AN ABSTRACT OF THE DISSERTATION OF. Andrew R. Tabalujan for the degree of Master of Science in

Size: px
Start display at page:

Download "AN ABSTRACT OF THE DISSERTATION OF. Andrew R. Tabalujan for the degree of Master of Science in"

Transcription

1

2 AN ABSTRACT OF THE DISSERTATION OF Andrew R. Tabalujan for the degree of Master of Science in Electrical and Computer Engineering presented on September 14, 27. Title: Test Fixture Characterization for High-Frequency Silicon Substrate Parasitic Extraction Abstract approved: Dr. Terri Fiez Dr. Karti Mayaram At frequencies exceeding 1-2 GHz, the reactive nature of a silicon substrate must be accounted in the substrate network models used in substrate coupling simulation. High-frequency substrate models, containing reactive components, must be validated through high-frequency network analyzer measurements. Prior fabricated test fixtures have been modified to enable high-frequency (up to 2 GHz) network parameter measurements of a.35 µm CMOS heavilydoped silicon substrate through an off-chip probing scheme. The performance of the test fixture and the measurement deembedding procedure has been evaluated, and suggestions for future improvements are presented. A new probing scheme is proposed to enable high-frequency network parameter measurements of a silicon substrate. The design of the test structures and the deembedding procedure has been validated through extensive simulations in HFSS.

3 Copyright by Andrew R. Tabalujan September 14, 27 All Rights Reserved

4 Test Fixture Characterization for High-Frequency Silicon Substrate Parasitic Extraction by Andrew R. Tabalujan A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented September 14, 27 Commencement June 28

5 Master of Science thesis of Andrew R. Tabalujan presented on September 14, 27 APPROVED: Co-Major Professor, representing Electrical and Computer Engineering Co-Major Professor, representing Electrical and Computer Engineering Director of the School of Electrical Engineering and Computer Science Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Andrew R. Tabalujan, Author

6 ACKNOWLEDGMENTS The work presented in this thesis could not have happened without the help and support of many people. First and foremost, I am indebted to my advisors, Professor Karti Mayaram and Professor Terri Fiez, for giving me the opportunity of being part of their substrate noise coupling group. Prof. Karti Mayaram introduced me to radio frequency circuit design. He was supportive and showed unlimited patience in my efforts tackling the challenges in this research. Prof. Terri Fiez provided guidance throughout this research; she believed in me from the beginning of this work, and has been a source of encouragement throughout its duration. The people at Cascade Microtech, among them are Leonard Hayden and Randy Fenton, provided guidance on high frequency measurement issues; their insights overcame many mysteries in that field. Laudie Doubrava from Tektronix provided insight of practical issues related to microwave, and helped me identify problems that only experience can warn you about. Jim Shaver, Yoshi Uematsu and Toni Hoodenpyl from Kyocera did an amazing job of bonding the die. Much thanks also to Ed Swenson from ESI and Steve Etringer from ONAMI for their support in modifying the test fixtures. I would like to acknowledge SRC (Semiconductor Research Corporation), Intel Corporation and DARPA (Defense Advanced Research Projects Agency) for providing the financial support for my research. My colleagues at Oregon State University provided a great deal of technical assistance, and also enriched my experience with their friendships. Matthew MacClary taught me many things about UNIX. Chris Hanken provided framework setup to run Cadence platform. Bob Shreeve also provided practical insight, especially with respect to measurement validation. Sasidhar Lingam came to my aid

7 when I encountered problems with analog circuit issues. Peter Kurahashi helped me through setting the links with GPIB box in the lab. I would also like to thank Arthi Sundaresan, Brett Peterson, Chenggang Xu, Dave Gubbins, Erik Geissenhainer, Jackie Wong, James Ayers, Jim Le, Josh Carnes, Kavitha Srinivasan, Kye Hyung, Kyle Webb, Martin Held, Napong Panitantum, Robert Batten, Robert Gregoire, Sunwoo Kwon, Tawfiq Musah, Wai Leng Cheong and all the other graduate students in the analog/mixed signal group whom I did not previously mention. Ferne Simendinger helped me through many administrative matters in the EECS Department and did an excellent job as EECS Graduate Coordinator. Clara Knutson guided me through the paperwork involved in my purchases. Finally, I would like to thank my parents, Thomas and Grace, and my brother, Jeffrey, for their love, support, and encouragement through these years of graduate school. I thank God for bringing me through this experience; to Him be the glory.

