Control of linear modes in cylindrical resistive MHD with a resistive wall, plasma rotation, and complex gain


 Hilda Rodgers
 2 years ago
 Views:
Transcription
1 Control of linear modes in cylindrical resistive MHD with a resistive wall, plasma rotation, and complex gain Dylan Brennan 1 and John Finn 2 contributions from Andrew Cole 3 1 Princeton University / PPPL 2 Los Alamos National Laboratory 3 Columbia University October 3, 214
2 Outline Final step before full toroidal, resistive MHD control study: Linear cylindrical tokamak model with finite β for control of resistiveplasma resitivewall modes, using a combination of normal and tangential magnetic field measurements Comparison of Full Resistive MHD with diffuse profiles compared with Analytic Reduced MHD in step function profiles, facilitates understanding of the origin physics results Marginal stability values β rp,rw < β rp,iw < β ip,rw < β ip,iw (resistive or ideal, plasma or wall) indicate transition points Imaginary gain plasma rotation stabilizes below β rp,iw because rotation supresses the diffusion of flux from the plasma out through the wall More surprisingly, imaginary gain or rotation destabilizes above β rp,iw because it prevents the feedback flux from entering the plasma through the resistive wall. Method of using complex gain to optimize in the presence of rotation for β > β rp,iw.
3 Full MHD Computation compared with Reduced MHD Analytic model for Intuition Model 1: Reduced MHD stepfunction profiles j z (r)=2θ(a 1 r) and p (r)=p ()Θ(a 2 r). Ideal outer region, Tearing layers either RI regime (γ d τ t ) /4 1 or VR regime γ d τ 1 Model 2: Full MHD smooth profiles 2 j z (r)= from (1+(r/a 1 ) 8 ) /4 Furth, Rutherford, Selberg (Flattened) and p (r)= p (1+(r/a 2 ) 16 ) 9/8 Plasma resistivity, viscosity constant: S = 1 1 8, P =.1 a 1 < r t a 2 Pressure drive outside r t enhances wall interaction; (somewhat mimics toroidal external kink) Resistive wall by thin wall approximation. γτ w ψ(r w )=[ ψ ] rw Feedback by control equation. ψ(r c )= ψ(r w )+ ψ (r w ) Rotation by Doppler shift. γ d γ + iω.
4 Equilibrium Models are comparable a) 4 b) B z 4 J z P q 3 2 J z P q r B θ r Model 1: Reduced MHD a 1 =., a 2 =.8, r w = 1, r c = 1., q()=.9 q(r)=q() for r < a 1 and q(r)=q() r 2 for r > a a1 2 1 where q()=b /R and R is the major radius Model 2: Full MHD a 1 =., a 2 =.7, r w = 1, r c = 1., q()=.8. B z (r) from radial force balance j θ B z j z B θ = p (r) by Bz 2 2 = B2 2 + p p (r) r j z(r )B θ (r )dr. B = B z () specifies q()
5 Model 1: Analysis simplified to a matching problem between regions Outer region 2 ψ = mj z (r) rf (r) ψ + 2m2 Bθ 2 (r)p (r) B 2r ψ 3 F (r) 2 = Aδ(r a 1 ) ψ Bδ(r a 2 ) ψ Solution can be expressed by a basis set ψ(r)=α 1 ψ 1 (r)+α 2 ψ 2 (r)+α 3 ψ 3 (r) With matching conditions at γ d τ t ψ(r t )= ψ r t γτ w ψ(r w )= ψ r w Tearing layer Resistive wall ψ(r c )= ψ(r w )+ ψ (r w ) Feedback
6 Model 1: Basis functions allow for analytic solution construction ψ 1 ψ 2 1 ψ 3 ψ φ φ 1 t φ 2 φ w a r t a 1 r 2 r w r c Basis function method (from early Culham years?) of separating the solution into zones with superimposed solutions shielded from neighboring resonant surfaces or conducting walls. Further separating the solution into the plasma response (ψ 1 ) and the resistive wall / control coil external solution ( ψ 2 ) simplifies the analysis into a 2x2 matrix structure for coefficients of ψ 1 and ψ 2.(ψ 3, the control flux then determined)
7 Model 1 : Simple 2x2 Matrix Structure offers Intuitive Understanding For VR regime 1 γ d τ t l 21 l 12 l 32 l 12 2 γτ w l 32 + l 32 l ( ) 22 α1 α 2 = VR: τ t S 2/3 for Pr = 1. 1 = is at β rp,iw 2 = is at β ip,rw. Equivalence of wall rotation and i (FinnChacon 24) For RI regime τ t S 3/ and γ d τ t (γ d τ t ) /4 For VR or RI can in principle stabilize up to β ip,iw ( 1 = 2 = ) using both and.
