Tokamak Edge Turbulence background theory and computation
|
|
- Valentine Cummings
- 1 years ago
- Views:
Transcription
1 ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D Garching, Germany Krakow, Sep 2006
2 Outline Basic Concepts low frequency force balances interplay, ExB eddies and Alfvén waves turbulence Basic Transfer Dynamics energy transfer in turbulence and with the equilibrium drive and saturation mechanisms Gyrofluid Edge Turbulence nonlinear processes and mode structure collective interaction of disparate scales basic parameter scalings, global burst behaviour with threshold Gyrofluid/Gyrokinetic Field Theory fully inhomogeneous equations, necessary for strong spatial parameter variation
3 Magnetic Confinement J x B = c p B p MHD equilibrium strong magnetic field, small gyroradius closed magnetic flux surfaces --> confined plasma however... turbulence --> losses eddies, few gyroradii
4 Tokamak Magnetic Field B B ζ axisymmetric MHD equilibrium B θ toroidal, poloidal components mainly toroidal ratio of components --> pitch parameter q B ζ / B θ
5 Low Frequency Drift Motion magnetic field general sense of gyration for ions magnetic field drift of gyrocenters (v << v ) low frequencies ω << Ω v-space details: gyrokinetic few moments: gyrofluid
6 Low Pressure (Beta) Dynamics low beta low frequencies 2 p << B /8 π ω << k v A flute mode vortices/filaments k << k magnetic field B pressure disturbance magnetic disturbance (parallel to B) p B --> strict perpendicular force balance (p + 4 π BB) ~ 0 ω k v A --> electromagnetic parallel dynamics
7 Sense of Coordinate Geometry p (x,y) phase shift > transport y φ (x,y) p v E B B computations: align coordinates to magnetic field (sheared, curved) (only one contravariant component of B is nonvanishing) (nonorthogonal, takes advantage of slowly varying B) (S Cowley et al Phys Fluids B 1991, B Scott Phys Plasmas 1998, 2001)
8 ExB Drift at Finite Gyroradius c c v E = B x φ u E = B x B B 2 k ρ << 1 ρ k ~ 1 J 2 0 φ φ(x,y) > 0 φ(x,y) > 0 u > v E E u E
9 Phase Shifts and Transport p p and phi in phase --> no net transport phase shift --> net transport phase shift --> net transport down gradient --> free energy drive
10 Role of Parallel Forces on Electrons equation of motion for electrons parallel to B. ( _ 1 A φ + η J ) = p e + inertia n e e + c Alfven (MHD) coupling adiabatic (fluid compression) coupling static balance of gradients --> adiabatic electrons general: response of currents to static imbalance a two fluid effect controls possible phase shifts p ~ <--> e ~ φ
11 Drift (Alfven) Wave Dynamics y p electron current ion current p ~ drift ~ p sound waves ~ φ x B --> φ ~ --> ~ φ coupled to p ~ through Alfven dynamics continually excites p ~ in the gradient (M Wakatani A Hasegawa Phys Fluids 1984) (B Scott Plasma Phys Contr Fusion 1997) --> structure drifts
12 Scales of Motion broad range of both time and space scales to ion gyroradius 10 2 k ρ y s 10 0 slowest time scale reflect flow/equilibrium component for equal temperatures, space scale range includes ion gyroradius high resolution, long runs (> 1000 "gyro Bohm" times) are necessary 10 3 (B Scott Plasma Phys Contr Fusion 2003) ω L /c T s 0 10
13 nonlinearities have the form of brackets Numerical Methods f t + [ψ, f] xy + = 0 with [ψ, f] xy = ψ x f y f x spatial discretisation: centered-diff for linear terms, Arakawa (J Comput Phys 1966) scheme for brackets basic properties of bracket satisfied to machine accuracy ψ y [ψ, f] xy = 1 3 (J + + J 0 + J ) temporal discretisation: stiffly stable form (Karniadakis et al J Comput Phys 1991), stable for waves both sides expanded = all mixed terms in Taylor expansion present one evaluation per time step tested on turbulence and coherent vortices (Naulin and Nielsen, SIAM J Math 2003) f t = S with 3 j=1 α j f 0 f j j t = 3 β j S j j=1
14 Nonlinear Saturation basic feature of any instability transition to turbulence linear drive (n) > linear growth moment of saturation growth rate (T) drops to zero saturation maintained nonlinear transfer to subgrid scale dissipation (E) transport (Q) overshoots, finds saturated balance (B Scott Phys Plasmas 6/2005)
15 Nonlinear Cascade in Turbulence basic statistical character of three wave energy transfer transfer between wavenumber magnitudes from k to k all activity near the k = k line > cascade character ExB energy is inverse, while other quantities are direct (to higher k) dominant transfer is through the thermal free energy (n), others also active (S Camargo et al Phys Plasmas 1995, 1996)
