Fast Secondary Reconnection and the Sawtooth Crash

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEA-IRFM, Saint-Paul-lez-Durance (France) 2 Université de Lorraine, Institut Jean Lamour UMR-CNRS 7198, Nancy (France) (EFTC-17, Athens, 9 October 2017)

2 Problem: why is the sawtooth crash so fast at large Lundquist number S=t R /t A? t R = a 2 /h t A = a/v Alfven Resistive time Alfven time

3 The m=1 mode and the sawtooth crash The m=1 mode: an essential element of the sawtooth cycle [Von Goeler et al.(1974), Kadomtsev(1975)] Process mediated by the restivity h. Becomes slow at large S, small h. The sawtooth crash time in JET is shorter than the collision time. [Edwards et al., (1986)] This process is too fast to be explained by resistive MHD Non-collisional physics (electron inertia and other effects) gives the right time scale (100 microseconds) for JET: γ τ A ~ (d e /L) both in the linear and in the nonlinear phase. (d e = skin depth, L ~a~r = machine scale length. τ A = Alfven time). Typically d e /L~10-3 [Ottaviani and Porcelli, (1993)]. Probably not sufficient to explain fast crashes in medium size tokamaks and in some simulations at moderate Lundquist number

4 Look for a new explanation

5 What about the stability of m=1 islands? Current sheets of large aspect ratio are developed during the nonlinear stage of primary internal-kink modes. How does their instability to secondary reconnecting modes relate to fast sawtooth crashes? Ex : Δ' = ψ J φ ( Figures taken from [Q.Yu et al., Nucl. Fusion 54, (2014)] )

6 What about the stability of m=1 islands? Current sheets of large aspect ratio are developed during the nonlinear stage of primary internal-kink modes. How does their instability to secondary reconnecting modes relate to fast sawtooth crashes? Ex : Δ' = ψ J φ ( Figures taken from [Q.Yu et al., Nucl. Fusion 54, (2014)] ) CURRENT SHEET

7 What about the stability of m=1 islands? Current sheets of large aspect ratio are developed during the nonlinear stage of primary internal-kink modes. How does their instability to secondary reconnecting modes relate to fast sawtooth crashes? Ex : Δ' = ψ J φ Secondary islands ( Figures taken from [Q.Yu et al., Nucl. Fusion 54, (2014)] )

8 Large Δ' regime in slab geometry ( Figures taken from [M. Ottaviani et al., Phys. Plasmas 2, 4104 (1995)] )

9 Large Δ' regime in slab geometry Current sheet ( Figures taken from [M. Ottaviani et al., Phys. Plasmas 2, 4104 (1995)] )

10 Slab approximation for the current sheet B 0 L a ~ δ I Due to the current sheet's large aspect ratio L/δ I >> 1 a quasi-continuum spectrum of unstable wavenumbers can be assumed. The maximum growth rate occurs at short wavelength. This justifies the local assumption about the geometry

11 Key assumptions 1) In the current sheet, the current density is comparable to the equilibrium current density which is what one gets at the end of the linear phase of the m=1 mode: J cs ~ J 0 2) The above is reasonable if the instability of the current sheet (what we call the secondary instability) is fast enough that its growth rate exceeds the evolution rate of the equilibrium (i.e. the primary reconnecting mode): γ II > τ cs -1 ~ γ I This is verified a posteriori. The m=1 island can be considered as static. 3) The width of the current sheet is assumed to be of the order of the m=1 layer width. This is justified at the end of the linear phase/beginning of the nonlinear phase of the m=1 primary island 4) We perform an asymptotic analysis (i.e. Lundquist number S, etc. )

12 Size of the transverse magnetic field in the current sheet In a tokamak L 0 ~ R and L ~ R ~ L 0. And the end of the internal-kink linear phase a ~ δ I = S -1/3 L B 0 Example of Harris-pinch equilibrium, typical for a / L ka << 1 (thus valid for the tearing at small ka and for the dominant mode at Δ'δ ~ 1) L ~ L 0 Note: in several papers B CS ~ B 0 and J CS >> J 0 NOT JUSTIFIED a width ~ L ~ L 0

