Data Mining Techniques

Size: px
Start display at page:

Download "Data Mining Techniques"

Transcription

1 Data Mining Techniques CS Sectin 2 - Spring 2017 Lecture 7 Jan-Willem van de Meent (credit: David Blei)

2 Review: K-means Clustering μ1 Objective: Sum f Squares μ2 µ k One-ht assignment Center fr cluster k μ3 Alternate between tw steps 1. Minimize SSE w.r.t. zn 2. Minimize SSE w.r.t. μk

3 Review: Prbabilistic K-means Generative Mdel z n Discrete( ) x n z n = k Nrm(µ k, k ) Questins 1. What is lg p(x, z μ, Σ, π)? 2. Fr what chice f π and Σ d we recver K-means? Same as K-means when: k = 1/K k = 2 I

4 Review: Prbabilistic K-means Assignment Update Parameter Updates Idea: Replace hard assignments with sft assignments N k := P N n=1 z nk N = [ = ] = =(N 1 /N,...,N K /N) 1 µ k = P N z N k n=1 x nk n P 1 P N P k = 1 N k P N n=1 z nk (x n µ k )(x n µ k ) >

5 Review: Sft K-means Sft Assignment Update Parameter Updates Idea: Replace hard assignments with sft assignments N k := P N n=1 nk = PN [ N,...,N = ] N = P =(N 1 /N,...,N K /N)) 1 P µ k = N z x N k n=1 nk n P = k = 1 N N k n=1 nk (x n µ k )(x n µ k ) >

6 Review: Lwer Bund n Lg Likelihd (multiplicatin by 1)

7 Review: Lwer Bund n Lg Likelihd (multiplicatin by 1) (multiplicatin by 1)

8 Review: Lwer Bund n Lg Likelihd (multiplicatin by 1) (multiplicatin by 1) (Bayes rule)

9 Review: Lwer Bund n Lg Likelihd (multiplicatin by 1) (multiplicatin by 1) (Bayes rule)

10 Review: Lwer Bund n Lg Likelihd

11 Review: Lwer Bund n Lg Likelihd

12 Review: EM fr Gaussian Mixtures Generative Mdel z n Discrete( ) x n z n = k Nrm(µ k, k ) Expectatin Maximizatin Initialize θ Repeat until cnvergence 1. Expectatin Step 2. Maximizatin Step

13 TOPIC MODELS Brrwing frm: David Blei (Clumbia)

14 Wrd Mixtures Generative mdel f Latent Dirichlet allcatin (LDA) Idea: Mdel text as a mixture ver wrds (ignre rder) Tpics gene dna genetic.,, life 0.02 evlve 0.01 rganism 0.01.,, brain neurn nerve data 0.02 number 0.02 cmputer 0.01.,, Each tpic is a distrib Wrds: Tpics: Simple intuitin: Dcuments exhibit multiple tpics. Each dcument is a

15 EM fr Wrd Mixtures Generative Mdel Expectatin Maximizatin Initialize θ Repeat until cnvergence 1. Expectatin Step 2. Maximizatin Step

16 EM fr Wrd Mixtures Generative Mdel E-step: Update assignments M-step: Update parameters

17 Tpic Mdeling Tpics gene 0.04 dna 0.02 genetic 0.01.,, Dcuments Tpic prprtins and assignments life 0.02 evlve 0.01 rganism 0.01.,, brain 0.04 neurn 0.02 nerve data 0.02 number 0.02 cmputer 0.01.,, Each tpic is a distributin ver wrds Each dcument is a mixture ver tpics Each wrd is drawn frm ne tpic distributin

18 Tpic Mdeling Tpics gene 0.04 dna 0.02 genetic 0.01.,, Dcuments Tpic prprtins and assignments life 0.02 evlve 0.01 rganism 0.01.,, brain 0.04 neurn 0.02 nerve data 0.02 number 0.02 cmputer 0.01.,, Wrds: Tpics:

19 EM fr Tpic Mdels (PLSI/PLSA*) Generative Mdel E-step: Update assignments M-step: Update parameters *(Prbabilistic Latent Semantic Indexing, a.k.a. Prbabilistic Latent Semantic Analysis)