8 TABLE OF CONTENTS Page 1 INTRODUCTION Background and Motivation Thesis Outline AN OVERVIEW OF PRIOR WORK Off-Chip Probing Isolation Issue TEST FIXTURE MODIFICATION MEASUREMENT Test Equipment Test Setup for Stable Calibration and Optimum SNR Initial Measurements Shielding Validation On Chip Through Trace Deembedding Four Step Deembedding Result VALIDATION AND REVISED SIMULATION Resonance in Signal Return Path Lack of Isolation Incorrect Deembedding NEW PROBING SCHEME Probing Design Probing Simulations

9 TABLE OF CONTENTS (Continued) Page 7 CONCLUSION Conclusion BIBLIOGRAPHY APPENDICES APPENDIX A Test Fixture Mechanical Drawings APPENDIX B EPIC Simulation APPENDIX C Deembedding on Rational Fitted Measurement Data APPENDIX D Matlab Deembedding Code

10 Figure LIST OF FIGURES Page 1.1 The substrate as a two-port network Low-frequency resistive substrate network model High-frequency substrate network model Test fixture assembly Characterization structure of (a) chip mounted on test fixture, (b) transmission lines, and (c) bondwires Test fixture model used for deembedding Photograph of the test chip S-parameters from the initial measurements, showing the failure of the measurement and deembedding procedure. (a) S 11, (b) S S-parameters from the initial simulations, revised simulations, and measurements for the outer-most bondwire of the bondwire characterization structure from [8]. (a) S 11, (b) S Configurations of modified test fixtures for (a) on-chip through trace, (b) on-chip empty contacts, (c) 1µm x 1µm contact, and (d) 1µm x 6µm contact Photomicrograph of the modified transmission line characterization structure Side view of the high frequency measurement setup S-parameters from measurements and simulations of the on-chip through trace structure for different spacing heights. (a) S 11, (b) S 21, (c) S 12, and (d) S Simulated and measured S-parameters for the on-chip through trace structure. (a) S 11, (b) S Simulated and measured S-parameters for the microstrip structure. (a) S 11, (b) S Simulated and measured S-parameters for the bondwire characterization structure. (a) S 11, (b) S

11 Figure LIST OF FIGURES (Continued) Page 4.6 Simulated and measured S-parameters for the bondwire characterization structure following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step Simulated and measured S-parameters for the on-chip through trace structure following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step Simulated and measured S-parameters for the on-chip through trace structure following the second deembedding step. (a) S 11 after step 2, (b) S 21 after step Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation. (a) S 11, (b) S Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the second deembedding step. (a) S 11 after step 2, (b) S 21 after step Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the third deembedding step. (a) S 11 after step 3, (b) S 21 after step Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the final deembedding step. (a) S 11 after step 4, (b) S 21 after step Signal return path of the on-chip through trace structure forming (a) a long resonance loop, and (b) a parallel resonance loop A transmission line terminated in (a) a short circuit, and (b) an open circuit Impedance variation along (a) a short circuited transmission line, and (b) an open circuited transmission line Quarter wavelength as a function of frequency S-parameters from simulation of the structure shown in Figure 5.1(b). (a) S 11, (b) S