13 Scaling of the reconnection rates (n/m=1/1 case of a tokamak in cylindrical approximation) Estimation : Tokamak geometry : Primary internal-kink : Δ'δ I = A broad range of unstable secondary modes with a broad range of wavenumbers k and a varying Δ' and layer width δ II The fastest growing mode always occurs at Δ'δ II ~ 1

14 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Rates, normalised to the Alfven time Collisionless regime : γ τ 0 > ν c τ 0 Lundquist number

15 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates Collisionless regime : γ τ 0 > ν c τ 0 m=1 growth rate Lundquist number

16 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates Collision rate Collisionless regime : γ τ 0 > ν c τ 0 m=1 growth rate Lundquist number

17 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates Collision rate Collisionless regime : γ τ 0 > ν c τ 0 m=1 growth rate intersection Lundquist number

18 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates Collision rate Collisionless regime : γ τ 0 > ν c τ 0 m=1 growth rate Ottaviani & Porcelli, 93 Lundquist number

19 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates Collision rate Collisionless regime : γ τ 0 > ν c τ 0 Secondary instability, collisional Ottaviani & Porcelli, 93 Lundquist number

20 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates Collision rate Collisionless regime : γ τ 0 > ν c τ 0 intersection Secondary instability, collisional Ottaviani & Porcelli, 93 Lundquist number

21 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates Collision rate Collisionless regime : γ τ 0 > ν c τ 0 Secondary instability, collisionless Ottaviani & Porcelli, 93 Lundquist number

22 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates N.B.: for JET S ~ 10 9 ~ ( L/de ) 3 ( L ~ R) New Theory Ottaviani & Porcelli, 93 Lundquist number

23 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates N.B.: for JET S ~ 10 9 ~ ( L/de ) 3 ( L ~ R) New Theory Faster growth rate Ottaviani & Porcelli, 93 Lundquist number

24 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates N.B.: for JET S ~ 10 9 ~ ( L/de ) 3 ( L ~ R) New Theory Faster growth rate Broader collisionless range Ottaviani & Porcelli, 93 Lundquist number

25 Results : secondary collisionless reconnection, possibly at near Alfvenic rate, in tokamak devices with resistive primary reconnection Normalised rates N.B.: for JET S ~ 10 9 ~ ( L/de ) 3 ( L ~ R) New Theory Minimum rate Faster growth rate Broader collisionless range Ottaviani & Porcelli, 93 Lundquist number

26 Numerical simulations (ongoing work) current current current current t=301 t=321 t=325 t=331

27 Numerical simulations (ongoing work) current current current current t=301 t=321 t=325 t=331 Current sheet instability and splitting

28 Numerical simulations (ongoing work) current current current current t=301 t=321 t=325 t=331 Current maxima Current sheet instability and splitting absolute maximum value at primary X-point time

29 Numerical simulations (ongoing work) current current current current t=301 t=321 t=325 t=331 Current maxima Current sheet instability and splitting absolute maximum value at primary X-point Pseudo-spectral simulations Box aspect ratio A=2 Lundquist number S=10 3 Still work to do time

30 Summary and conclusions A current sheet generated by a primary instability with Δ'=, such as the resistive internal kink mode, becomes unstable at an early stage in its nonlinear development because of sub- Alfvenic modes. In the case of sawtooth phenomenon in a purely resistive framework the current sheet becomes unstable to a secondary mode with growth rate γτ A ~ S -1/6, apparently in agreement with the numerical results of [Yu et al., Nucl. Fusion 54, (2014)]. When finite electron inertia is included in the analysis, for (L/d e ) 12/5 < S < (L/d e ) 3, regime relevant to most medium size tokamak devices, the secondary instability develops in the inertiadriven collisionless regime with a growth rate γ II τ A ~ (d e /a) 2 ~ (d e /L) 2 S 2/3 which can become near-alfvenic. The overall reconnection rate is at least of order γ τ A ~(d e /L)2/5, always larger than the internal kink growth rate. Paper: D. Del Sarto, M. Ottaviani Secondary fast instability in the sawtooth crash, Physics of Plasmas 24, (2017)