16 Nonlinear Instability basic feature of drift wave turbulence (edge turbulence test case) amplitude threshold > linear stability vorticity nonlinearity > damped eigenmodes destabilise each other role of pressure advection nonlinearity > saturation edge turbulence > washes out microinstabilities in toroidal magnetic field (B Scott Phys Rev Lett 1990, Phys Fluids B 1992, New J Phys 2002)
17 φ k ( part of energy theorem governed by vorticity equation.. Ω + v E Ω + FLR = J + vorticity Ω= (n n ) e e i Energy Transfer Fourier mode k currents: polarisation parallel diamagnetic. _c B 2 Bx p ) k free energy: source in pressure equation, transfer in to vorticity equation pathways: over parallel dynamics or toroidal compression between modes within ExB energy nonlinear advection direct, in context measurement of physical mechanism supporting turbulence (B Scott Phys Plasmas 2000)
18 Nonlinear Saturation basic feature of any instability transition to turbulence linear drive (n) > linear growth look at t = 150 to 300 moment of saturation growth rate (T) drops to zero t = 325 to 375 saturation maintained nonlinear transfer to subgrid scale dissipation (E) transport (Q) overshoots, finds saturated balance (B Scott Phys Plasmas 6/2005) t = 500 to 1000 (on next page)
19 Vorticity Energetics Transition to Turbulence turbulence imposes its own mode structure on dynamics linear interchange mode balance between diamagnetic/parallel currents turbulence emergence of nonlinear ExB vorticity advection developed turbulence balance between polarisation/parallel currents basic mechanism supporting eddies in turbulence differs from linear instability (B Scott Plasma Phys Contr Fusion 2003)
20 Nonlinear Saturation (2) isolating the mechanism (which nonlinearity is responsible) voronly > leave vorticity nonlinearity in by itself novor all terms present except vorticity nonlinearity falsification of Kelvin Helmholtz scenarios scenario with largest transport not necessarily the correct one (B Scott Phys Plasmas 6/2005)
21 Energy Transfer: electromagnetic turbulence low k ~ φ nonlinear high k ~ φ entire spectrum a unit sink J ~ J ~ p ~ nonlinear p ~ sink thermal gradient DW: direction for J determined by NL (B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997) (S Camargo et al Phys Plasmas 1995 and 1996)
22 Mode Structure Diagnostics cross coherence, eddies and transported quantities A = amplitude σ = standard deviation cross coherence can distinguish drift wave (left) from resistive-g (right) character
23 phase shifts and phase coherence Mode Structure Diagnostics α k = Im log n kφ k α [ π, π] phase shifts can distinguish drift wave (left) from resistive-g (right) character
24 Transport and Amplitudes ˆβ = 1 ˆµ = 5 ω B = 0.05 ŝ = 1 sweep ν ν /13 using DALF ( DW ) and resistive-g ( BM ) models MHD: wrongly predicts φ p e in DW regime
25 Vorticity Dynamics measure rms transfer terms ( e and j and k respectively): φ k(v E 2 φ) k φ k( J ) k φ k (K p e ) k compare DALF model (left) to the resistive G model (right) vorticity nonlinearity lifts nonadiabaticity ( J ) to higher levels
26 Parameter Scaling reflects increasing power of turbulence versus adiabatic response scale lengths and resolution (drift scale ρ s ) held fixed difference to cases suppressing zonal flows decreases adiabatic response is less stiff at higher beta (magnetic induction) transport trend is either insensitive to beta or rises with it
27 Parameter Transition to resistive ballooning via collisionality transition begins with the longest wavelengths linear growth peak k y ρ s descends from < 1.0 to > 0.3 actual ballooning transition is driven by ExB inverse transfer
28 Parameter Transition to ideal ballooning via beta transition begins with the longest wavelengths linear growth peak k y ρ s remains near 0.5 actual ballooning transition is driven by ExB inverse transfer
29 Energy Transfer: electromagnetic turbulence low k ~ φ nonlinear high k ~ φ entire spectrum a unit sink J ~ J ~ p ~ nonlinear p ~ sink thermal gradient DW: direction for J determined by NL (B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997) (S Camargo et al Phys Plasmas 1995 and 1996)
30 Energy Transfer: equilibrium u ion dissipation transport transport p i p e Alfven couple to pressure Reynolds stress φ J loop voltage φ (B Scott Phys Plasmas 2003)
31 Suppression of Turbulence by Flows (Biglari Diamond Terry, Phys Fl B 1991) eddies V(x) Γ V eddies tilted into energy losing relationship to flow vorticity > same process as in self generation
32 Zonal Flow, Toroidal Compression (Winsor et al Phys Fl 1968, Hahm et al Plasma Phys Contr Fusion 2002, 2004) zonal flow compression at top pressure sideband < φ > divergence at bottom <p sin θ > zonal flow exchanges conservatively with pressure sideband > transfer pathway, equipartition