8 Model 2: Full MHD model includes finite β, compressibility, parallel dynamics, resistivity, viscosity γ~v = ~B B + j B p + ν 2 ~v γ~b = ~v B η ~B γ p = ṽ p Γp ṽ Finite difference discretization (with variable grid density) leads to the standard matrix form: ṽ ṽ γ B p = M B p
9 Model 2: Boundary Conditions in Full MHD: Resistive Wall and Control Boundary conditions at resistive wall include effect of control coil and complex gain, equivalent to reduced model γ d B r (r w )=ik B ṽ r imṽ r /r + r r (ṽ θ /r)= ikṽ r + r ṽ z = r (r B θ ) im B r = γ d p = ṽ r r p (r w ) Γp (r w )( v) rw γτ w B r =[ B r ] rw B r (r c )=[ (r w ) B r (r w )+r w B r (rw )]/r c
10 Results: γ vs. β showing β rp,rw < β rp,iw < β ip,rw β ip,iw ; analytic and numerical.2 a) Reduced MHD 4 x 1 3 b) Full MHD S=1x1 Pr=.1 S=1x1 6 Pr=.1 3 γτ A.1 γτ A Δ 1 Δ Δ 1, Δ 2 γτ A rp,rw rp,iw γτ A S=1 S=1 6 rp,rw rp,iw ip,rw ip,iw.2 ip,iw ~ ip,rw S=1x β β β rowth rate γ for the analytic model (a), with β rp,rw =.4, β rp,iw =.11, β ip,rw =.383, β ip,iw =.44. At β rp,iw, 1 equals zero and at β ip,rw, 2 equals zero. Numerical results in (b), showing β rp,rw =.4 β rp,iw =.11, and β ip,rw β ip,iw. Large ideal limits are due to diffuse profiles (computaitonally advantageous), while the focus is on the lower limits β rp,rw and β rp,iw.
11 In toroidal (DIIID) configurations the upper limits at far lower β, limits in same order Resistive / ideal plasma limits with / without a (perfectly) conducting wall indicates (without rotation or control) four β limits a) b) PESTIII DCON β N n=1 Unstable NIMROD γ τ A Ideal stability boundaries ~~NIMROD n=1 boundary~~.6 Q.4 Q.2 Q PESTIII n=1 resistive Q γ q 6 a) x b) c) ψ (Wb) DIII D PESTIII resistive plasma β limits q min =1.8, flat top wall conformal at r w =1.1a no wall wall at r w =1.1a 1 P (pa) Z (m) 1 1 q=1. q=2 1 2 R (m) S=τ R /τ A =1 8 nonviscous δw= ideal plasma Z (m) R (m) β rp,rw β rp,iw β ip,rw β ip,iw q min β N Next steps: resistive wall and control in toroidal. For now: cylindrical.
12  Maps with Ω= i = i = Show similar structure between reduced and full MHD models (a) (b) (c) Reduced MHD 1 S=1x1 6 β =.7,.9,.11,.13 1 S=1x1 β =.7,.9,.11,.13 β =.2,.7,.1, (a) Analytic model with β =.2,.7,.1, and.22. The left boundary is vertical at β =.11 = β rp,iw. (b) Full MHD with S = 1 6 with β =.7,.9,.11 = β rp,iw, and β =.13, and the left boundary is indeed vertical at β rp,iw. (c) Full MHD with S = 1 with the same β values as (b) and the left boundary is also vertical as β rp,iw =.12 is crossed. Qualtivative structure of the maps is captured by reduced MHD (a). Both results have vertical line at β rp,iw. Effects of Ω, i and i change above β rp,iw,where Ω becomes destabilizing.
13 Results qualitatively similar between Analytic and Full MHD models for β < β rp,iw : Increasing Ω Stabilizing (a) (b) Ω = 1 1 Ω = Ω = Ω = Ω = Ω = Ω = Ω = (a) Analytic with β =.68 < β rp,iw =.11. (b) Full MHD with β =.9 < β rp,iw =.12. The results show that increasing Ω increases the stable area for β < β rp,iw except for small Ω.
