The FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is

 Gerald Harvey
 11 months ago
 Views:
Transcription
1 and Stability of FieldReversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California P.O. APS Annual APS Meeting of the Division of Plasma Physics 42st City, October 2328, Québec Yu. A. Omelchenko, M. Schaffer, P. Parks
2 The FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is primarily confined by poloidal fields. The possibility of the of selfgenerated toroidal field inside the separatrix has been presence ignored in the previous stability analysis of such configurations. largely studies have not identified a physical mechanism that would Those Recent FRC formation and stability simulations [1] performed with a hybrid, PIC code FLAME [2] for a limited set of toroidal modes 3D, Here we shift focus to demonstrating the enhanced stability of the FRCs toroidal fluxes to a number of kink modes, including the most with Abstract plasma current. explain the robust tilt stability of experimentally produced FRCs. (m = 0; 1) revealed the important role of toroidal field effects in mitigating FRC tilting. disruptive tilt mode. GENERAL ATOMICS
3 toroidal selffield in FRClike compact toroids (CTs) as generating both in theoretical [5],[1] and experimental [6],[7] studies. shown Introduction The FRC kink instability (including the m=1 tilt) has been studied in MHD and kinetic regimes under the assumption of no toroidal both selffield inside the separatrix. MHD theory predicts FRC confinement degradation and destruction on Alfven timescale. Stabilization by profile shaping has been shown to the be eventually ineffective [3]. Kinetic simulations of FRC stability employ hybrid schemes but use a singlefluid GradShafranov equilibrium (assuming traditionally = 0) as a starting point [4]. These studies focus only on the kinetic B resulting predominantly from large orbit phase mixing. effects This work examines the importance of the Hall term normally ignored in MHD description. This is the most significant mechanism in the GENERAL ATOMICS
4 is a hybrid, PIC code created to simulate plasma phenomena in the FLAME cylindrical (r; ;z) geometry. It follows lowfrequency, quasineutral 3D, motions described by the Maxwell equations in the Darwin plasma approximation: ion species are represented by fullorbit macroparticles and the Multiple electrons are modeled as a massless collisional fluid (Ohm's law): plasma Simulation = cr E; r B = 4ß c (j e + j i ) = j e + j e B E e c en rp e ; = 4ß(ν ei + ν en )! 2 : (2) pe en e 1 1 fl = fl 1 r(p ev e ) p e rv e + Q e ; Q e = j 2 e: (3) this work we ignore the electron thermal effects (p e = 0). In GENERAL ATOMICS
5 @B ^ r 1 = e en h c ( 4ß r B j i) B crp e the axisymmetric case ( = 0, B = rψ r + I r ; I = rb ) there are In physical drivers of B, i.e. the Hall effect (nonuniform poloidal B), several h r Λψ ψ; i r 2 h ri ; + predominant mechanism in generating B is through the Hall term. It The as scales v Hall v A B Generation = 0) i nonlinear terms and ion/electron thermal = r2 n e r 2 I e r 2 n + S i + S e (5) where [X; Y ] = (rx r ) ry; r Λ = r 2 (6) cb ο c=! pi A 4ßenRv r ci R ' ' (7) R electron pressure effect is small: S e ο ^ (rn e rt e ) ο 0. The GENERAL ATOMICS
6 Axisymmetric FRCs with different values of parameter s Λ (the number ion gyroradii between the Opoint and the separatrix) are formed by of Initialize a distribution of ion macroparticles with uniform 1. and density profiles. temperature Apply an external electric field in the direction. Run the code until 2. field reversal on axis takes place. the Turn off the applied electric field, decrease the plasma resistivity and 3. the code until an approximate equilibrium is reached. run FRCs obtained in this work are similar to ones produced by simulating imploding pinch discharge [1]. The FRC parameters used in this an FRCs with the same s Λ are generated twice: (1) by imposing B = 0; (2) solving the model equations selfconsistently. by FRC Formation Setup applying a new numerical technique : study are summarized in Table 1. GENERAL ATOMICS