20 Tpic Mdels with Prirs Generative Mdel (with prirs) Maximum a Psteriri E-step: Update assignments M-step: Update parameters

21 Latent Dirichlet Allcatin (a.k.a. PLSI/PLSA with prirs) Prprtins parameter Per-wrd tpic assignment Per-dcument tpic prprtins Observed wrd Tpics Tpic parameter d Z d,n W d,n N k D K η

22 Intermezz: Dirichlet Distributin

23 Intermezz: Dirichlet Distributin

24 Intermezz: Cnjugacy Likelihd (discrete) Prir (Dirichlet) Questin: What distributin is the psterir? Mre examples:

25 MAP estimatin fr LDA Generative Mdel (with prirs) Maximum a Psteriri E-step: Update assignments M-step: Update parameters

26 Variatinal Inference Idea: Maximize Evidence Lwer Bund (ELBO) Maximizing the ELBO is equivalent t minimizing the KL divergence

27 Variatinal EM Use Factrized Apprximatin fr q(z,β,θ) Discrete Dirichlet Dirichlet Variatinal E-step: Maximize w.r.t. φ (expectatins clsed frm fr Dirichlet distributins) Variatinal M-step: Maximize w.r.t. λ and γ (analgus t MAP estimatin)

28 Variatinal EM Use Factrized Apprximatin fr q(z,β,θ) Discrete Dirichlet Dirichlet Variatinal E-step: Maximize w.r.t. φ (expectatins clsed frm fr Dirichlet distributins) Variatinal M-step: Maximize w.r.t. λ and γ (analgus t MAP estimatin)

29 Example Inference Prbability Tpics

30 Example Inference human evlutin disease cmputer genme evlutinary hst mdels dna species bacteria infrmatin genetic rganisms diseases data genes life resistance cmputers sequence rigin bacterial system gene bilgy new netwrk mlecular grups strains systems sequencing phylgenetic cntrl mdel map living infectius parallel infrmatin diversity malaria methds genetics grup parasite netwrks mapping new parasites sftware prject tw united new sequences cmmn tuberculsis simulatins

31 Example Inference

32 Example Inference prblem mdel selectin species prblems rate male frest mathematical cnstant males eclgy number distributin females fish new time sex eclgical mathematics number species cnservatin university size female diversity tw values evlutin ppulatin first value ppulatins natural numbers average ppulatin ecsystems wrk rates sexual ppulatins time data behavir endangered mathematicians density evlutinary trpical chas measured genetic frests chatic mdels reprductive ecsystem

33 Perfrmance Metric: Perplexity Nematde abstracts Assciated Press Smthed Unigram Smthed Mixt. Unigrams LDA Fld in plsi Smthed Unigram Smthed Mixt. Unigrams LDA Fld in plsi Perplexity Number f Tpics Number f Tpics perplexity = exp P d lg p(w d) P d N d Marginal likelihd (evidence) f held ut dcuments

34 Extensins f LDA EM inference (PLSA/PLSI) yields similar results t Variatinal inference r MAP inference (LDA) n mst data Reasn fr ppularity f LDA: can be embedded in mre cmplicated mdels

35 Extensins: Supervised LDA d Z d,n W d,n N k K Y d D η, σ 2 1 Draw tpic prprtins Dir( ). 2 Fr each wrd Draw tpic assignment z n Mult( ). Draw wrd w n z n, 1:K Mult( zn ). 3 Draw respnse variable y z 1:N,, 2 N > z, 2, where z =(1/N) P N n=1 z n.