14 Results: β > β rp,iw where Ω is Destabilizing; analytic and numerical (a) 2 2 (b) Ω =,.1,.3,. Ω =,.1,.3, S = 1, i = i = and varying rotation Ω. (a) simplified model with β =.12 (b) full MHD model with β =.13. The plasma Doppler shift frequencies in (a) and (b) are Ω=,.1,.3,.. These results show that for β > β rp,iw the stable region shrinks as Ω increases.
15 iven a particular Ω, i can optimally counter and have the largest stable window equivalent to Ω=; analytic and numerical (a) (b) i =1 Ω =. 1 i =3 i = Ω =. i = i =4 1 i =6 i =4 i = In (a) we have reduced MHD same as above except for the wall time, which is made equal to the numerical case, τ w = 2 1 4, and i = 1,3,4,6. In (b) we have full MHD with parameters same as above, with i =, 2, 4, 8. There is an optimal value of i ; for this value the effective wall rotation rate Ω w is equal to Ω and the stable region is maximized. i equivalent to Ω w.
16 Analytic Results: With Ω=, finite i is destabilizing for β < β rp,iw and β > β rp,iw (a) (b) i =, ±2, ±4 i =, ±1, ±2 1 1 Stability diagrams for the reduced MHD model only (a) β =.68 < β rp,iw with i =, ±2, ±4 (b) β =.1 > β rp,iw with i =, ±1, ±2. In both regimes of β, i decreases the size of the stable region.
17 With i =, Ω=., i is destabilizing for β < β rp,iw ; analytic and numerical (a) i = i = 3 2 (b) i = i = i = i = i = i = (a) Reduced MHD model with β =.68 (b) the full MHD model with β =.9. Optimal value of i is small and larger values destabilize in the β < β rp,iw regime.
18 With i =, Ω=., i has an optimal value for β > β rp,iw ; analytic and numerical (a) (b) i = 4 1 i = i = i = i = 1 i =1 2 1 i = 2 1 i = (a) Reduced MHD model with β =.1 (b) Full MHD model with β =.13 In (a) the optimal value of i is 1. In (b) the stability regions are more complex, but optimal for i small.
19 Summary Feedback with complex gain multiplying normal component of B and complex gain multiplying tangential component. i and i represent simple phase shift of coils. Full resistive MHD model agrees with reduced resistive MHD model using stepfunction profiles For β < β rp,iw rotation Ω and i Ω stabilize, as expected. i stabilizes in different way For β > β rp,iw rotation Ω and i destabilize. i destabilizes too In β > β rp,iw regime with Ω: can optimize the feedback stable region by applying i such that Ω w =Ω. There is an optimal i too, but no obvious equivalence
20 Example Eigenfunction shows layer response v r x 1 4 rowth Rate: B r x v x B x v z r B z r
21 Example Eigenfunction shows layer response.1. p v div(b)/(kb) x
Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain
Control of resistive wall modes in a cylindrical tokamak with plasma rotation and complex gain arxiv:146.5245v1 [physics.plasmph] 2 Jun 214 D. P. Brennan and J. M. Finn June 23, 214 Department of Astrophysical
More informationCurrentdriven instabilities
Currentdriven instabilities Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 21 st February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously In the last
More informationFormation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )
Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 3110102, Japan 1) University
More informationThe Linear Theory of Tearing Modes in periodic, cyindrical plasmas. Cary Forest University of Wisconsin
The Linear Theory of Tearing Modes in periodic, cyindrical plasmas Cary Forest University of Wisconsin 1 Resistive MHD E + v B = ηj (no energy principle) Role of resistivity No frozen flux, B can tear
More informationMHD Linear Stability Analysis Using a Full Wave Code
USJapan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationMomentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi
Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center  University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center
More informationarxiv: v1 [physics.plasmph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD selforganization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasmph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
More informationModeling of ELM Dynamics for ITER
Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015
More informationPerformance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK
Performance limits Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 24) Previously... In the last few
More informationINTERACTION OF AN EXTERNAL ROTATING MAGNETIC FIELD WITH THE PLASMA TEARING MODE SURROUNDED BY A RESISTIVE WALL
INTERACTION OF AN EXTERNAL ROTATING MAGNETIC FIELD WITH THE PLASMA TEARING MODE SURROUNDED BY A RESISTIVE WALL S.C. GUO* and M.S. CHU GENERAL ATOMICS *Permanent Address: Consorzio RFX, Padova, Italy **The
More informationPlasma Stability in Tokamaks and Stellarators
Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1 May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,
More informationHybrid KineticMHD simulations with NIMROD