33 Energy Transfer: flows and currents ion dissipation <u cos s> <p> transport <p sin s> diamagnetic compression 2 fluid effects transport < φ sin s> MHD effects Reynolds stress φ adiabatic compression <φ> <J cos s> (B Scott Phys Lett A 2003, New J Phys 2005) P S current resistivity
34 Coupling to Zonal Flows turbulence regulated by flows, regulated by toroidal compression 10-2 k y 10 1 eddy Reynolds stress --> energy transfer from turbulence to flows turbulence moderately weakened but not suppressed toroidal compression --> energy loss channel to pressure, turbulence entire system in self regulated statistical equilibrium (turb, flows, mag eq) (B Scott Phys Lett A 2003, New J Phys 2005)
35 Incorporation of Magnetic Equilibrium toroidal equilibration current < > Shafranov shift diamagnetic current Pfirsch Schlueter current B P S current equilibrates toroidal diamagnetic compression Ampere s Law > Pfirsch Schlueter magnetic field > toroidal shift current stays in moment variables, magnetic field in coordinate metric
36 Global Electromagnetic Gyrofluid (GEM): turbulence and transport (profile + disturbances) self consistent magn eq, geometry (Pf Sch currents > Shafranov shift) L Mode Base Case (ASDEX Upgrade generic) correct mass ratio, gyroradius closed/open flux surfaces, separatrix topology (B Scott Contrib Plasma Phys 2006)
37 Fixed Source Bursty Time Traces low power (left) sees intrinsic turbulence variability high power (right) sees significant burst events (factor of more than 10 increases)
38 Flux Temporal Behaviour for S 0 = 1
39 Flux Temporal Behaviour for S 0 = 3
40 Gyrofluid Field Theory > inhomogeneous equations, needed for edge + core computations L = [ ne( A /c+mv b ) nh ] B /8 u π Σ sp vary displacement field > equation of motion (drift velocity u) vary field potentials > polarisation and induction (, A ) constrained variation > continuity equations ( n, T, T ) Noether Theorem: conservation, self consistency guaranteed arbitrary disturbance amplitude, parameter variation required for proper capture of pedestal phenomena 2 E H = e G φ MV /2 + MV /2 + T + T /2 2 (D Strintzi B Scott A Brizard Phys Plasmas 2005) 2 φ
41 Comparison -- Fluctuation Statistics probability distribution of cross phase for each Fourier mode unified spectrum, phase shifts between 0 and π/4, in code and TJK experiment basic signature of drift wave mode structure (parallel current dynamics) (B Scott Plasma Phys Contr Fusion 2003) (U Stroth F Greiner C Lechte et al Phys Plasmas 2004)
42 Comparison -- Fluctuation Statistics wavelet analysis of fluctuation induced transport in code and TJK experiment both results show same phenomenology: regime break in spectrum evidence of nonlinear cascade overcoming drive? (N Mahdizadeh et al Phys Plasmas 2004)
43 Nonlinear Free Energy Cascade direct cascade > nonlinear drive at small scales ==> passive scalar regime frequency/scale correlation matches with frequency break evidence for onset of passive scalar regime
44 The EFDA Integrated Modelling Effort (TF ITM) coordinate and establish standards for European codes in all categories wide effort led by A Becoulet and P Strand (cf: ) Project 4 instabilities, transport, turbulence currently: cross benchmarking on standard cases global models automatically face the neoclassical equilibrium separate issues: neoclassical equilibrium, and then transport currently: global core benchmarks on Cyclone base case local and global edge benchmarks on L mode base case incorporation of trapping effects in fluid codes (may be hopeless)
45 local fluid vs gyrofluid drift-alfvén edge, collisional, cold-ion electromagnetic, fluxtube, saturated Risø TYR (blue), Jülich ATTEMPT (green), GEM (red), DALF3 (pink)
46 Main Points basics of energetics a central theme for physical understanding edge turbulence requires gyrofluid or gyrokinetic model temperature anisotropy and resolution of ion gyroradius coupling of turbulence to flows extends to the magnetic equilibrium self consistency: do the magnetic background inside the turbulence model new physics themes: global electromagnetic computation stable reconnection and equilibration currents incorporation of edge modelling processes in turbulence codes nonlocal gyrofluid field theory > edge/core transition one should expect surprises affecting design of high performance devices
IAEA INTERNATIONAL ATOMIC ENERGY AGENCY
IAEA INTERNATIONAL ATOMIC ENERGY AGENCY 21 st IAEA Fusion Energy Conference Chengdu, China, 16-21 Oct 2004 IAEA-CN-149 / TH / 1-1 Studies of the Tokamak Edge with Self Consistent Turbulence, Equilibrium,