7 The simulation is run long enough to demonstrate nonlinear 1. of initially unstable kink modes. saturation Each selfconsistent stability run is accompanied by a "reduced" 2. with B = 0. The comparative analysis of these runs is simulation in understanding the role of B in preventing rapid FRC helpful termination. 3D FRC Equilibrium Setup Axisymmetric FRCs are projected into 3D space by distributing the and particle inventory uniformly in the dimension. The m» 4 field toroidal modes are currently enabled in the system. An initial m = 1 perturbation is applied to ion axial velocities (of order A ). Its amplitude is chosen to be proportional to ψ 2 (it vanishes at 0:02v the separatrix, ψ = 0). The purpose of this study is twofold: GENERAL ATOMICS
8 s Λ = 4 s Λ = 10 Run Radius 15 cm 15 cm Wall B z 1:8 kg 5 kg Background Density cm 3 0: cm 3 Peak Temperature 160 ev 200 ev Ion Length 40 cm 40 cm Separatrix Radius 10:5 cm 10 cm Separatrix Radius 7:5 cm 7 cm OPoint 2 2 Elongation Gyroradius 0:7 cm 0:3 cm Ion Velocity 1: cm=s 1: cm=s Alfven Growth Time 1:6 μs 1:3 μs MHD Size (z; r; m) Grid PIC (3D) 700; ; 000 N Table 1 (Summary of FRC Runs)
9 We focus on the enhanced stability properties of FRClike with a certain amount of toroidal field generated during configurations The most significant effect in generating toroidal field is the Hall effect. terms of the MHD energy principle this corresponds to adding In Since the Hall term tends to bend field lines predominantly in the direction (in contrast to Alfvendriven plasma motion), this toroidal not result in increasing poloidal field curvature. Therefore, this does is always stabilizing. effect The magnitude of the Hall effect scales as r ci =R (R is the characteristic gradient length). Thus, the selfgenerated toroidal field should magnetic FRC Global Stability I (Theory) the FRC formation. another stabilizing fieldbending term to the energy equation. be an important stabilizing factor in lows (kinetic) plasmas. We also explore stability properties of "fusionscale" FRCs (s Λ ο 10). GENERAL ATOMICS
10 run. Time histories of magnetic field modes selfconsistent 5(a,b,c)) corraborate this finding. (Fig. FRC Global Stability II (Results) All simulations have been run long enough to demonstrate the nonlinear of the kink/tilt instability through kinetic phase mixing and saturation FRC shape relaxation. As shown in Fig. 1(a,b) the lows selfconsistent FRC does not exhibit confinement degradation during the instability. significant Fig. 2(a,b) illustrates the dynamics of the "zerob " kinetic FRC. Its poloidal structure undergoes more deformation compared to the internal The "fluidlike" FRCs are shown in Fig. 3(a,b,c) and Fig. 4(a,b). The FRC is still more robust in conserving its poloidal flux. selfconsistent In all cases the kinks are stabilized by virtue of ion phase mixing in the dimension and FRC plasma axial expansion (Fig. 7). toroidal GENERAL ATOMICS