simulations with NIMROD 1 Yasushi Todo 2, Dylan P. Brennan 3, KwangIl You 4, JaeChun Seol 4 and the NIMROD Team 1 University of Washington, Seattle 2 NIFS, TokiJapan 3 University of Tulsa 4 NFRI, DaejeonKorea
More informationIssues in Neoclassical Tearing Mode Theory
Issues in Neoclassical Tearing Mode Theory Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Austin, TX Tearing Mode Stability in Tokamaks According to standard (singlefluid)
More informationA simple model of the resistive wall mode in tokamaks
A simple model of the resistive wall mode in tokamaks Richard Fitzpatrick Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin TX 78712 (February 18, 2003) A simple
More informationDIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH
DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK
More informationResistive Wall Mode Control in DIIID
Resistive Wall Mode Control in DIIID by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil
More informationSupported by. Role of plasma edge in global stability and control*
NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U
More informationThe RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationRESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS
RESISTIVE WALL MODE STABILIZATION RESEARCH ON STATUS AND RECENT RESULTS by A.M. Garofalo1 in collaboration with J. Bialek,1 M.S. Chance,2 M.S. Chu,3 T.H. Jensen,3 L.C. Johnson,2 R.J. La Haye,3 G.A. Navratil,1
More informationModelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7/8// Modelling of the penetration process of externally applied helical magnetic perturbation
More informationEffect of Resonant and Nonresonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas
1 EX/53Ra Effect of Resonant and Nonresonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas H. Reimerdes 1), A.M. Garofalo 2), E.J. Strait 2), R.J. Buttery 3), M.S. Chu 2), Y. In 4),
More informationCharacterization and Forecasting of Unstable Resistive Wall Modes in NSTX and NSTXU *
1 EX/P434 Characterization and Forecasting of Unstable Resistive Wall Modes in NSTX and NSTXU * J.W. Berkery 1, S.A. Sabbagh 1, Y.S. Park 1, R.E. Bell 2, S.P. Gerhardt 2, C.E. Myers 2 1 Department of
More informationSimulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015
Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all
More informationFundamentals of Magnetic Island Theory in Tokamaks
Fundamentals of Magnetic Island Theory in Tokamaks Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Austin, TX, USA Talk available at http://farside.ph.utexas.edu/talks/talks.html
More informationAC loop voltages and MHD stability in RFP plasmas
AC loop voltages and MHD stability in RFP plasmas K. J. McCollam, D. J. Holly, V. V. Mirnov, J. S. Sar, D. R. Stone UWMadison 54rd Annual Meeting of the APSDPP October 29th  November 2nd, 2012 Providence,
More information22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 19
. tability of the straight tokamak.65, MHD Theory of Fusion ystems Prof. Freidberg Lecture 9. ressure driven modes (uydams Criterion). internal modes 3. external modes. Tokamak Ordering Bθ ar B μ q or
More informationMAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT
MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX
More informationNIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997
NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU General Atomics Nimrod Project Review Meeting July 21 22, 1997 Work supported by the U.S. Department of Energy under Grant DEFG0395ER54309 and Contract
More informationFast Ion Confinement in the MST Reversed Field Pinch
Fast Ion Connement in the MST Reversed Field Pinch Gennady Fiksel B. Hudson, D.J. Den Hartog, R.M. Magee, R. O'Connell, S.C. Prager MST Team  University of Wisconsin  Madison Center for Magnetic SelfOrganization
More informationDIII D. by M. Okabayashi. Presented at 20th IAEA Fusion Energy Conference Vilamoura, Portugal November 1st  6th, 2004.
Control of the Resistive Wall Mode with Internal Coils in the Tokamak (EX/31Ra) Active Measurement of Resistive Wall Mode Stability in Rotating High Beta Plasmas (EX/31Rb) by M. Okabayashi Presented
More informationThe Effects of Noise and Time Delay on RWM Feedback System Performance
The Effects of Noise and Time Delay on RWM Feedback System Performance O. KatsuroHopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,
More informationMHD. Jeff Freidberg MIT
MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, selfconsistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium
More informationHybrid KineticMHD simulations with NIMROD
in NIMROD simulations with NIMROD Charlson C. Kim 1 Dylan P. Brennan 2 Yasushi Todo 3 and the NIMROD Team 1 University of Washington, Seattle 2 University of Tulsa 3 NIFS, TokiJapan December 2&3, 2011
More informationExtended Lumped Parameter Model of Resistive Wall Mode and The Effective SelfInductance
Extended Lumped Parameter Model of Resistive Wall Mode and The Effective SelfInductance M.Okabayashi, M. Chance, M. Chu* and R. Hatcher A. Garofalo**, R. La Haye*, H. Remeirdes**, T. Scoville*, and T.