12 Figure LIST OF FIGURES (Continued) Page 5.6 S-parameters from simulation of the structure shown in Figure 5.1(b) with and without finite termination. (a) S 11, (b) S Top view of on-chip through trace for modified probe structure Photomicrograph of the modified probe structure S-parameters from measurements of the on-chip through trace for actual structure and modified probe structure. (a) S 11, (b) S 21, (c) S 12, and (d) S S-parameters from simulations and measurements of the on-chip through trace for modified probe structure. (a) S 11, (b) S 21, (c) S 12, and (d) S S-parameters from simulations of the on-chip through trace for actual structure and modified probe structure. (a) S 11, (b) S 21, (c) S 12, and (d) S Half wavelength transmission line Half wavelength as a function of frequency HFSS structure top view of on-chip through trace for (a) revised structure, (b) removed side ground metals, and (c) removed side ground vias S-parameters from simulation of structures shown in Figure (a) S 11, (b) S HFSS structure of on-chip through trace (a) including probe pads and vias, and (b) excluding probe pads and vias Time domain response of the on-chip through trace structure. (a) Time domain reflection. (b) Time domain transmission HFSS structure for simulation of discontinuity in the probe pad Time domain response of HFSS simulation for validating the discontinuity in the probe pad. (a) Time domain reflection. (b) Time domain transmission HFSS simulation structure for simulation of a resistor embedded in test fixture with no probe pads

13 Figure LIST OF FIGURES (Continued) Page 5.21 HFSS simulation structure for simulation of a resistor embedded in a test fixture with probe pads Simulated deembedded self and mutual admittances for the 1 kω resistor embedded in the structure shown in Figures 5.2 and (a) Self conductance, (b) self susceptance, (c) mutual conductance, and (d) mutual susceptance New model used for deembedding Vialess CPW-microstrip transition HFSS structure for simulation of a resistor embedded in the test structure suggested for future work. Structure for simulation of (a) resistor, (b) on-chip empty structure, (c) on-chip through trace, and (d) open dummy pad structure Simulated S-parameters for a 1 kω resistor embedded in the on-chip test structure. (a) S 11, (b) S Simulated S-parameters for a 1 kω resistor following the first deembedding step. (a) S 11, (b) S Simulated S-parameters for a 1 kω resistor following the second deembedding step. (a) S 11, (b) S Simulated S-parameters for a 1 kω resistor following the final deembedding step. (a) S 11, (b) S Simulated deembedded self and mutual admittances for the 1 kω resistor. (a) Self conductance, (b) self susceptance, (c) mutual conductance, and (d) mutual susceptance Simulated deembedded self and mutual admittances for the 1 kω resistor. (a) Self conductance, (b) self susceptance, (c) mutual conductance, and (d) mutual susceptance B-1 Three-layer substrate used for simulation B-2 Simulated deembedded self and mutual admittances for a pair of 1µm x 1µm substrate contacts. (a) Conductance, and (b) susceptance to ground. Mutual (c) conductance, and (d) susceptance... 8

14 Figure LIST OF FIGURES (Continued) Page B-3 Simulated deembedded self and mutual admittances for a pair of 1µm x 6µm substrate contacts. (a) Conductance, and (b) susceptance to ground. Mutual (c) conductance, and (d) susceptance C-4 Simulated and rational polynomial fit of measurement data for the on-chip through trace structure. (a) S 11, (b) S C-5 Simulated and rational polynomial fit of measurement data for the microstrip structure. (a) S 11, (b) S C-6 Simulated and rational polynomial fit of measurement data for the bondwire characterization structure. (a) S 11, (b) S C-7 Simulated and rational polynomial fit of measurement data for the bondwire characterization structure following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step C-8 Simulated and rational polynomial fit of measurement data for the on-chip through trace structure following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step C-9 Simulated and rational polynomial fit of measurement data for the on-chip through trace structure following the second deembedding step. (a) S 11 after step 2, (b) S 21 after step