11 The kink modes are the most disruptive toroidal modes that can cause FRC confinement degradation. The ideal MHD theory predicts rapid FRC termination. On the contrary, this study demonstrates the fast robustness with respect to generating such modes, including the FRC The FRC tilt stabilization is achieved through nonlinear kinetic ion (toroidal phase mixing) resulting in an FRC plasma relaxation motion The tiltdriven confinement degradation is effectively prevented in the FRC and reduced in the highs case by virtue of toroidal selffield lows (the Hall term effect), which increases the CT local helicity generation destabilizing bad field curvature regions. without The results of this study are in good agreement with available evidence of robust kinetic FRC stability and existence of experimental Conclusion most feared tilt mode. in the poloidal plane and expansion in the axial direction. toroidal fluxes in the FRClike configurations. GENERAL ATOMICS
12 Figure 1a: Poloidal Flux (s Λ = 4, B 6= 0)
13 Figure 1b: Plasma Density (s Λ = 4, B 6= 0)
14 Figure 1c: Toroidal Field (s Λ = 4, B 6= 0)
15 Figure 2a: Poloidal Flux (s Λ = 4, B = 0)
16 Figure 2b: Plasma Density (s Λ = 4, B = 0)
17 Figure 3a: Poloidal Flux (s Λ = 10, B 6= 0)
18 Figure 3b: Plasma Density (s Λ = 10, B 6= 0)
19 Figure 3c: Toroidal Field (s Λ = 10, B 6= 0)
20 Figure 4a: Poloidal Flux (s Λ = 10, B = 0)
21 Figure 4b: Plasma Density (s Λ = 10, B = 0)
22 Figure 5a: Mode Evolution (s Λ = 4, B 6= 0)
23 Figure 5b: Mode Evolution (s Λ = 4, B 6= 0)
24 Figure 5c: Mode Evolution (s Λ = 4, B = 0)
25 Figure 6a: Mode Evolution (s Λ = 10, B 6= 0)
26 Figure 6b: Mode Evolution (s Λ = 10, B 6= 0)
27 Figure 6c: Mode Evolution (s Λ = 10, B = 0)
28 Figure 7: FRC Axial Expansion
29 Yu.A. Omelchenko and R.N. Sudan, J. Comp. Phys. 133, [2] (1997). 146 E.J. Horowitz, D.E. Shumaker, and D.V. Anderson, J. [4] Phys. 84, 279 (1989). Comp. References [1] Y.A. Omelchenko, Phys. Plasmas 7, 1443 (2000). [3] L.C. Steinhauer, Phys. Plasmas 6, 2734 (1999). [5] D.W. Hewett, Nucl. Fusion 24, 349 (1984). [6] K. Wira and Z.A. Pietrzyk, Phys. Fluids B 2, 561 (1990). [7] G. Durance and I.R. Jones, Phys. Fluids 29, 1196 (1986).
30 FIGURE CAPTIONS Figure 1: Time evolution of the selfconsistent kinetic FRC: (a) poloidal flux function ψ; (b) plasma density; (c) toroidal field. Figure 2: Time evolution of the "zerob " kinetic FRC: (a) poloidal flux function ψ; (b) plasma density. Figure 3: Time evolution of the selfconsistent fluidlike FRC: (a) poloidal flux function ψ; (b) plasma density; (c) toroidal field.
31 Figure 4: Time evolution of the "zerob " fluidlike FRC: (a) poloidal flux function ψ; (b) plasma density. Figure 5: Time histories of magnetic energy modes of the kinetic FRC: (a) poloidal field; (b) toroidal field; (c) B = 0. Figure 6: Time histories of magnetic energy modes of the fluidlike FRC: (a) poloidal field; (b) toroidal field; (c) B = 0. Figure 7: Time history of FRC plasma axial length evolution. The kink instability saturates through FRC axial expansion.
The RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationarxiv: v1 [physics.plasmph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD selforganization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasmph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
More informationThe Virial Theorem, MHD Equilibria, and ForceFree Fields
The Virial Theorem, MHD Equilibria, and ForceFree Fields Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely
More informationStellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK
Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices
More informationThreedimensional MHD simulations of counterhelicity spheromak merging in the Swarthmore Spheromak Experiment
Threedimensional MHD simulations of counterhelicity spheromak merging in the Swarthmore Spheromak Experiment C. E. Myers, 1, a) E. V. Belova, 1 M. R. Brown, 2 T. Gray, 2 C. D. Cothran, 2, b) and M. J.
More informationSMR/ Summer College on Plasma Physics. 30 July  24 August, Introduction to Magnetic Island Theory.