36 Extensins: Supervised LDA least prblem unfrtunately suppsed wrse flat dull bad guys watchable its nt ne mvie mre has than films directr will characters awful featuring rutine dry ffered charlie paris his their character many while perfrmance between bth mtin simple perfect fascinating pwer cmplex have like yu was just sme ut nt abut mvie all wuld they its ne frm there which wh much what hwever cinematgraphy screenplay perfrmances pictures effective picture

37 Extensins: Crrelated Tpic Mdel k d Z d,n W d,n N D K µ Ncnjugate prir n tpic prprtins Estimate a cvariance matrix Σ that parameterizes crrelatins between tpics in a dcument

38 Extensins: Dynamic Tpic Mdels Dynamic tpic mdels (Blei and Lafferty, 2006) Inaugural addresses My fellw citizens: I stand here tday humbled by the task befre us, grateful fr the trust yu have bestwed, mindful f the sacrifices brne by ur ancestrs... AMONG the vicissitudes incident t life n event culd have filled me with greater anxieties than that f which the ntificatin was transmitted by yur rder... Trackthat changes distributins LDA assumes the rderinfwrd dcuments des nt matter. assciated withthat a tpic ver time. Nt apprpriate fr crpra span hundreds f years We may want t track hw language changes ver time.

39 Extensins: Dynamic Tpic Mdels d d d Z d,n Z d,n Z d,n W d,n W d,n W d,n N D N D N D... K β k,1 β k,2 β k,t

40 Extensins: Dynamic Tpic Mdels 1880 electric machine pwer engine steam tw machines irn battery wire 1890 electric pwer cmpany steam electrical machine tw system mtr engine 1900 apparatus steam pwer engine engineering water cnstructin engineer rm feet 1910 air water engineering apparatus rm labratry engineer made gas tube 1920 apparatus tube air pressure water glass gas made labratry mercury 1930 tube apparatus glass air mercury labratry pressure made gas small 1940 air tube apparatus glass labratry rubber pressure small mercury gas 1950 tube apparatus glass air chamber instrument small labratry pressure rubber 1960 tube system temperature air heat chamber pwer high instrument cntrl 1970 air heat pwer system temperature chamber high flw tube design 1980 high pwer design heat system systems devices instruments cntrl large 1990 materials high pwer current applicatins technlgy devices design device heat 2000 devices device materials current gate high light silicn material technlgy

41 Extensins: Dynamic Tpic Mdels "Theretical Physics" "Neurscience" FORCE RELATIVITY LASER NERVE OXYGEN NEURON

42 Extensins: Ideal Pint Tpic Mdels 2 d 2 u d Z dn W dn N A d,b d V ud D X u U k K Bill cntent (tpic mdel) Bill sentiment variables Observed vtes Legislatr ideal pints

43 Extensins: Ideal Pint Tpic Mdels tax credit,budget authrity,energy,utlays,tax cunty,eligible,ballt,electin,jurisdictin bank,transfer,requires,hlding cmpany,industrial husing,mrtgage,lan,family,recipient energy,fuel,standard,administratr,lamp student,lan,institutin,lender,schl medicare,medicaid,child,chip,cverage defense,iraq,transfer,expense,chapter business,administratr,bills,business cncern,lan transprtatin,rail,railrad,passenger,hmeland security cver,bills,bridge,transactin,fllwing bills,tax,subparagraph,lss,taxable lss,crp,prducer,agriculture,trade head,start,child,technlgy,award cmputer,alien,bills,user,cllectin science,directr,technlgy,mathematics,bills cast guard,vessel,space,administratr,requires child,center,pisn,victim,abuse land,site,bills,interir,river energy,bills,price,cmmdity,market surveillance,directr,curt,electrnic,fld child,fire,attrney,internet,bills drug,pediatric,prduct,device,medical human,vietnam,united natins,call,peple bills,iran,fficial,cmpany,sudan cin,inspectr,designee,autmbile,lebann prducer,eligible,crp,farm,subparagraph peple,wman,american,natin,schl veteran,veterans,bills,care,injury dd,defense,defense and apprpriatin,military,subtitle

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Sectin 3 - Fall 2016 Lecture 11 Jan-Willem van de Meent (credit: Yijun Zha, Dave Blei) PROJECT GUIDELINES (updated) Prject Gals Select a dataset / predictin prblem Perfrm