31 THANK YOU FOR YOUR ATTENTION

32 On the plasmoid scaling A «plasmoid» scaling of superfast (faster than Alfvenic) reconnection rate of current sheets has been proposed in the literature (Loureiro et al., 2005, and subsequent studies) γ plasmoid τ A ~ S 1/4 This scaling requires two conditions (Tajima and Shibata, Space Astrophysics, 2002) 1. An intense current sheet such that B CS ~ B 0 and J CS / J 0 ~ L/d sheet >> 1 AND 2. A sheet size such that d sheet /L ~ S -1/2 As we have seen, this is not justified in the sawtooth case Current sheets such as d sheet /L ~ S -1/3 and J CS / J 0 ~ L/d sheet produce Alfvenic rate reconnection such that γ τ A ~ 1 which is a situation of likely interest in astrophysics where sheets can be produced by Alfvenic motion (Pucci and Velli, 2014)

Simulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015

Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction

arxiv: v1 [physics.plasm-ph] 11 Mar 2016

1 Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasm-ph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and

The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is

and Stability of Field-Reversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 92186-5608 P.O. APS Annual APS Meeting of the Division of Plasma Physics

arxiv:physics/ v1 [physics.plasm-ph] 14 Nov 2005

arxiv:physics/0511124v1 [physics.plasm-ph] 14 Nov 2005 Early nonlinear regime of MHD internal modes: the resistive case M.C. Firpo Laboratoire de Physique et Technologie des Plasmas (C.N.R.S. UMR 7648),

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

Tokamak Fusion Basics and the MHD Equations

MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

Plasma Stability in Tokamaks and Stellarators

Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1- May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,

Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak

INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7-/8// Modelling of the penetration process of externally applied helical magnetic perturbation

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade

1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans

Asymmetric Magnetic Reconnection in the Solar Atmosphere

Asymmetric Magnetic Reconnection in the Solar Atmosphere Nick Murphy Harvard-Smithsonian Center for Astrophysics October 23, 2013 NASA Goddard Space Flight Center Collaborators and Co-Conspirators: John

Linjin Zheng, Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO)

International Sherwood Fusion Theory Conference, Austin, May 2-4, 2011 Infernal Modes at Tokamak H- mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) Linjin Zheng, M. T. Kotschenreuther,

Vertical Displacement Events in Shaped Tokamaks. Abstract

Vertical Displacement Events in Shaped Tokamaks A. Y. Aydemir Institute for Fusion Studies The University of Texas at Austin Austin, Texas 78712 USA Abstract Computational studies of vertical displacement

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

q(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5

EX/P-1 MHD issues in Tore Supra steady-state fully non-inductive scenario P Maget 1), F Imbeaux 1), G Giruzzi 1), V S Udintsev ), G T A Huysmans 1), H Lütjens 3), J-L Ségui 1), M Goniche 1), Ph Moreau

Introduction to Fusion Physics

Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

Model for humpback relaxation oscillations

Model for humpback relaxation oscillations F. Porcelli a,b,c.angioni a,r.behn a,i.furno a,t.goodman a,m.a.henderson a, Z.A. Pietrzyk a,a.pochelon a,h.reimerdes a, E. Rossi c,o.sauter a a Centre de Recherches

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

Solar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona)

Solar Flares Solar Flare A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Flares release 1027-1032 ergs energy in tens of minutes. (Note: one H-bomb: 10

Two-fluid magnetic island dynamics in slab geometry

Two-fluid magnetic island dynamics in slab geometry Richard Fitzpatrick and François L. Waelbroeck Institute for Fusion Studies Department of Physics University of Texas at Austin Austin, TX 78712 A novel