SMR/18561 2007 Summer College on Plasma Physics 30 July  24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction
More informationMomentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi
Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center  University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center
More informationEffects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal
Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.
More informationADVANCES IN NOVEL FRC PLASMAS
GA A23824 ADVANCES IN NOVEL FRC PLASMAS by M.J. SCHAFFER, M.R. BROWN, J.A. LEUER, P.B. PARKS, and C.D. COTHRAN APRIL 22 DISCLAIMER This report was prepared as an account of work sponsored by an agency
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationTokamak Edge Turbulence background theory and computation
ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts
More informationIntegrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport
1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibarakiken, 3110193 Japan
More informationSTABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK
GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This
More informationTH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)
1 TH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,
More informationFast Secondary Reconnection and the Sawtooth Crash
Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEAIRFM, SaintPaullezDurance (France) 2 Université de Lorraine, Institut Jean Lamour UMRCNRS 7198, Nancy
More informationMagnetic Deflection of Ionized Target Ions
Magnetic Deflection of Ionized Target Ions D. V. Rose, A. E. Robson, J. D. Sethian, D. R. Welch, and R. E. Clark March 3, 005 HAPL Meeting, NRL Solid wall, magnetic deflection 1. Cusp magnetic field imposed
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationIntegrated Simulation of ELM Energy Loss and Cycle in Improved Hmode Plasmas
1 Integrated Simulation of ELM Energy Loss and Cycle in Improved Hmode Plasmas N. Hayashi 1), T. Takizuka 1), N. Aiba 1), N. Oyama 1), T. Ozeki 1), S. Wiesen 2), V. Parail 3) 1) Japan Atomic Energy Agency,
More informationSimulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015
Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all
More informationELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations
1 EXC/P502 ELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science
More informationOverview of FRCrelated modeling (July 2014present)
Overview of FRCrelated modeling (July 2014present) Artan Qerushi AFRLUCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling
More informationVertical Displacement Events in Shaped Tokamaks. Abstract
Vertical Displacement Events in Shaped Tokamaks A. Y. Aydemir Institute for Fusion Studies The University of Texas at Austin Austin, Texas 78712 USA Abstract Computational studies of vertical displacement
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationPlasma models for the design of the ITER PCS
Plasma models for the design of the ITER PCS G. De Tommasi 1,2 on behalf of the CREATE team 1 Consorzio CREATE, Naples, Italy 2 Department of Electrical Engineering and Information Technology, University
More informationThermonuclear Fusion with the Sheared Flow Stabilized ZPinch. F. Winterberg and L. F. Wanex
Thermonuclear Fusion with the Sheared Flow Stabilized ZPinch F. Winterberg and L. F. Wanex University of Nevada Reno, Department of Physics / MS 37, Reno, Nevada, 89557, USA ABSTRACT Two basic approaches
More informationToroidal confinement of nonneutral plasma. Martin Droba
Toroidal confinement of nonneutral plasma Martin Droba Contents Experiments with toroidal nonneutral plasma Magnetic surfaces CNT and IAPhigh current ring Conclusion 2. Experiments with toroidal nonneutral
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationTokamak/Helical Configurations Related to LHD and CHSqa
9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 2123, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHSqa
More informationGA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER
GA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was
More informationFlow dynamics and plasma heating of spheromaks in SSX
Flow dynamics and plasma heating of spheromaks in SSX M. R. Brown and C. D. Cothran, D. Cohen, J. Horwitz, and V. Chaplin Department of Physics and Astronomy Center for Magnetic Self Organization Swarthmore
More informationEvaluation of CT injection to RFP for performance improvement and reconnection studies
Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi
More informationTokamak Fusion Basics and the MHD Equations
MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers
More informationINITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS
INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation
More informationOn existence of resistive magnetohydrodynamic equilibria