On the Nature of ETG Turbulence and Cross-Scale Coupling
J. Plasma Fusion Res. SERIES, Vol. Vol. 6 6 (2004) (2004) 11 16 000 000 On the Nature of ETG Turbulence and Cross-Scale Coupling JENKO Frank Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748
Gyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
International Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence.
1953-43 International Workshop on the Frontiers of Modern Plasma Physics 14-25 July 2008 On the Nature of Plasma Core Turbulence. F. Jenko Max-Planck Institute fuer Plasmaphysik Garching bei Munchen Germany
Co-existence and interference of multiple modes in plasma turbulence: Some recent GENE results
Co-existence and interference of multiple modes in plasma turbulence: Some recent GENE results Frank Jenko IPP Garching, Germany University of Ulm, Germany Acknowledgements: F. Merz, T. Görler, D. Told,
Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas
Frank Jenko Max-Planck-Institut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas 23 rd IAEA Fusion Energy Conference 11-16 October 2010, Daejeon,
SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.
SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction
arxiv: v1 [physics.plasm-ph] 9 Sep 2011
Correlation length scalings in fusion edge plasma turbulence computations S. Konzett 1, D. Reiser 2, A. Kendl 1 arxiv:119.1997v1 [physics.plasm-ph] 9 Sep 211 1) Institut für Ionenphysik und Angewandte
C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center
C-Mod Core Transport Program Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly
On existence of resistive magnetohydrodynamic equilibria
arxiv:physics/0503077v1 [physics.plasm-ph] 9 Mar 2005 On existence of resistive magnetohydrodynamic equilibria H. Tasso, G. N. Throumoulopoulos Max-Planck-Institut für Plasmaphysik Euratom Association
Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison
Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for
2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson
2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves
Rotation and Neoclassical Ripple Transport in ITER
Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics
Gyrokinetic Turbulence Simulations at High Plasma Beta
Gyrokinetic Turbulence Simulations at High Plasma Beta Moritz J. Pueschel Thanks to F. Jenko and M. Kammerer Ringberg Theory Meeting, Nov. 18, 2008 1 Motivation 2 3 The Beta Parameter Definition β β e
The Field-Reversed Configuration (FRC) is a high-beta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is
and Stability of Field-Reversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 92186-5608 P.O. APS Annual APS Meeting of the Division of Plasma Physics
TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)
1 TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,
Introduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
Models for Global Plasma Dynamics
Models for Global Plasma Dynamics F.L. Waelbroeck Institute for Fusion Studies, The University of Texas at Austin International ITER Summer School June 2010 Outline 1 Models for Long-Wavelength Plasma
Amplification of magnetic fields in core collapse
Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut
DPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni
Max-Planck-Institut für Plasmaphysik DPG School The Physics of ITER Physikzentrum Bad Honnef, 23.09.2014 Energy Transport, Theory (and Experiment) Clemente Angioni Special acknowledgments for material
Space Plasma Physics Thomas Wiegelmann, 2012
Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description
The RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén
Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET
Modelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7-/8// Modelling of the penetration process of externally applied helical magnetic perturbation
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual
arxiv: v1 [physics.plasm-ph] 14 Jan 2009
arxiv:0901.2043v1 [physics.plasm-ph] 14 Jan 2009 Effectsofparallel ion motion onzonal flowgeneration in ion-temperature-gradient mode turbulence J. Anderson 1, J. Li, Y. Kishimoto Department of Fundamental
Progress in characterization of the H-mode pedestal
Journal of Physics: Conference Series Progress in characterization of the H-mode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and
The Virial Theorem, MHD Equilibria, and Force-Free Fields
The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely
Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade
1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans
Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod
Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J
Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence
th IAEA Fusion Energy Conference Vilamoura, Portugal, 1-6 November IAEA-CN-116/TH/-1 Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence
Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry
Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado
Role of Flow Shear in Enhanced Core Confinement
PPPL-3156, Preprint: March 1996, UC-420, 427 Role of Flow Shear in Enhanced Core Confinement Regimes TS Hahm and KH Burrell The importance of the ExB fla shear in arioi s enhanced confinement regimes is
Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi
Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center
Turbulence bursts probing of transport barriers analyzed in terms of competing stochastic processes
Author manuscript, published in "Plasma Phys. Control. Fusion 55, 9 (013) 09501" DOI : 10.1088/071-3335/55/9/09501 Turbulence bursts probing of transport barriers analyzed in terms of competing stochastic
The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions
The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions P.B. Snyder 1, T.H. Osborne 1, M.N.A. Beurskens 2, K.H. Burrell 1, R.J. Groebner 1, J.W. Hughes 3, R. Maingi
What place for mathematicians in plasma physics
What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math
Per Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald
Rotation and zonal flows in stellarators Per Helander Wendelsteinstraße 1, 17491 Greifswald Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos What is a stellarator? In a tokamak
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
ELM control with RMP: plasma response models and the role of edge peeling response
ELM control with RMP: plasma response models and the role of edge peeling response Yueqiang Liu 1,2,3,*, C.J. Ham 1, A. Kirk 1, Li Li 4,5,6, A. Loarte 7, D.A. Ryan 8,1, Youwen Sun 9, W. Suttrop 10, Xu
Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)
Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen
arxiv: v1 [physics.plasm-ph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasm-ph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
UCLA POSTECH UCSD ASIPP U
Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL
MHD turbulence in the solar corona and solar wind
MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Motivations The role of MHD turbulence in several phenomena in space and solar
Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod
1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.
GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER
GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was
Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration
Generalized Solovev equilibrium with sheared flow of arbitrary direction and stability consideration D.A. Kaltsas and G.N. Throumoulopoulos Department of Physics, University of Ioannina, GR 451 10 Ioannina,
Energetic particle modes: from bump on tail to tokamak plasmas
Energetic particle modes: from bump on tail to tokamak plasmas M. K. Lilley 1 B. N. Breizman 2, S. E. Sharapov 3, S. D. Pinches 3 1 Physics Department, Imperial College London, London, SW7 2AZ, UK 2 IFS,
ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations
1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science
Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor
PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University
Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
Impact of neutral atoms on plasma turbulence in the tokamak edge region
Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International
Max Planck Institut für Plasmaphysik
ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately
Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET
Journal of Nuclear Materials 363 365 (2007) 989 993 www.elsevier.com/locate/jnucmat Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET T. Eich a, *, A.
KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS
KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low
Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code
Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Y. PIANROJ, T. ONJUN School of Manufacturing Systems
ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model
1 THC/3-3 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California
Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance
Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance M.Okabayashi, M. Chance, M. Chu* and R. Hatcher A. Garofalo**, R. La Haye*, H. Remeirdes**, T. Scoville*, and T.