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

Relativistic reconnection at the origin of the Crab gamma-ray flares

Relativistic reconnection at the origin of the Crab gamma-ray flares Benoît Cerutti Center for Integrated Plasma Studies University of Colorado, Boulder, USA Collaborators: Gregory Werner (CIPS), Dmitri

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas

Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994-present) 16, 052502 (2009); doi: 10.1063/1.3126964

M. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2

P1.015 Nonlinear Modeling Benchmarks of Forced Magnetic Reconnection with NIMROD and M3D-C1 M. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2 1 Department of Engineering

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

Controlling chaotic transport in Hamiltonian systems

Controlling chaotic transport in Hamiltonian systems Guido Ciraolo Facoltà di Ingegneria, Università di Firenze via S. Marta, I-50129 Firenze, Italy Cristel Chandre, Ricardo Lima, Michel Vittot CPT-CNRS,

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

Tokamak/Helical Configurations Related to LHD and CHS-qa

9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 21-23, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHS-qa

Gyrokinetic Transport Driven by Energetic Particle Modes

Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

Beams and magnetized plasmas

Beams and magnetized plasmas 1 Jean-Pierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and

Magnetohydrodynamic Turbulence: solar wind and numerical simulations

Magnetohydrodynamic Turbulence: solar wind and numerical simulations Stanislav Boldyrev (UW-Madison) Jean Carlos Perez (U. New Hampshire) Fausto Cattaneo (U. Chicago) Joanne Mason (U. Exeter, UK) Vladimir

Macroscopic Stability of High β N MAST Plasmas

1 EXS/P5-4 Macroscopic Stability of High β N MAST Plasmas I.T. Chapman 1), R.J. Akers 1), L.C. Appel 1), N.C. Barratt 2), M.F. de Bock 1,7), A.R. Field 1), K.J. Gibson 2), M.P. Gryaznevich 1), R.J. Hastie

Gyrokinetic simulations of collisionless magnetic reconnection

PHYSICS OF PLASMAS 14, 09110 007 Gyrokinetic simulations of collisionless magnetic reconnection B N Rogers a and S Kobayashi Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

MHD Modes of Solar Plasma Structures

PX420 Solar MHD 2013-2014 MHD Modes of Solar Plasma Structures Centre for Fusion, Space & Astrophysics Wave and oscillatory processes in the solar corona: Possible relevance to coronal heating and solar

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

Supported by. Role of plasma edge in global stability and control*

NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

PLASMOIDS IN RELATIVISTIC RECONNECTION: THE BLOBS OF BLAZAR EMISSION? Maria Petropoulou Purdue University

PLASMOIDS IN RELATIVISTIC RECONNECTION: THE BLOBS OF BLAZAR EMISSION? Maria Petropoulou Purdue University in collaboration with Dimitrios Giannios (Purdue) Lorenzo Sironi(Columbia) October 19, 2016 Einstein

Tokamak Edge Turbulence background theory and computation

ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 4 January 2010 / Accepted

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^

Tokamak operation at low q and scaling toward a fusion machine R. Paccagnella^ Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy ^ and Istituto Gas Ionizzati del Consiglio Nazionale

MST and the Reversed Field Pinch. John Sarff

MST and the Reversed Field Pinch John Sarff APAM Columbia University Sep 19, 2014 Outline Tutorial-level review of tearing stability, magnetic relaxation, and transport in the RFP Ion-related physics topics

Plasma models for the design of the ITER PCS

Plasma models for the design of the ITER PCS G. De Tommasi 1,2 on behalf of the CREATE team 1 Consorzio CREATE, Naples, Italy 2 Department of Electrical Engineering and Information Technology, University

MAGNETIC RECONNECTION: SWEET-PARKER VERSUS PETSCHEK

MAGNETIC RECONNECTION: SWEET-PARKER VERSUS PETSCHEK RUSSELL M. KULSRUD Princeton Plasma Physics Laboratory rmk@pppl.gov arxiv:astro-ph/775v1 6 Jul 2 February 1, 28 Abstract The two theories for magnetic