More informationGlobal Mode Control and Stabilization for Disruption Avoidance in Highβ NSTX Plasmas *
1 EX/P807 Global Mode Control and Stabilization for Disruption Avoidance in Highβ NSTX Plasmas * J.W. Berkery 1, S.A. Sabbagh 1, A. Balbaky 1, R.E. Bell 2, R. Betti 3, J.M. Bialek 1, A. Diallo 2, D.A.
More informationTwo Fluid Dynamo and EdgeResonant m=0 Tearing Instability in Reversed Field Pinch
1 Two Fluid Dynamo and EdgeResonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of WisconsinMadison, Madison,
More informationExponential Growth and Filamentary Structure of Nonlinear Ballooning Instability 1
Exponential Growth and Filamentary Structure of Nonlinear Ballooning Instability 1 Ping Zhu in collaboration with C. C. Hegna and C. R. Sovinec University of WisconsinMadison Sherwood Conference Denver,
More informationOscillatingField CurrentDrive Experiment on MST
OscillatingField CurrentDrive Experiment on MST K. J. McCollam, J. K. Anderson, D. J. Den Hartog, F. Ebrahimi, J. A. Reusch, J. S. Sarff, H. D. Stephens, D. R. Stone University of WisconsinMadison D.
More informationDynamical plasma response of resistive wall modes to changing external magnetic perturbations
Dynamical plasma response of resistive wall modes to changing external magnetic perturbations M. Shilov, C. Cates, R. James, A. Klein, O. KatsuroHopkins, Y. Liu, M. E. Mauel, D. A. Maurer, G. A. Navratil,
More informationSMR/ Summer College on Plasma Physics. 30 July  24 August, Introduction to Magnetic Island Theory.
SMR/18561 2007 Summer College on Plasma Physics 30 July  24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction
More informationA New Resistive Response to 3D Fields in Low Rotation Hmodes
in Low Rotation Hmodes by Richard Buttery 1 with Rob La Haye 1, Yueqiang Liu 2, Bob Pinsker 1, Jongkyu Park 3, Holger Reimerdes 4, Ted Strait 1, and the DIIID research team. 1 General Atomics, USA 2
More information35. RESISTIVE INSTABILITIES: CLOSING REMARKS
35. RESISTIVE INSTABILITIES: CLOSING REMARKS In Section 34 we presented a heuristic discussion of the tearing mode. The tearing mode is centered about x = 0, where F x that B 0 ( ) = k! B = 0. Note that
More informationRequirements for Active Resistive Wall Mode (RWM) Feedback Control
Requirements for Active Resistive Wall Mode (RWM) Feedback Control Yongkyoon In 1 In collaboration with M.S. Chu 2, G.L. Jackson 2, J.S. Kim 1, R.J. La Haye 2, Y.Q. Liu 3, L. Marrelli 4, M. Okabayashi
More informationHighlights from (3D) Modeling of Tokamak Disruptions
Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly
More informationLecture # 3. Introduction to Kink Modes the Kruskal Shafranov Limit.
Lecture # 3. Introduction to Kink Modes the Kruskal Shafranov Limit. Steve Cowley UCLA. This lecture is meant to introduce the simplest ideas about kink modes. It would take many lectures to develop the
More informationRWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENTTHEORY COMPARISONS AND IMPLICATIONS FOR ITER
GA A24759 RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENTTHEORY COMPARISONS AND IMPLICATIONS FOR ITER by A.M. GAROFALO, J. BIALEK, M.S. CHANCE, M.S. CHU, D.H. EDGELL, G.L. JACKSON, T.H. JENSEN, R.J.
More informationQuasiseparatrix layers and 3D reconnection diagnostics for linetied
Quasiseparatrix layers and 3D reconnection diagnostics for linetied tearing modes John M. Finn, LANL A. Steve Richardson, NRL CMSO, Oct 2011 Operated by Los Alamos National Security, LLC for the U.S.