15 Table LIST OF TABLES Page 3.1 Dimensions of the modified two contacts test structures

16 TEST FIXTURE CHARACTERIZATION FOR HIGH-FREQUENCY SILICON SUBSTRATE PARASITIC EXTRACTION 1. INTRODUCTION 1.1. Background and Motivation Due to a constant demand for portable electronics such as laptop computers, PDAs, cell phones and digital music players, the market for smaller, less expensive and more power efficient systems is soaring. This demand can be achieved by higher levels of integration because of the numerous advantages in terms of reduced cost and size. As Moore s law continues to predict integrated circuit (IC) scaling, many systems that were previously realized on circuit boards are now being integrated into a single die referred to as a system on chip (SoC). These systems often require a combination of sensitive analog (including RF) circuitry with a high-speed, noisy digital signal processing block, all integrated on a single IC. Many concerns arise when integrating analog, RF and digital electronic building blocks on a common silicon substrate. One of these concerns is the noise coupling from the digital circuitry to the analog and RF circuitry. This coupling can occur through several interdependent paths, including power supplies, interconnect and package parasitics, and through the silicon substrate itself [1] [2]. Until recently, IC designers were forced to use rule-of-thumb guidelines in an effort to minimize substrate noise coupling. However, rule-of-thumb guidelines

17 2 often led to either under or over engineered designs. A tool that solves substrate noise coupling issues leads not only to better designs, but also reduces the time to market. Silencer! is one such tool [3] developed at Oregon State University that allows analysis and optimization of substrate noise coupling at different stages of design. It enables IC designers to predict, through simulation, the coupling that will occur between analog and digital blocks in a circuit [3]. + + p+ p+ Port 1 Port 2 - p-type substrate - FIGURE 1.1. The substrate as a two-port network. Since Silencer! does a noise coupling simulation based on an extracted substrate network, two-port network models for a given IC process are used in order to accomplish the extraction of a substrate network from an IC layout. The twoport network itself comprises the silicon substrate surrounding two p + contacts as shown in Figure 1.1. The backside serves as a common reference node for both ports. Based on the geometries of the substrate contacts under consideration, these models are used to compute the network component values. It is essential to have the means to validate the models through physical measurements. At lower frequencies the models can be validated through DC resistance measurements made on test structures laid out on a die, which consist of pairs of p + substrate contacts of various dimensions and spacings. The DC measurements

18 3 are valid since the substrate can be modeled as a purely resistive network at lower frequencies, below 1-2 GHz as shown in [4]. The resistive substrate network connecting two p + substrate contacts is shown in Figure 1.2. In this π-network, R mut represents the mutual resistance between the two substrate contacts, while R gnd,1 and R gnd,2 represent the self resistances of each contact to the back side of the die. DC resistance measurements can then be made whereby the values of R gnd and R mut can be determined. FIGURE 1.2. Low-frequency resistive substrate network model. While the resistive network is adequate at lower frequencies, at higher frequencies, in excess of 2 GHz, it becomes necessary to account for the dielectric nature of the substrate. At these higher frequencies, a more accurate equivalent substrate network would include both resistive and reactive components [5], [6]. A π-network for the high frequency model is shown in Figure 1.3 [7], with self and mutual resistances being replaced by self and mutual admittances. DC measurements no longer suffice, at frequencies exceeding 2 GHz, where the two-port network begins to look reactive. It becomes necessary to characterize the two-port substrate network as a function of frequency. At higher frequencies, which are of interest here, the two-port network is best characterized with scattering parameters (S-parameters). Based on its reference impedance,

19 the S-parameters are then converted back to short-circuit admittance parameters (Y-parameters) for validating the developed models. 4 1 p+ 2 p+ Y mut Y gnd,1 Y gnd,2 p-type substrate FIGURE 1.3. High-frequency substrate network model. Substrate noise coupling at high frequencies, above 1-2 GHz, requires a substrate network model that accounts for the reactive nature of the substrate. At frequencies below 1 GHz or so, where the substrate can adequately be treated as purely resistive, models can be validated with DC resistance measurements. To enable accurate simulation of high-frequency substrate coupling effects in ICs, model validation and development at higher frequencies requires the ability to accurately measure, using a network analyzer, the two-port network parameters between pairs of substrate contacts Thesis Outline This thesis details the measurement and simulation of modified work designs for the characterization of the two-port substrate network, corresponding to a pair of p + substrate contacts for frequencies up to 2 GHz. Chapter 2 provides an overview of the prior work in high-frequency substrate coupling measurements and the basic measurement methodology that enables data extraction from mea-