Plasma instability during ITBs formation with pellet injection in tokamak

Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,

Saturated ideal modes in advanced tokamak regimes in MAST

Saturated ideal modes in advanced tokamak regimes in MAST IT Chapman 1, M-D Hua 1,2, SD Pinches 1, RJ Akers 1, AR Field 1, JP Graves 3, RJ Hastie 1, CA Michael 1 and the MAST Team 1 EURATOM/CCFE Fusion

Alfvén wave turbulence: new results with applications to astrophysics. Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France

Alfvén wave turbulence: new results with applications to astrophysics Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France 1 Recent co-workers : - Barbara Bigot (France/USA) - Ben

Thermonuclear Fusion with the Sheared Flow Stabilized Z-Pinch. F. Winterberg and L. F. Wanex

Thermonuclear Fusion with the Sheared Flow Stabilized Z-Pinch F. Winterberg and L. F. Wanex University of Nevada Reno, Department of Physics / MS 37, Reno, Nevada, 89557, USA ABSTRACT Two basic approaches

friction friction a-b slow fast increases during sliding

µ increases during sliding faster sliding --> stronger fault --> slows sliding leads to stable slip: no earthquakes can start velocity-strengthening friction slow fast µ velocity-strengthening friction

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was

Selected Topics in Plasma Astrophysics

Selected Topics in Plasma Astrophysics Range of Astrophysical Plasmas and Relevant Techniques Stellar Winds (Lecture I) Thermal, Radiation, and Magneto-Rotational Driven Winds Connections to Other Areas

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

Overview of FRC-related modeling (July 2014-present)

Overview of FRC-related modeling (July 2014-present) Artan Qerushi AFRL-UCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling

Magnetic reconnection, merging flux ropes, 3D effects in RSX

Magnetic reconnection, merging flux ropes, 3D effects in RSX T. Intrator P-24 I. Furno, E. Hemsing, S. Hsu, + many students G.Lapenta, P.Ricci T-15 Plasma Theory Second Workshop on Thin Current Sheets

A novel helicon plasma source for negative ion beams for fusion

A novel helicon plasma source for negative ion beams for fusion Ivo Furno 1 R. Agnello 1, B. P. Duval 1, C. Marini 1, A. A. Howling 1, R. Jacquier 1, Ph. Guittienne 2, U. Fantz 3, D. Wünderlich 3, A. Simonin

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

1 THC/3-3 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California

GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION

GA A24166 SUPER-INTENSE QUASI-NEUTRAL PROTON BEAMS INTERACTING WITH PLASMA: A NUMERICAL INVESTIGATION by H. RUHL, T.E. COWAN, and R.B. STEPHENS OCTOBER 2 DISCLAIMER This report was prepared as an account

Disruption Mitigation on Tore Supra

1 EX/1-6Rc Disruption Mitigation on Tore Supra G. Martin, F. Sourd, F. Saint-Laurent, J. Bucalossi, L.G. Eriksson Association Euratom-CEA, DRFC/STEP, CEA/Cadarache F-1318 SAINT PAUL LEZ DURANCE / FRANCE

arxiv:astro-ph/ v1 22 Jun 2000

A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 9 (06.18.1; 06.06.3; 06.03.2; 02.16.1; 02.13.2) ASTRONOMY AND ASTROPHYSICS Solar flare radio pulsations as a signature of dynamic

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 19

. tability of the straight tokamak.65, MHD Theory of Fusion ystems Prof. Freidberg Lecture 9. ressure driven modes (uydams Criterion). internal modes 3. external modes. Tokamak Ordering Bθ ar B μ q or

Laser-driven proton acceleration from cryogenic hydrogen jets

Laser-driven proton acceleration from cryogenic hydrogen jets new prospects in tumor therapy and laboratory astroparticle physics C. Roedel SLAC National Accelerator Laboratory & Friedrich-Schiller-University

Three-dimensional MHD simulations of counter-helicity spheromak merging in the Swarthmore Spheromak Experiment

Three-dimensional MHD simulations of counter-helicity spheromak merging in the Swarthmore Spheromak Experiment C. E. Myers, 1, a) E. V. Belova, 1 M. R. Brown, 2 T. Gray, 2 C. D. Cothran, 2, b) and M. J.