More information(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft Xray. T_e contours (ECE) r (minor radius) time time
Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D 1 L.E. Sugiyama 1), W. Park 2), H.R. Strauss 3), S.R. Hudson 2), D. Stutman 4), XZ. Tang 2) 1) Massachusetts Institute of Technology,
More informationM. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2
P1.015 Nonlinear Modeling Benchmarks of Forced Magnetic Reconnection with NIMROD and M3DC1 M. T. Beidler 1, J. D. Callen 1, C. C. Hegna 1, C. R. Sovinec 1, N. M. Ferraro 2 1 Department of Engineering
More informationEvaluation of CT injection to RFP for performance improvement and reconnection studies
Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi
More informationarxiv: v1 [physics.plasmph] 24 Nov 2017
arxiv:1711.09043v1 [physics.plasmph] 24 Nov 2017 Evaluation of ideal MHD mode stability of CFETR baseline scenario Debabrata Banerjee CAS Key Laboratory of Geospace Environment and Department of Modern
More informationRWM Control in FIRE and ITER
RWM Control in FIRE and ITER Gerald A. Navratil with Jim Bialek, Allen Boozer & Oksana KatsuroHopkins MHD Mode Control Workshop University of TexasAustin 35 November, 2003 OUTLINE REVIEW OF VALEN MODEL
More informationCurrent Profile Control by ac Helicity Injection
Current Profile Control by ac Helicity Injection Fatima Ebrahimi and S. C. Prager University of Wisconsin Madison APS 2003 Motivations Helicity injection is a method to drive current in plasmas in which
More informationPredictive Simulation of Global Instabilities in Tokamaks
Predictive Simulation of Global Instabilities in Tokamaks Stephen C. Jardin Princeton Plasma Physics Laboratory Fourth ITER International Summer School IISS 2010 Institute of Fusion Studies University
More informationResponse of a Resistive and Rotating Tokamak to External Magnetic Perturbations Below the Alfven Frequency
Response of a Resistive and Rotating Tokamak to External Magnetic Perturbations Below the Alfven Freuency by M.S. Chu In collaboration with L.L. Lao, M.J. Schaffer, T.E. Evans E.J. Strait (General Atomics)
More informationStabilization of sawteeth in tokamaks with toroidal flows
PHYSICS OF PLASMAS VOLUME 9, NUMBER 7 JULY 2002 Stabilization of sawteeth in tokamaks with toroidal flows Robert G. Kleva and Parvez N. Guzdar Institute for Plasma Research, University of Maryland, College
More informationGA A26247 EFFECT OF RESONANT AND NONRESONANT MAGNETIC BRAKING ON ERROR FIELD TOLERANCE IN HIGH BETA PLASMAS
GA A26247 EFFECT OF RESONANT AND NONRESONANT MAGNETIC BRAKING ON ERROR FIELD TOLERANCE IN HIGH BETA PLASMAS by H. REIMERDES, A.M. GAROFALO, E.J. STRAIT, R.J. BUTTERY, M.S. CHU, Y. In, G.L. JACKSON, R.J.
More informationMHD Simulation of High Wavenumber Ballooninglike Modes in LHD
1 TH/P916 MHD Simulation of High Wavenumber Ballooninglike Modes in LHD H. Miura and N. Nakajima National Institute for Fusion Science, 3226 Oroshi, Toki, Gifu 5095292, JAPAN email contact of main
More informationDynamical plasma response of resistive wall modes to changing external magnetic perturbations a
PHYSICS OF PLASMAS VOLUME 11, NUMBER 5 MAY 2004 Dynamical plasma response of resistive wall modes to changing external magnetic perturbations a M. Shilov, b) C. Cates, R. James, A. Klein, O. KatsuroHopkins,
More informationA Hybrid Inductive Scenario for a Pulsed Burn RFP Reactor with QuasiSteady Current. John Sarff
A Hybrid Inductive Scenario for a Pulsed Burn RFP Reactor with QuasiSteady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 2628, 2007 The RFP fusion development
More informationMicrotearing Simulations in the Madison Symmetric Torus
Microtearing Simulations in the Madison Symmetric Torus D. Carmody, P.W. Terry, M.J. Pueschel  University of Wisconsin  Madison dcarmody@wisc.edu APS DPP 22 Overview PPCD discharges in MST have lower
More informationEffects of Noise in Time Dependent RWM Feedback Simulations
Effects of Noise in Time Dependent RWM Feedback Simulations O. KatsuroHopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY USA) Building
More informationAdvances in Global MHD Mode Stabilization Research on NSTX