arxiv:physics/0503077v1 [physics.plasmph] 9 Mar 2005 On existence of resistive magnetohydrodynamic equilibria H. Tasso, G. N. Throumoulopoulos MaxPlanckInstitut für Plasmaphysik Euratom Association
More informationLow Temperature Plasma Technology Laboratory
Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP6 June, Electrical Engineering Department Los Angeles, California
More informationKINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS
KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low
More informationMeasuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor
PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University
More informationMODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES
MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationarxiv:physics/ v1 [physics.plasmph] 14 Nov 2005
arxiv:physics/0511124v1 [physics.plasmph] 14 Nov 2005 Early nonlinear regime of MHD internal modes: the resistive case M.C. Firpo Laboratoire de Physique et Technologie des Plasmas (C.N.R.S. UMR 7648),
More informationThe Magnetorotational Instability
The Magnetorotational Instability Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley
More informationImpact of neutral atoms on plasma turbulence in the tokamak edge region
Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International
More informationMagnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland
Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed
More information37. MHD RELAXATION: MAGNETIC SELFORGANIZATION
37. MHD RELAXATION: MAGNETIC SELFORGANIZATION Magnetized fluids and plasmas are observed to exist naturally in states that are relatively independent of their initial conditions, or the way in which the
More informationELM control with RMP: plasma response models and the role of edge peeling response
ELM control with RMP: plasma response models and the role of edge peeling response Yueqiang Liu 1,2,3,*, C.J. Ham 1, A. Kirk 1, Li Li 4,5,6, A. Loarte 7, D.A. Ryan 8,1, Youwen Sun 9, W. Suttrop 10, Xu
More informationGeneralized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration
Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration D.A. Kaltsas and G.N. Throumoulopoulos Department of Physics, University of Ioannina, GR 451 10 Ioannina,
More informationEffect of local E B flow shear on the stability of magnetic islands in tokamak plasmas
Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994present) 16, 052502 (2009); doi: 10.1063/1.3126964
More informationPlasma Stability in Tokamaks and Stellarators
Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1 May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,
More informationRESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY
Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 07413335/87$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE
More informationGA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME
GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.
More informationNonlinear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.
Nonlinear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, P. Maget 1, N. Mellet 1, G. DifPradalier 1, G. Latu 1, C. Passeron
More informationExtended Lumped Parameter Model of Resistive Wall Mode and The Effective SelfInductance
Extended Lumped Parameter Model of Resistive Wall Mode and The Effective SelfInductance M.Okabayashi, M. Chance, M. Chu* and R. Hatcher A. Garofalo**, R. La Haye*, H. Remeirdes**, T. Scoville*, and T.
More informationMagnetized Target Fusion collaboration 2004: recent progress
Magnetized Target Fusion collaboration 2004: recent progress T. Intrator for the MTF collaboration Los Alamos National Laboratory Los Alamos, NM 87545 USA Innovative Confinement Concepts Workshop 2528
More informationHeat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UWMadison
Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UWMadison CMPD & CMSO Winter School UCLA Jan 510, 2009 Magnetic perturbations can destroy the nestedsurface topology desired for
More informationW.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29November 2, 2012
Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty
More informationControl of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain
Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain arxiv:146.5245v1 [physics.plasmph] 2 Jun 214 D. P. Brennan and J. M. Finn June 23, 214 Department of Astrophysical
More informationComparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry
Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado
More informationPHYSICS DESIGN FOR ARIESCS
PHYSICS DESIGN FOR ARIESCS L. P. KU, a * P. R. GARABEDIAN, b J. LYON, c A. TURNBULL, d A. GROSSMAN, e T. K. MAU, e M. ZARNSTORFF, a and ARIES TEAM a Princeton Plasma Physics Laboratory, Princeton University,
More informationWhat is a reversed field pinch?