Laboratory astrophysics and basic plasma physics with high-energy-density, laser-produced plasmas. August, 2014

Laboratory astrophysics and basic plasma physics with high-energy-density, laser-produced plasmas W. Fox, 1 A. Bhattacharjee, 1,2 H. Ji, 1,2 K. Hill, 1 I. Kaganovich, 1 R. Davidson, 1 A. Spitkovsky, 2

The Sheared Flow Stabilized Z-Pinch

The Sheared Flow Stabilized Z-Pinch U. Shumlak, J. Chadney, R.P. Golingo, D.J. Den Hartog, M.C. Hughes, S.D. Knecht, B.A. Nelson, W. Lowrie, R.J. Oberto, M.P. Ross, J.L. Rohrbach, and G.V. Vogman Aerospace

Understanding sawtooth activity during intense electron cyclotron heating experiments on TCV

Understanding sawtooth activity during intense electron cyclotron heating experiments on TCV I. Furno, C. Angioni, F. Porcelli a, H. Weisen, R. Behn, T.P. Goodman, M.A. Henderson, Z.A. Pietrzyk, A. Pochelon,

RESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY

Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 0741-3335/87\$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE

SW103: Lecture 2. Magnetohydrodynamics and MHD models

SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1

arxiv: v2 [physics.plasm-ph] 15 Nov 2016

arxiv:1608.04939v2 [physics.plasm-ph] 15 Nov 2016 Spectrum of multi-region-relaxed magnetohydrodynamic modes in topologically toroidal geometry R. L. Dewar, L. H. Tuen, M. J. Hole Centre for Plasmas and

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density

PROBLEM 1 (15 points) In a Cartesian coordinate system, assume the magnetic flux density varies as ( ) where is a constant, is the unit vector in x direction. a) Sketch the magnetic flux density and the

Collisionless magnetic reconnection : the Contour Dynamics approach Plas, van der, E.V.

Collisionless magnetic reconnection : the Contour Dynamics approach Plas, van der, E.V. DOI: 10.6100/IR629516 Published: 01/01/2007 Document Version Publisher s PDF, also known as Version of Record (includes

November 2, Monday. 17. Magnetic Energy Release

November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch

PHYSICS OF PLASMAS 13, 012510 2006 Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversed-field pinch P. Franz, L. Marrelli, P. Piovesan, and I. Predebon Consorzio RFX,

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

H-mode and Non-Solenoidal Startup in the Pegasus Ultralow-A Tokamak

1 OV/5-4 H-mode and Non-Solenoidal Startup in the Pegasus Ultralow-A Tokamak R.J. Fonck 1, J.L. Barr 1, G. M. Bodner 1, M.W. Bongard 1, M.G. Burke 1, D. M. Kriete 1, J.M. Perry 1, J.A. Reusch 1, D.J. Schlossberg

Collisionless Shocks and the Earth s Bow Shock

Collisionless Shocks and the Earth s Bow Shock Jean-Luc Thiffeault AST 381 Gas Dynamics 17 November 1994 1 Introduction The mean free path for particle collisions in the solar wind at the boundary of the

Small-Scale Dynamo and the Magnetic Prandtl Number

MRI Turbulence Workshop, IAS, Princeton, 17.06.08 Small-Scale Dynamo and the Magnetic Prandtl Number Alexander Schekochihin (Imperial College) with Steve Cowley (Culham & Imperial) Greg Hammett (Princeton)

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD

Approximate Harten-Lax-Van Leer (HLL) Riemann Solvers for Relativistic hydrodynamics and MHD Andrea Mignone Collaborators: G. Bodo, M. Ugliano Dipartimento di Fisica Generale, Universita di Torino (Italy)