20 5 surements. This data extraction process is known as deembedding. Also discussed in Chapter 2 are the issues related to the prior design before any modifications. Chapter 3 describes the modification of the test fixtures for the high frequency parameter measurements of the substrate network, based on the suggestions proposed in [8]. Initial measurement results are presented in Chapter 4 and revised simulations results to explain and validate the imperfections found in the initial measurements are detailed in Chapter 5. A new probing scheme for high frequency substrate characterization is the topic of Chapter 6 and finally, conclusions are presented in Chapter 7.

21 6 2. AN OVERVIEW OF PRIOR WORK In prior works [6], [8], measurements were made by probing on chip. The problem with on-chip probing for these measurements is that the probe grounds, which define the reference node for the two-port substrate network under test, are connected either only to each other through metal traces, or to the surface of the substrate with p + substrate contacts. The most meaningful and convenient reference node for the two-port substrate networks is the back side of the die, so it is desirable to have the probe grounds make contact to the back side of the die. Moving the probe points off-chip provides the ability to make this connection between the probe grounds and the back side of the die. Similar work through off-chip probing was also done in [9], where the test chip was mounted in a socket. The parasitics of the socket were accounted for as part of the measurements Off-Chip Probing A test fixture was previously designed to enable network analyzer measurements of the substrate networks between pairs of substrate contacts up to 2 GHz. This test fixture, which is shown in Figure 2.1, comprises a chip, a thin ceramic substrate, and a solid copper block. The.1 thick alumina substrate has thin-film circuitry patterned on the top side, and a solid metal ground plane on the back side, which is soldered to the copper block. The ceramic substrate and test fixture were fabricated and assembled by Kyocera [1]. The chip is bonded to the copper block inside a cavity formed by a cutout in the ceramic substrate, as shown in Figure 2.1. The probe ground pads connect through vias to the ground provided by the copper block, to which the ceramic substrate is soldered, and to which the die is bonded. The chip was fabricated in a

22 7 FIGURE 2.1. Test fixture assembly..35µm TSMC heavily-doped process. It contains four substrate test structures, as well as two other structures used for measurement deembedding. The chip was fabricated through MOSIS as a block of four sub-die, each containing four distinct test structures comprising pairs of substrate contacts of various sizes and spacings, yielding a total of 16 unique test structures. As shown in Figure 2.2(a), the on-chip test structures connect, via bond wires, to transmission lines on the ceramic substrate. The transmission lines are placed between the die and the probe pads, where they are interdigitated with probe ground pads. The probe ground pads connect through the ceramic by vias to the back side ground plane. The transmission lines are probed with 5 Ω, 15 µm-pitch, G-S-G micro-probes connected to a network analyzer. Moving the probe points off-chip has the disadvantage that a significant amount of test fixture, with its associated parasitics, has been introduced between the network analyzer reference plane at the 5 Ω probe tips and the two-port substrate networks being measured. A four-step de-embedding procedure has been developed which allows the network parameters for the substrate network

23 8 (a) (b) (c) FIGURE 2.2. Characterization structure of (a) chip mounted on test fixture, (b) transmission lines, and (c) bondwires.