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

A Quick Overview of the. Framework for K 12 Science Education

A Quick Overview of the. Framework for K 12 Science Education A Quick Overview f the NGSS EQuIP MODULE 1 Framewrk fr K 12 Science Educatin Mdule 1: A Quick Overview f the Framewrk fr K 12 Science Educatin This mdule prvides a brief backgrund n the Framewrk fr K-12

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

Public Key Cryptography. Tim van der Horst & Kent Seamons

Public Key Cryptography. Tim van der Horst & Kent Seamons Public Key Cryptgraphy Tim van der Hrst & Kent Seamns Last Updated: Oct 5, 2017 Asymmetric Encryptin Why Public Key Crypt is Cl Has a linear slutin t the key distributin prblem Symmetric crypt has an expnential

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

Unit 1: Introduction to Biology

Unit 1: Introduction to Biology Name: Unit 1: Intrductin t Bilgy Theme: Frm mlecules t rganisms Students will be able t: 1.1 Plan and cnduct an investigatin: Define the questin, develp a hypthesis, design an experiment and cllect infrmatin,

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method.

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method. Lessn Plan Reach: Ask the students if they ever ppped a bag f micrwave ppcrn and nticed hw many kernels were unppped at the bttm f the bag which made yu wnder if ther brands pp better than the ne yu are

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

EASTERN ARIZONA COLLEGE Introduction to Statistics

EASTERN ARIZONA COLLEGE Introduction to Statistics EASTERN ARIZONA COLLEGE Intrductin t Statistics Curse Design 2014-2015 Curse Infrmatin Divisin Scial Sciences Curse Number PSY 220 Title Intrductin t Statistics Credits 3 Develped by Adam Stinchcmbe Lecture/Lab

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Sandy D. Balkin Dennis K. J. Lin y Pennsylvania State University, University Park, PA 16802 Sandy Balkin is a graduate student

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Excessive Social Imbalances and the Performance of Welfare States in the EU. Frank Vandenbroucke, Ron Diris and Gerlinde Verbist

Excessive Social Imbalances and the Performance of Welfare States in the EU. Frank Vandenbroucke, Ron Diris and Gerlinde Verbist Excessive Scial Imbalances and the Perfrmance f Welfare States in the EU Frank Vandenbrucke, Rn Diris and Gerlinde Verbist Child pverty in the Eurzne, SILC 2008 35.00 30.00 25.00 20.00 15.00 10.00 5.00.00

More information

Evolution. Diversity of Life. Lamarck s idea is called the. If a body

Evolution. Diversity of Life. Lamarck s idea is called the. If a body Evlutin Diversity f Life Lamarck s Thery f Evlutin Lamarck s idea is called the. If a bdy part were used, it gt strnger. If bdy part NOT used, it deterirated Lamarck is credited with helping put evlutin

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Introduction to Regression

Introduction to Regression Intrductin t Regressin Administrivia Hmewrk 6 psted later tnight. Due Friday after Break. 2 Statistical Mdeling Thus far we ve talked abut Descriptive Statistics: This is the way my sample is Inferential

More information

MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION

MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION Silvia de Castr García Directres: Dr. Ricard Pérez Martínez, Dra. Ana María Pérez García 16/03/2018 Machine Learning fr cluster-galaxy classificatin

More information

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!)

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!) The Law f Ttal Prbability, Bayes Rule, and Randm Variables (Oh My!) Administrivia Hmewrk 2 is psted and is due tw Friday s frm nw If yu didn t start early last time, please d s this time. Gd Milestnes:

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Professional Development. Implementing the NGSS: High School Physics

Professional Development. Implementing the NGSS: High School Physics Prfessinal Develpment Implementing the NGSS: High Schl Physics This is a dem. The 30-min vide webinar is available in the full PD. Get it here. Tday s Learning Objectives NGSS key cncepts why this is different

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

Lecture 20a. Circuit Topologies and Techniques: Opamps

Lecture 20a. Circuit Topologies and Techniques: Opamps Lecture a Circuit Tplgies and Techniques: Opamps In this lecture yu will learn: Sme circuit tplgies and techniques Intrductin t peratinal amplifiers Differential mplifier IBIS1 I BIS M VI1 vi1 Vi vi I