What is a reversed field pinch? Dominique Escande To cite this version: Dominique Escande. What is a reversed field pinch?. 2013. HAL Id: hal00909102 https://hal.archivesouvertes.fr/hal00909102
More information1 EX/P59 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries
1 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),
More informationgeneralfusion Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop
Characterization of General Fusion's Plasma Devices 2015 Nimrod Summer Workshop Aaron Froese, Charlson Kim, Meritt Reynolds, Sandra Barsky, Victoria Suponitsky, Stephen Howard, Russ Ivanov, Peter O'Shea,
More informationHOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden
HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS Paul Garabedian and Geoffrey McFadden 1. Summary Runs of the NSTAB equilibrium and stability code show there are many 3D solutions of the advanced
More informationNonlinear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade
1 TH/P126 Nonlinear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationIntroduction to Magnetohydrodynamics (MHD)
Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasineutrality
More informationPlasma instability during ITBs formation with pellet injection in tokamak
Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,
More informationDesign of the PROTOSPHERA experiment and of its first step (MULTIPINCH)
INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) S613 S624 Design of the PROTOSPHERA experiment and of its first step (MULTIPINCH) doi:10.1088/00295515/46/8/s07
More informationGyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
More informationSW103: Lecture 2. Magnetohydrodynamics and MHD models
SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics SunEarth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1
More informationProgress in characterization of the Hmode pedestal
Journal of Physics: Conference Series Progress in characterization of the Hmode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and
More informationProduction of Overdense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device
Production of Overdense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group
More informationHybrid Simulations: Numerical Details and Current Applications
Hybrid Simulations: Numerical Details and Current Applications Dietmar KraussVarban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space
More informationCharacterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod
1 EX/P422 Characterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.
More informationSupported by. Role of plasma edge in global stability and control*
NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U
More informationAmplification of magnetic fields in core collapse
Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo CerdáDurán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; MaxPlanckInstitut
More informationMicroturbulence in optimised stellarators
Q Josefine H. E. Proll, Benjamin J. Faber, Per Helander, Samuel A. Lazerson, Harry Mynick, and Pavlos Xanthopoulos Many thanks to: T. M. Bird, J. W. Connor, T. Go rler, W. Guttenfelder, G.W. Hammett, F.
More information11. Discharges in Magnetic Fields
Contrib. Plasma Phys. 26 (1986) 1, 1317 Sudden Jumps, Hysteresis, and Negative Resistance in an Argon Plasma Discharge 11. Discharges in Magnetic Fields R. A. BOSCR and R. L. MERLINO Department of Physics
More informationThe Sheared Flow Stabilized ZPinch
The Sheared Flow Stabilized ZPinch U. Shumlak, J. Chadney, R.P. Golingo, D.J. Den Hartog, M.C. Hughes, S.D. Knecht, B.A. Nelson, W. Lowrie, R.J. Oberto, M.P. Ross, J.L. Rohrbach, and G.V. Vogman Aerospace
More informationStability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye
Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,
More informationINTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS
INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS G.W. Hammett, Princeton Plasma Physics Lab w3.pppl.gov/ hammett Fusion Simulation
More informationBifurcated states of a rotating tokamak plasma in the presence of a static errorfield
Bifurcated states of a rotating tokamak plasma in the presence of a static errorfield Citation: Physics of Plasmas (1994present) 5, 3325 (1998); doi: 10.1063/1.873000 View online: http://dx.doi.org/10.1063/1.873000
More informationGeneration of Plasma Rotation in a Tokamak by IonCyclotron Absorption of Fast Alfven Waves
,.*w Generation of Plasma Rotation in a Tokamak by IonCyclotron Absorption of Fast Alfven Waves F. W. Perkins 12, R. B. White 2, and P. Bonoli 3 1 Plasma Physics Laboratory, P.O.Box 4.51, Princeton,
More informationMHD RELATED TO 2FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION
MHD RELATED TO 2FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2fluid theory Level of MHD depends
More informationToroidal Multipolar Expansion for Fast LMode Plasma Boundary Reconstruction in EAST
Plasma Science and Technology, Vol.3, No.3, Jun. 2 Toroidal Multipolar Expansion for Fast LMode Plasma Boundary Reconstruction in EAST GUO Yong ), XIAO Bingjia ), LUO Zhengping ) Institute of Plasma Physics,
More informationCurrent density modelling in JET and JT60U identity plasma experiments. Paula Sirén
Current density modelling in JET and JT60U identity plasma experiments Paula Sirén 1/12 1/16 EuratomTEKES EuratomTekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET
More informationNonsolenoidal Startup and Plasma Stability at NearUnity Aspect Ratio in the Pegasus Toroidal Experiment
1 EXS/P207 Nonsolenoidal Startup and Plasma Stability at NearUnity Aspect Ratio in the Pegasus Toroidal Experiment R.J. Fonck 1), D.J. Battaglia 2), M.W. Bongard 1), E.T. Hinson 1), A.J. Redd 1), D.J.