24 9 Y m Trans. Line A B C D Bond Wire A B C D On Chip Trace A B C D Y g Substrate Network Y g On Chip Trace A B C D Bond Wire A B C D Trans. Line A B C D FIGURE 2.3. Test fixture model used for deembedding. alone to be extracted from measurements that may be dominated by the effects of the test fixture parasitics. The four step de-embedding procedure assumes [8] the equivalent circuit model for the test fixture shown in Figure 2.3. Once the network parameters characterizing each block of the model in Figure 2.3 are known, the effects of those blocks can be stripped from the measurement, one at a time. The network parameters for each block of the test fixture model are obtained through a series of measurements of test structures, both on- and off-chip, which have been dedicated for deembedding. The chip (Figure 2.4) includes two deembedding structures, a through trace and an empty structure, which allow characterization of the on-chip sections of trace, and the admittances that shunt the substrate network, respectively. Characterization of the off-chip portions of the test fixture is enabled by measurements taken on deembedding structures on the ceramic substrate. Figure 2.2(b) shows the structures which allow characterization of the transmission lines that provide the connections between the 5 Ω probes and the bondwires that make contact with the chip. The bond wires of the characterization structure shown in Figure 2.2(c) span a trench that is sized to be equal in width to the space that surrounds the die in the cavity (Figure 2.2(a)), allowing them to be nearly identical to the bond wires that make contact with the chip.

25 1 FIGURE 2.4. Photograph of the test chip Isolation Issue Extensive simulations have been performed in Ansoft s High Frequency Structure Simulator, a 3-D electromagnetic simulator, also referred as HFSS [11]. These simulations have been used for the design and validation of the test fixture and the deembedding procedure. Deembedded S-parameters for a pair of 1µm x 1µm contacts from initial measurements revealed the shortcomings of the test fixtures due to significant amount of coupling between adjacent transmission lines and bondwires, which violates the deembedding procedure assumption of isolated two port networks. This is indicated by deembedded S-parameters greater than db as shown in Figure 2.5. In order to achieve some degree of correlation between simulations and measurements, the structures shown in Figure 2.2 were simulated in their entirety (Figure 2.6) and they can be used as guidelines to best modify or redesign the test fixtures [8]. Simulations showed that in order to resemble the isolated model, the coupling between adjacent traces and bondwires must be reduced by removing all

26 11 2 S (a) 2 S (b) FIGURE 2.5. S-parameters from the initial measurements, showing the failure of the measurement and deembedding procedure. (a) S 11, (b) S 21.

27 12 1 S Simulation of Isolated Structure 4 Revised Simulation Measurement (a) S Simulation of Isolated Structure 6 Revised Simulation Measurement (b) FIGURE 2.6. S-parameters from the initial simulations, revised simulations, and measurements for the outer-most bondwire of the bondwire characterization structure from [8]. (a) S 11, (b) S 21. but the outer two transmission lines and bondwires of each structure, or all but any one set of transmission lines and bondwires [8].

28 13 3. TEST FIXTURE MODIFICATION Once it was verified that the original test fixtures had significant traceto-trace and bondwire-to-bondwire coupling, the test fixtures were modified to resemble the isolated model. The coupling was reduced by removing all of the bondwires and transmission lines adjacent to the structure being measured. The proposed modification of the test fixtures for 1µm x 1µm contacts and 1µm x 6µm contacts, suggested in this work, are shown in Figure 3.1. In this scheme, three test fixtures are used for one substrate measurement. Obtaining measurements of both the on-chip deembedding structures, along with a single substrate test structure, would require three test chips mounted in three separate test fixtures. The three first test fixtures would have all transmission line traces and bondwires removed except those connecting to the on-chip through trace, on-chip empty contacts, and the on-chip contacts. The corresponding bondwire and transmission line characterization structures are also modified appropriately. Since all the sub-die test structures have a similar through on-chip trace deembedding structure, only one particular test fixture was modified according to Figure 3.1(a). In order to take into account the different shunt admittances parasitic for all four different contact spacings, four test fixtures were modified according to Figure 3.1(b) In addition to that, another four test fixtures were modified according to Figure 3.1(c) to characterize the 1µm x 1µm contact pairs for four different spacings. Finally the last four test fixtures were modified according to Figure 3.1(d) to characterize the 1µm x 6µm contact pairs for four different spacings. Since there were only 13 unassembled test fixtures left, and at least 3 test fixtures were needed to characterize a particular substrate network, all 16