More information

Unit 2 Expressions, Equations, and Inequalities Math 7

Unit 2 Expressions, Equations, and Inequalities Math 7 Unit 2 Expressins, Equatins, and Inequalities Math 7 Number f Days: 24 10/23/17 12/1/17 Unit Gals Stage 1 Unit Descriptin: Students cnslidate and expand previus wrk with generating equivalent expressins

More information

Churn Prediction using Dynamic RFM-Augmented node2vec

Churn Prediction using Dynamic RFM-Augmented node2vec Churn Predictin using Dynamic RFM-Augmented nde2vec Sandra Mitrvić, Jchen de Weerdt, Bart Baesens & Wilfried Lemahieu Department f Decisin Sciences and Infrmatin Management, KU Leuven 18 September 2017,

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

Associated Students Flacks Internship

Associated Students Flacks Internship Assciated Students Flacks Internship 2016-2017 Applicatin Persnal Infrmatin: Name: Address: Phne #: Years at UCSB: Cumulative GPA: E-mail: Majr(s)/Minr(s): Units Cmpleted: Tw persnal references (Different

More information

Text mining and natural language analysis. Jefrey Lijffijt

Text mining and natural language analysis. Jefrey Lijffijt Text mining and natural language analysis Jefrey Lijffijt PART I: Introduction to Text Mining Why text mining The amount of text published on paper, on the web, and even within companies is inconceivably

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

Data Analysis, Statistics, Machine Learning

Data Analysis, Statistics, Machine Learning Data Analysis, Statistics, Machine Learning Leland Wilkinsn Adjunct Prfessr UIC Cmputer Science Chief Scien

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 3: Mdeling change (2) Mdeling using prprtinality Mdeling using gemetric similarity In Petre Department f IT, Ab Akademi http://www.users.ab.fi/ipetre/cmpmd/ http://users.ab.fi/ipetre/cmpmd/

More information

Performance Bounds for Detect and Avoid Signal Sensing

Performance Bounds for Detect and Avoid Signal Sensing Perfrmance unds fr Detect and Avid Signal Sensing Sam Reisenfeld Real-ime Infrmatin etwrks, University f echnlgy, Sydney, radway, SW 007, Australia samr@uts.edu.au Abstract Detect and Avid (DAA) is a Cgnitive

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 6 Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.) Project Project Deadlines 3 Feb: Form teams of

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science Weathering Title: Chemical and Mechanical Weathering Grade Level: 9-12 Subject/Cntent: Earth and Space Science Summary f Lessn: Students will test hw chemical and mechanical weathering can affect a rck

More information

Purchase Order Workflow Processing

Purchase Order Workflow Processing P a g e 1 Purchase Order Wrkflw Prcessing P a g e 2 Table f Cntents PO Wrkflw Prcessing...3 Create a Purchase Order...3 Submit a Purchase Order...4 Review/Apprve the PO...4 Prcess the PO...6 P a g e 3

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A.

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A. SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST Mark C. Ott Statistics Research Divisin, Bureau f the Census Washingtn, D.C. 20233, U.S.A. and Kenneth H. Pllck Department f Statistics, Nrth Carlina State

More information

Versatility of Singular Value Decomposition (SVD) January 7, 2015

Versatility of Singular Value Decomposition (SVD) January 7, 2015 Versatility f Singular Value Decmpsitin (SVD) January 7, 2015 Assumptin : Data = Real Data + Nise Each Data Pint is a clumn f the n d Data Matrix A. Assumptin : Data = Real Data + Nise Each Data Pint is

More information

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB.