1 EX/51 Advances in Global MHD Mode Stabilization Research on NSTX S.A. Sabbagh 1), J.W. Berkery 1), R.E. Bell 2), J.M. Bialek 1), S.P. Gerhardt 2), J.E. Menard 2), R. Betti 3), D.A. Gates 2), B. Hu 3),
More informationDependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges
Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges by J.R. Ferron with T.C. Luce, P.A. Politzer, R. Jayakumar, * and M.R. Wade *Lawrence Livermore
More informationResistive Wall Mode Stabilization and Plasma Rotation Damping Considerations for Maintaining High Beta Plasma Discharges in NSTX
1 EXS/55 Resistive Wall Mode Stabilization and Plasma Rotation Damping Considerations for Maintaining High Beta Plasma Discharges in NSTX S.A. Sabbagh 1), J.W. Berkery 1), J.M. Bialek 1), R.E. Bell ),
More informationSawteeth in Tokamaks and their relation to other TwoFluid Reconnection Phenomena
Sawteeth in Tokamaks and their relation to other TwoFluid Reconnection Phenomena S. C. Jardin 1, N. Ferraro 2, J. Chen 1, et al 1 Princeton Plasma Physics Laboratory 2 General Atomics Supported by the
More informationGA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIIID
GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIIID by A. WINGEN, N.M. FERRARO, M.W. SHAFER, E.A. UNTERBERG, T.E. EVANS, D.L. HILLIS, and P.B. SNYDER JULY 2014 DISCLAIMER This report was
More informationDOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING
DOPPLER RESONANCE EFFECT ON ROTATIONAL DRIVE BY ION CYCLOTRON MINORITY HEATING V.S. Chan, S.C. Chiu, Y.A. Omelchenko General Atomics, San Diego, CA, U.S.A. 43rd Annual APS Division of Plasma Physics Meeting
More informationEnergeticIonDriven MHD Instab. & Transport: Simulation Methods, V&V and Predictions
EnergeticIonDriven MHD Instab. & Transport: Simulation Methods, V&V and Predictions 7th APTWG Intl. Conference 58 June 2017 Nagoya Univ., Nagoya, Japan Andreas Bierwage, Yasushi Todo 14.1MeV 10 kev
More informationModelling Toroidal Rotation Damping in ITER Due to External 3D Fields
CCFEPR(15)1 Yueqiang Liu, R. Akers, I.T. Chapman, Y. Gribov, G.Z. Hao, G.T.A. Huijsmans, A. Kirk, A. Loarte, S.D. Pinches, M. Reinke, D. Ryan, Y. Sun, and Z.R. Wang Modelling Toroidal Rotation Damping
More informationResistive MHD, reconnection and resistive tearing modes
DRAFT 1 Resistive MHD, reconnection and resistive tearing modes Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK (This version is of 6 May 18 1. Introduction
More informationEffects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal
Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.
More informationHighm Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows
TH/P33 Highm Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows A. Bierwage 1), S. Benkadda 2), M. Wakatani 1), S. Hamaguchi 3), Q. Yu
More informationControl of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform. Jeffrey Herfindal
Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A. Roberds,
More informationRotation and Neoclassical Ripple Transport in ITER
Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics
More informationNIMROD simulations of dynamo experiments in cylindrical and spherical geometries. Dalton Schnack, Ivan Khalzov, Fatima Ebrahimi, Cary Forest,
NIMROD simulations of dynamo experiments in cylindrical and spherical geometries Dalton Schnack, Ivan Khalzov, Fatima Ebrahimi, Cary Forest, 1 Introduction Two experiments, Madison Plasma Couette Experiment
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More information3D Random Reconnection Model of the Sawtooth Crash
3D Random Reconnection Model of the Sawtooth Crash Hyeon K. Park Princeton Plasma PhysicsN Laboratory Princeton University at IPELS, 2007 Cairns, Australia August 59, 2007 Collaboration with N.C. Luhmann,
More informationINITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS
INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation
More informationMeasuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor
PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University
More informationStationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control
Stationary, High Bootstrap Fraction Plasmas in DIIID Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J.