SW103: Lecture 2. Magnetohydrodynamics and MHD models
SW103: Lecture 2 Magnetohydrodynamics and MHD models Scale sizes in the Solar Terrestrial System: or why we use MagnetoHydroDynamics Sun-Earth distance = 1 Astronomical Unit (AU) 200 R Sun 20,000 R E 1
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport
1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193 Japan
School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks
2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular
Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas
Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994-present) 16, 052502 (2009); doi: 10.1063/1.3126964
Bifurcated states of a rotating tokamak plasma in the presence of a static error-field
Bifurcated states of a rotating tokamak plasma in the presence of a static error-field Citation: Physics of Plasmas (1994-present) 5, 3325 (1998); doi: 10.1063/1.873000 View online: http://dx.doi.org/10.1063/1.873000
Core Transport Properties in JT-60U and JET Identity Plasmas
1 EXC/P4-12 Core Transport Properties in JT-60U and JET Identity Plasmas X. Litaudon 1, Y. Sakamoto 2, P.C. de Vries 3, A. Salmi 4, T. Tala 5, C. Angioni 6, S. Benkadda 7, M.N.A. Beurskens 8, C. Bourdelle
Saturated ideal modes in advanced tokamak regimes in MAST
Saturated ideal modes in advanced tokamak regimes in MAST IT Chapman 1, M-D Hua 1,2, SD Pinches 1, RJ Akers 1, AR Field 1, JP Graves 3, RJ Hastie 1, CA Michael 1 and the MAST Team 1 EURATOM/CCFE Fusion
Continuum Edge Gyrokinetic Theory and Simulations 1
1 TH/P6-23 Continuum Edge Gyrokinetic Theory and Simulations 1 X.Q. Xu 1), K. Bodi 2), J. Candy 3), B. I. Cohen 1), R. H. Cohen 1), P. Colella 4), M. R. Dorr 1), J. A. Hittinger 1), G. D. Kerbel 1), S.
Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak
Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università
The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin
The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy
cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle.
Chapter 5 The Inner Magnetosphere 5.1 Trapped Particles The motion of trapped particles in the inner magnetosphere is a combination of gyro motion, bounce motion, and gradient and curvature drifts. In
RESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY
Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 0741-3335/87$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE
Minimal Model Study for ELM Control by Supersonic Molecular Beam Injection and Pellet Injection
25 th Fusion Energy Conference, Saint Petersburg, Russia, 2014 TH/P2-9 Minimal Model Study for ELM Control by Supersonic Molecular Beam Injection and Pellet Injection Tongnyeol Rhee 1,2, J.M. Kwon 1, P.H.
arxiv:physics/ v1 [physics.plasm-ph] 5 Nov 2004
Ion Resonance Instability in the ELTRAP electron plasma G. Bettega, 1 F. Cavaliere, 2 M. Cavenago, 3 A. Illiberi, 1 R. Pozzoli, 1 and M. Romé 1 1 INFM Milano Università, INFN Sezione di Milano, Dipartimento
Tokamak/Stellarator (vs. FRC) : Transport and Other Fundamentals
Tokamak/Stellarator (vs. FRC) : Transport and Other Fundamentals Y. Kishimoto + and T. Tajima *,** + Kyoto university, Uji, Kyoto, Japan, 611 11, Japan * University of California, Irvine, CA 92697, USA
Verification & Validation: application to the TORPEX basic plasma physics experiment
Verification & Validation: application to the TORPEX basic plasma physics experiment Paolo Ricci F. Avino, A. Bovet, A. Fasoli, I. Furno, S. Jolliet, F. Halpern, J. Loizu, A. Mosetto, F. Riva, C. Theiler,
Plasma models for the design of the ITER PCS
Plasma models for the design of the ITER PCS G. De Tommasi 1,2 on behalf of the CREATE team 1 Consorzio CREATE, Naples, Italy 2 Department of Electrical Engineering and Information Technology, University
GA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELM-SUPPRESSED REGIMES, AND ITER PREDICTIONS
GA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELM-SUPPRESSED REGIMES, AND ITER PREDICTIONS by P.B. SNYDER, T.H. OSBORNE, M.N.A. BEURSKENS, K.H. BURRELL, R.J. GROEBNER, J.W. HUGHES, R. MAINGI,
Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations.