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB. Intelligent Pharma- Chemical and Oil & Gas Divisin Page 1 f 7 Intelligent Pharma Chemical and Oil & Gas Divisin Glbal Business Centre. 120 8 Ave SE, Calgary, AB T2G 0K6, AB. Canada Dr. Edelsys Cdrniu-Business

More information

x x

x x Mdeling the Dynamics f Life: Calculus and Prbability fr Life Scientists Frederick R. Adler cfrederick R. Adler, Department f Mathematics and Department f Bilgy, University f Utah, Salt Lake City, Utah

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Accreditation Information

Accreditation Information Accreditatin Infrmatin The ISSP urges members wh have achieved significant success in the field t apply fr higher levels f membership in rder t enjy the fllwing benefits: - Bth Prfessinal members and Fellws

More information

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling Lecture 13: Markv hain Mnte arl Gibbs sampling Gibbs sampling Markv chains 1 Recall: Apprximate inference using samples Main idea: we generate samples frm ur Bayes net, then cmpute prbabilities using (weighted)

More information

CHAPTER 2 Algebraic Expressions and Fundamental Operations

CHAPTER 2 Algebraic Expressions and Fundamental Operations CHAPTER Algebraic Expressins and Fundamental Operatins OBJECTIVES: 1. Algebraic Expressins. Terms. Degree. Gruping 5. Additin 6. Subtractin 7. Multiplicatin 8. Divisin Algebraic Expressin An algebraic

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

We can see from the graph above that the intersection is, i.e., [ ).

We can see from the graph above that the intersection is, i.e., [ ). MTH 111 Cllege Algebra Lecture Ntes July 2, 2014 Functin Arithmetic: With nt t much difficulty, we ntice that inputs f functins are numbers, and utputs f functins are numbers. S whatever we can d with

More information

ENG2410 Digital Design Sequential Circuits: Part A

ENG2410 Digital Design Sequential Circuits: Part A ENG2410 Digital Design Sequential Circuits: Part A Fall 2017 S. Areibi Schl f Engineering University f Guelph Week #6 Tpics Sequential Circuit Definitins Latches Flip-Flps Delays in Sequential Circuits

More information

READING STATECHART DIAGRAMS

READING STATECHART DIAGRAMS READING STATECHART DIAGRAMS Figure 4.48 A Statechart diagram with events The diagram in Figure 4.48 shws all states that the bject plane can be in during the curse f its life. Furthermre, it shws the pssible

More information

Hiding in plain sight

Hiding in plain sight Hiding in plain sight Principles f stegangraphy CS349 Cryptgraphy Department f Cmputer Science Wellesley Cllege The prisners prblem Stegangraphy 1-2 1 Secret writing Lemn juice is very nearly clear s it

More information

Eric Klein and Ning Sa

Eric Klein and Ning Sa Week 12. Statistical Appraches t Netwrks: p1 and p* Wasserman and Faust Chapter 15: Statistical Analysis f Single Relatinal Netwrks There are fur tasks in psitinal analysis: 1) Define Equivalence 2) Measure

More information

THE LIFE OF AN OBJECT IT SYSTEMS

THE LIFE OF AN OBJECT IT SYSTEMS THE LIFE OF AN OBJECT IT SYSTEMS Persns, bjects, r cncepts frm the real wrld, which we mdel as bjects in the IT system, have "lives". Actually, they have tw lives; the riginal in the real wrld has a life,

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Comprehensive Exam Guidelines Department of Chemical and Biomolecular Engineering, Ohio University

Comprehensive Exam Guidelines Department of Chemical and Biomolecular Engineering, Ohio University Cmprehensive Exam Guidelines Department f Chemical and Bimlecular Engineering, Ohi University Purpse In the Cmprehensive Exam, the student prepares an ral and a written research prpsal. The Cmprehensive

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

A Scalable Recurrent Neural Network Framework for Model-free

A Scalable Recurrent Neural Network Framework for Model-free A Scalable Recurrent Neural Netwrk Framewrk fr Mdel-free POMDPs April 3, 2007 Zhenzhen Liu, Itamar Elhanany Machine Intelligence Lab Department f Electrical and Cmputer Engineering The University f Tennessee

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs Admissibility Cnditins and Asympttic Behavir f Strngly Regular Graphs VASCO MOÇO MANO Department f Mathematics University f Prt Oprt PORTUGAL vascmcman@gmailcm LUÍS ANTÓNIO DE ALMEIDA VIEIRA Department

More information