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

Turbulent Origins of the Sun s Hot Corona and the Solar Wind

Turbulent Origins of the Sun s Hot Corona and the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics Turbulent Origins of the Sun s Hot Corona and the Solar Wind Outline: 1. Solar

Influence of Generalized (r, q) Distribution Function on Electrostatic Waves

Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 550 554 c International Academic Publishers Vol. 45, No. 3, March 15, 2006 Influence of Generalized (r, q) istribution Function on Electrostatic Waves

Supersonic plasma jet interaction with gases and plasmas

ICPP 2008 FUKUOKA september 11, 2008 Supersonic plasma jet interaction with gases and plasmas Ph. Nicolaï 3.5 ns 8.5 ns 13.5 ns He 15 bars 2 mm CELIA, Université Bordeaux 1 - CNRS - CEA, Talence, France

Are Jets Ejected from Locally Magnetized Accretion Disks?

PASJ: Publ. Astron. Soc. Japan 54, 67 74, 00 April 5 c 00. Astronomical Society of Japan. Are Jets Ejected from Locally Magnetized Accretion Disks? Takahiro KUDOH Astronomical Data Analysis Center, National

The performance of improved H-modes at ASDEX Upgrade and projection to ITER

EX/1-1 The performance of improved H-modes at ASDEX Upgrade and projection to George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany G. Tardini 1, C. Forest 2, O. Gruber 1, P. Mc Carthy

Simulations of the plasma dynamics in high-current ion diodes

Nuclear Instruments and Methods in Physics Research A 415 (1998) 473 477 Simulations of the plasma dynamics in high-current ion diodes O. Boine-Frankenheim *, T.D. Pointon, T.A. Mehlhorn Gesellschaft fu(

Evolution of the pedestal on MAST and the implications for ELM power loadings

Evolution of the pedestal on MAST and the implications for ELM power loadings Presented by Andrew Kirk EURATOM / UKAEA Fusion Association UKAEA authors were funded jointly by the United Kingdom Engineering

Non-neutral fireball and possibilities for accelerating positrons with plasma

Instituto Superior Técnico GoLP/IPFN Non-neutral fireball and possibilities for accelerating positrons with plasma J.Vieira GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon

Conditions for diffusive penetration of plasmoids across magnetic barriers

Abstract Contribution to the 12 th ICPP, NICE, 25-29 October 2004 Conditions for diffusive penetration of plasmoids across magnetic barriers N. Brenning, T. Hurtig, and M. A. Raadu Alfvén Laboratory, Royal

Modélisation de sources plasma froid magnétisé

Modélisation de sources plasma froid magnétisé Gerjan Hagelaar Groupe de Recherche Energétique, Plasma & Hors Equilibre (GREPHE) Laboratoire Plasma et Conversion d Énergie (LAPLACE) Université Paul Sabatier,

Sawtooth Control. J. P. Graves CRPP, EPFL, Switzerland. FOM Instituut voor Plasmafysica Rijnhuizen, Association EURATOM-FOM, The Netherlands

Sawtooth Control J. P. Graves CRPP, EPFL, Switzerland B. Alper 1, I. Chapman 2, S. Coda, M. de Baar 3, L.-G. Eriksson 4, R. Felton 1, D. Howell 2, T. Johnson 5, V. Kiptily 1, R. Koslowski 6, M. Lennholm

Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) S613 S624 Design of the PROTO-SPHERA experiment and of its first step (MULTI-PINCH) doi:10.1088/0029-5515/46/8/s07

Consideration on Design Window for a DEMO Reactor

Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of China March 16-18, 2009 at the University of Tokyo in Kashiwa, JAPAN Consideration on Design Window for

Observation of Alpha Heating in JET DT Plasmas

JET P(98)1 Observation of Alpha Heating in JET DT Plasmas P R Thomas, P Andrew, B Balet, D Bartlett, J Bull, B de Esch, C Gowers, H Guo, G Huysmans, T Jones, M Keilhacker, R König, M Lennholm, P Lomas,