29 14 TABLE 3.1. Dimensions of the modified two contacts test structures. Test Structure Contact Size Spacing 1 1 µm x 1 µm 2 µm 2 1 µm x 1 µm 5 µm 3 1 µm x 1 µm 1 µm 4 1 µm x 1 µm 2 µm 5 1 µm x 6 µm 2 µm 6 1 µm x 6 µm 5 µm 7 1 µm x 6 µm 1 µm 8 1 µm x 6 µm 2 µm different substrate test structures could not be characterized, without taping out an additional 8 test fixtures. A total of 8 different two contact test structures were salvaged from the original 16 test structures. These are shown in Table 3.1. The 13 original test fixtures were sent to ESI (Electro Scientific Industries) [12] for removal of the microstrip transmission lines using laser trimming. The modified test fixtures were then sent to Kyocera along with the chips to be mounted and assembled with bondwires. Figure 3.2 shows a photomicrograph of a laser trimmed transmission line characterization structure following the modifications made by ESI.

30 15 (a) (b) (c) (d) FIGURE 3.1. Configurations of modified test fixtures for (a) on-chip through trace, (b) on-chip empty contacts, (c) 1µm x 1µm contact, and (d) 1µm x 6µm contact.

31 16 FIGURE 3.2. Photomicrograph of the modified transmission line characterization structure.

32 17 4. MEASUREMENT 4.1. Test Equipment The modified and assembled test fixtures were placed on a Cascade Microtech RF-1 probe station chuck, and were probed with 15 µm-pitch Cascade Microtech G-S-G RF wafer probes [13]. S-parameter measurements of the deembedding test structures were taken using an Agilent 872ES vector network analyzer (VNA) [14] and through WinCal 3., a Cascade Microtech calibration software that enhanced measurement productivity and accuracy by providing VNA calibration support. An impedance standard substrate (ISS) from Cascade Microtech provided the short, open, 5 Ω load and through necessary for calibration Test Setup for Stable Calibration and Optimum SNR In order to achieve stable calibration for accurate measurements, the VNA was warmed up for a couple of hours until it reached its steady state temperature, prior to calibration. This minimizes system drift due to temperature variation during calibration. The signal-to-noise ratio of a vector network analyzer can be described as: ( ) P N SNR[dB] = 1 log 1 L K T B F (4.1) where P is the transmit power of the VNA ports, N is the number of averages for VNA averaging, L is the loss of the device under test (DUT), K is the Boltzmann s constant, T is the room temperature ( K), B is the VNA intermediate frequency (IF) bandwidth and F is the VNA noise figure. The losses associated with the

33 18 DUT, Boltzmann s constant, room temperature and VNA noise figure were given parameters that could not be changed to achieve higher signal-to-noise ratio. The parameters left for optimization were the transmit power of the VNA, number of waveforms for averaging and the IF bandwidth. WinCal 3. did not support averaging as it is not normally used with Agilent 872ES VNA. The Agilent 872ES VNA instead used IF bandwidth as a more efficient method for repeatability improvement than provided by averaging. The Agilent 872ES VNA averaging is for successive sweeps and is, therefore, very slow and much less useful. By default, the Agilent 872ES VNA s IF bandwidth is 3 Hz and its minimum value can be set to as low as 1 Hz. The default signal-to-noise ratio of the VNA can be increased by 25dB by manually setting the IF bandwidth of the VNA to its minimum value. The transmit power of the VNA was also increased from its default power range [-2dBm to dbm] to a higher input power range [-15dBm to +5dBm]. Hence an overall 32dB SNR improvement was achieved from the VNA which resulted in cleaner S-parameter measurements Initial Measurements Shielding Validation S-parameters measurements in some previous high frequency test structures at Oregon State University were swamped by interactions with the probe station chuck on which the die being tested was situated. The interactions with the chuck were aggravated by the fact that the back side of the die was exposed and no connection to the probe ground leads, which defines the measurement system ground, was provided [8]. Previous high frequency test structures relied

