. Bonoli 3 1 Plasma Physics Laboratory, P.O.Box 4.51, Princeton,

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST

Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST Plasma Science and Technology, Vol.3, No.3, Jun. 2 Toroidal Multipolar Expansion for Fast L-Mode Plasma Boundary Reconstruction in EAST GUO Yong ), XIAO Bingjia ), LUO Zhengping ) Institute of Plasma Physics,

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment

Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment 1 EXS/P2-07 Nonsolenoidal Startup and Plasma Stability at Near-Unity Aspect Ratio in the Pegasus Toroidal Experiment R.J. Fonck 1), D.J. Battaglia 2), M.W. Bongard 1), E.T. Hinson 1), A.J. Redd 1), D.J.

More information

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 4 January 2010 / Accepted

More information

Beams and magnetized plasmas

Beams and magnetized plasmas Beams and magnetized plasmas 1 Jean-Pierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and

More information

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract

More information

Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator

Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator Plasma Science and Technology, Vol.18, No.6, Jun. 2016 Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator Le Chi KIEN Ho Chi Minh City University of Technology

More information

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy

More information

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP - EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak

More information

GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D

GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D by E.J. DOYLE, J.C. DeBOO, T.A. CASPER, J.R. FERRON, R.J. GROEBNER, C.T. HOLCOMB, A.W. HYATT, G.L. JACKSON, R.J. LA HAYE, T.C. LUCE, G.R.

More information

Modélisation de sources plasma froid magnétisé

Modélisation de sources plasma froid magnétisé Modélisation de sources plasma froid magnétisé Gerjan Hagelaar Groupe de Recherche Energétique, Plasma & Hors Equilibre (GREPHE) Laboratoire Plasma et Conversion d Énergie (LAPLACE) Université Paul Sabatier,

More information

Significance of MHD Effects in Stellarator Confinement

Significance of MHD Effects in Stellarator Confinement Significance of MHD Effects in Stellarator Confinement A. Weller 1, S. Sakakibara 2, K.Y. Watanabe 2, K. Toi 2, J. Geiger 1, M.C. Zarnstorff 3, S.R. Hudson 3, A. Reiman 3, A. Werner 1, C. Nührenberg 1,

More information

Simulations of the plasma dynamics in high-current ion diodes

Simulations of the plasma dynamics in high-current ion diodes Nuclear Instruments and Methods in Physics Research A 415 (1998) 473 477 Simulations of the plasma dynamics in high-current ion diodes O. Boine-Frankenheim *, T.D. Pointon, T.A. Mehlhorn Gesellschaft fu(

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

On the Nature of ETG Turbulence and Cross-Scale Coupling

On the Nature of ETG Turbulence and Cross-Scale Coupling J. Plasma Fusion Res. SERIES, Vol. Vol. 6 6 (2004) (2004) 11 16 000 000 On the Nature of ETG Turbulence and Cross-Scale Coupling JENKO Frank Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748

More information