More informationResearch of Basic Plasma Physics Toward Nuclear Fusion in LHD
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 5095292, Japan (Received 4 January 2010 / Accepted
More informationBeams and magnetized plasmas
Beams and magnetized plasmas 1 JeanPierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and
More informationParticle Transport and Density Gradient Scale Lengths in the Edge Pedestal
Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal W. M. Stacey Fusion Research Center, Georgia Institute of Technology, Atlanta, GA, USA Email: weston.stacey@nre.gatech.edu Abstract
More informationAnalyses on the Ionization Instability of NonEquilibrium Seeded Plasma in an MHD Generator
Plasma Science and Technology, Vol.18, No.6, Jun. 2016 Analyses on the Ionization Instability of NonEquilibrium Seeded Plasma in an MHD Generator Le Chi KIEN Ho Chi Minh City University of Technology
More informationThe Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin
The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy
More informationA kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva
A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP  EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak
More informationGA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIIID
GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIIID by E.J. DOYLE, J.C. DeBOO, T.A. CASPER, J.R. FERRON, R.J. GROEBNER, C.T. HOLCOMB, A.W. HYATT, G.L. JACKSON, R.J. LA HAYE, T.C. LUCE, G.R.
More informationModélisation de sources plasma froid magnétisé
Modélisation de sources plasma froid magnétisé Gerjan Hagelaar Groupe de Recherche Energétique, Plasma & Hors Equilibre (GREPHE) Laboratoire Plasma et Conversion d Énergie (LAPLACE) Université Paul Sabatier,
More informationSignificance of MHD Effects in Stellarator Confinement
Significance of MHD Effects in Stellarator Confinement A. Weller 1, S. Sakakibara 2, K.Y. Watanabe 2, K. Toi 2, J. Geiger 1, M.C. Zarnstorff 3, S.R. Hudson 3, A. Reiman 3, A. Werner 1, C. Nührenberg 1,
More informationSimulations of the plasma dynamics in highcurrent ion diodes
Nuclear Instruments and Methods in Physics Research A 415 (1998) 473 477 Simulations of the plasma dynamics in highcurrent ion diodes O. BoineFrankenheim *, T.D. Pointon, T.A. Mehlhorn Gesellschaft fu(
More informationFundamentals of Plasma Physics
Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)
More information2/8/16 Dispersive Media, Lecture 5  Thomas Johnson 1. Waves in plasmas. T. Johnson
2/8/16 Dispersive Media, Lecture 5  Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics MagnetoHydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves
More informationSpace Plasma Physics Thomas Wiegelmann, 2012
Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description
More informationOn the Nature of ETG Turbulence and CrossScale Coupling
J. Plasma Fusion Res. SERIES, Vol. Vol. 6 6 (2004) (2004) 11 16 000 000 On the Nature of ETG Turbulence and CrossScale Coupling JENKO Frank MaxPlanckInstitut für Plasmaphysik, EURATOMAssociation, D85748
More information