Non-linear MHD Modelling of Rotating Plasma Response to Resonant Magnetic Perturbations. M. Becoulet 1, F. Orain 1, G.T.A. Huijsmans 2, P. Maget 1, N. Mellet 1, G. Dif-Pradalier 1, G. Latu 1, C. Passeron
On the nonlinear turbulent dynamics of shear-flow decorrelation and zonal flow generation
PHYSICS OF PLASMAS VOLUME 8, NUMBER 6 JUNE 2001 On the nonlinear turbulent dynamics of shear-flow decorrelation and zonal flow generation G. R. Tynan, R. A. Moyer, and M. J. Burin Department of Mechanical
Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors
Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors S. Wiesen, T. Eich, M. Bernert, S. Brezinsek, C. Giroud, E. Joffrin, A. Kallenbach, C. Lowry,
Zonal flows in plasma a review
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 47 (2005) R35 R161 PLASMA PHYSICS AND CONTROLLED FUSION doi:10.1088/0741-3335/47/5/r01 TOPICAL REVIEW Zonal flows in plasma a review P H Diamond
MHD Equilibrium and Stability of Tokamaks and RFP Systems with 3D Helical Cores
15th Workshop on MHD Stability Control, Madison, WI, USA, November 15-17, 21 MHD Equilibrium and Stability of Tokamaks and FP Systems with 3D Helical Cores W. A. Cooper Ecole Polytechnique Fédérale de
Internal Transport Barrier Triggering by Rational Magnetic Flux Surfaces in Tokamaks
EFDA JET CP(0)07/09 E. Joffrin, C.D. Challis, G.D. Conway, X. Garbet, A. Gude, S. Guenther, N. C. Hawkes, T.C. Hender, D. Howell, G.T.A. Huysmans, E. Lazarro, P. Maget, M. Marachek, A.G. Peeters, S.D.
Towards the construction of a model to describe the inter-elm evolution of the pedestal on MAST
Towards the construction of a model to describe the inter-elm evolution of the pedestal on MAST D. Dickinson 1,2, S. Saarelma 2, R. Scannell 2, A. Kirk 2, C.M. Roach 2 and H.R. Wilson 1 June 17, 211 1
MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION
MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends
Small-Scale Dynamo and the Magnetic Prandtl Number
MRI Turbulence Workshop, IAS, Princeton, 17.06.08 Small-Scale Dynamo and the Magnetic Prandtl Number Alexander Schekochihin (Imperial College) with Steve Cowley (Culham & Imperial) Greg Hammett (Princeton)
1 Introduction to Governing Equations 2 1a Methodology... 2
Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................
Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas
1 Integrated Simulation of ELM Energy Loss and Cycle in Improved H-mode Plasmas N. Hayashi 1), T. Takizuka 1), N. Aiba 1), N. Oyama 1), T. Ozeki 1), S. Wiesen 2), V. Parail 3) 1) Japan Atomic Energy Agency,
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting
Electromagneic Waves in a non- Maxwellian Dusty Plasma
Electromagneic Waves in a non- Maxwellian Dusty Plasma Nazish Rubab PhD student, KF University Graz IWF-OEAW Graz 26 January, 2011 Layout Dusty Plasma Non-Maxwellian Plasma Kinetic Alfven Waves Instability
Modelling of Frequency Sweeping with the HAGIS code
Modelling of Frequency Sweeping with the HAGIS code S.D.Pinches 1 H.L.Berk 2, S.E.Sharapov 3, M.Gryaznavich 3 1 Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Garching, Germany 2 Institute
Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK
Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices
Toroidal confinement of non-neutral plasma. Martin Droba
Toroidal confinement of non-neutral plasma Martin Droba Contents Experiments with toroidal non-neutral plasma Magnetic surfaces CNT and IAP-high current ring Conclusion 2. Experiments with toroidal non-neutral
PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK
PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared
Computer Physics Communications
Computer Physics Communications 181 010) 148 1437 Contents lists available at ScienceDirect Computer Physics Communications www.elsevier.com/locate/cpc On the role of numerical dissipation in gyrokinetic
QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*
ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado
Magnetohydrodynamic waves in a plasma
Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.
Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements
Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements Kazuo TOI CHS & LHD Experimental Group National Institute for Fusion Science Toki 59-5292, Japan Special contributions from:
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 4 January 2010 / Accepted
Effect of 3D magnetic perturbations on the plasma rotation in ASDEX Upgrade
Effect of 3D magnetic perturbations on the plasma rotation in ASDEX Upgrade A F Martitsch 1, S V Kasilov 1,2, W Kernbichler 1, G Kapper 1, C G Albert 1, M F Heyn 1, H M Smith 3, E Strumberger 4, S Fietz
STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK
GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This