More informationOverview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations
Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER
More informationInteraction of scrapeoff layer currents with magnetohydrodynamical instabilities in tokamak plasmas
Interaction of scrapeoff layer currents with magnetohydrodynamical instabilities in tokamak plasmas Richard Fitzpatrick Institute for Fusion Studies Department of Physics University of Texas at Austin
More informationImposed Dynamo Current Drive
Imposed Dynamo Current Drive by T. R. Jarboe, C. Akcay, C. J. Hansen, A. C. Hossack, G. J. Marklin, K. Morgan, B. A. Nelson, D. A. Sutherland, B. S. Victor University of Washington, Seattle, WA 98195,
More informationExperimental test of the neoclassical theory of poloidal rotation
Experimental test of the neoclassical theory of poloidal rotation Presented by Wayne Solomon with contributions from K.H. Burrell, R. Andre, L.R. Baylor, R. Budny, P. Gohil, R.J. Groebner, C.T. Holcomb,
More informationGA A27444 PROBING RESISTIVE WALL MODE STABILITY USING OFFAXIS NBI
GA A27444 PROBING RESISTIVE WALL MODE STABILITY USING OFFAXIS NBI by J.M. HANSON, F. TURCO M.J. LANCTOT, J. BERKERY, I.T. CHAPMAN, R.J. LA HAYE, G.A. NAVRATIL, M. OKABAYASHI, H. REIMERDES, S.A. SABBAGH,
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationSupported by. The drift kinetic and rotational effects on determining and predicting the macroscopic MHD instability
NSTXU Supported by The drift kinetic and rotational effects on determining and predicting the macroscopic MHD instability Coll of Wm & Mary Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL
More informationSimple examples of MHD equilibria
Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will
More informationMAGNETIC FIELD ERRORS: RECONCILING MEASUREMENT, MODELING AND EMPIRICAL CORRECTIONS ON DIII D
MAGNETIC FIELD ERRORS: RECONCILING MEASUREMENT, MODELING AND EMPIRICAL CORRECTIONS ON DIII D by M.J. Schaffer, T.E. Evans, J.L. Luxon, G.L. Jackson, J.A. Leuer, J.T. Scoville Paper QP1.76 Presented at
More informationPrinceton Plasma Physics Laboratory. Multimode analysis of RWM feedback with the NMA Code
Princeton Plasma Physics Laboratory Multimode analysis of RWM feedback with the NMA Code M. S. Chance, M.Okabayashi, M. S. Chu 12 th Workshop on MHD Stability Control: Improved MHD Control Configurations
More informationResponse of a Resistive and Rotating Tokamak to External Magnetic Perturbations Below the Afvén Frequency
1 THS/P504 Response of a Resistive and Rotating Tokamak to External Magnetic Perturbations Below the Afvén Frequency M.S. Chu, 1 L.L. Lao, 1, M.J. Schaffer 1 T.E. Evans, 1 E.J. Strait, 1 Y.Q. Liu 2, M.J.
More informationTheory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing
Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic
More informationSTABILIZATION OF THE RESISTIVE WALL MODE IN DIII D BY PLASMA ROTATION AND MAGNETIC FEEDBACK
GA A24014 STABILIZATION OF THE RESISTIVE WALL MODE IN DIII D BY PLASMA ROTATION AND MAGNETIC FEEDBACK by M. Okabayashi, J. Bialek, M.S. Chance, M.S. Chu, E.D. Fredrickson, A.M. Garofalo, R. Hatcher, T.H.
More informationComputations with Discontinuous Basis Functions
Computations with Discontinuous Basis Functions Carl Sovinec University of WisconsinMadison NIMROD Team Meeting November 12, 2011 Salt Lake City, Utah Motivation The objective of this work is to make
More informationKSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta
1 THS/P205 KSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta Y.S. Park 1), S.A. Sabbagh 1), J.W. Berkery 1), J.M. Bialek 1), Y.M. Jeon 2), S.H. Hahn 2), N. Eidietis
More informationThe FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is
and Stability of FieldReversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 921865608 P.O. APS Annual APS Meeting of the Division of Plasma Physics
More informationControl of Neoclassical tearing mode (NTM) in advanced scenarios
FIRST CHENGDU THEORY FESTIVAL Control of Neoclassical tearing mode (NTM) in advanced scenarios ZhengXiong Wang Dalian University of Technology (DLUT) Dalian, China Chengdu, China, 28 Aug, 2018 Outline
More informationNonlinear 3D MHD physics of the helical reversedfield pinch
Nonlinear 3D MHD physics of the helical reversedfield pinch Daniele Bonfiglio* Consorzio RFX, EuratomENEA Association, Padova, Italy *In collaboration with: S. Cappello, L. Chacón (Oak Ridge National
More information