34 19 on coplanar waveguide signal propagation and the signal propagation in the test structures was not properly shielded from interaction with the chuck probe station. This effect dominated the measurements although sufficient spacings were provided by separating the die from the chuck with a thick piece of glass. To tackle this issue, an off-chip probing scheme was used by including a copper block on the bottom of the test structures. This copper block is attached to the probe ground leads through vias as shown in Figure 4.1. The copper block acts like a ground plane that shields the forward and return signal path in the test structures from interaction with the probe station chuck. FIGURE 4.1. Side view of the high frequency measurement setup. In order to validate the shielding method for interaction with the probe station chuck, the on-chip through trace structure was measured for different heights above the probe station chuck. S-parameters measurements of the on-chip through trace structure showed repeatable measurements in most of the frequency range as shown in Figure 4.2. These results suggest that interaction with the probe station chuck is sufficiently suppressed and the signal returns through the back side of the die and distributes mainly through the copper block. Minor discrepancies in the S-parameter measurements beyond 16 GHz are due to temperature variation, which is difficult to stabilize throughout the measurement sequence and causes random errors in measurements.

35 2 In order to correlate measurements with simulation, the on-chip through trace structure comprising the cavity-mounted test chip (Figure 3.1(a)), the transmission lines and bondwires that connect to it, and the side ground structures are simulated in entirety in HFSS. Although the trend of the S-parameters measurements show reasonable correlation with simulation, the insertion loss (S 21 and S 12 ) beyond 12 GHz, however showed artifacts that are not present in simulation. Moreover, a coupling mechanism instigates a sudden drop in the return loss (S 11 and S 22 ) at 5 GHz in measurements, which correlates with the return loss (S 11 and S 22 ) at 4 GHz in simulation. These imperfections in measurements that are observed in the high frequency measurement are investigated in Chapter 5 with revised simulations On Chip Through Trace Deembedding The deembedding procedure of the on-chip through trace is described in this subsection. The measured return loss and insertion loss of the on-chip through trace structure is shown by the plots in Figure 4.3 along with its corresponding simulated data. The measurement of this structure was taken with no spacer separating the device under test and the probe station chuck, since the test fixture shielded the test structures from probe station chuck interaction as validated in the previous subsection. To deembed the microstrip parasitic from the on-chip through trace structure measurement, as part of the first step of the deembedding procedure, the corresponding microstrip characterization structure was measured and the measured S-parameter data is shown by the plot in Figure 4.4 along with its corresponding S-parameter simulated data. The measured and simulated data correlate rela-

36 21 1 S No Spacer 1 Spacer 2 Spacers Simulation (a) S No Spacer 8 1 Spacer 1 2 Spacers Simulation (b) S No Spacer 8 1 Spacer 1 2 Spacers Simulation (c) 1 S No Spacer 1 Spacer 2 Spacers Simulation (d) FIGURE 4.2. S-parameters from measurements and simulations of the on-chip through trace structure for different spacing heights. (a) S 11, (b) S 21, (c) S 12, and (d) S 22.

37 22 1 S Measurement Data Simulation Data (a) S Measurement Data Simulation Data (b) FIGURE 4.3. Simulated and measured S-parameters for the on-chip through trace structure. (a) S 11, (b) S 21.

38 23 5 S Measurement Data Simulation Data (a) S Measurement Data Simulation Data (b) FIGURE 4.4. Simulated and measured S-parameters for the microstrip structure. (a) S 11, (b) S 21. tively well below 1 GHz. Although the performance of the measured return loss and insertion loss were slightly worse than the performance of the simulated return loss and insertion loss, the measured data still captured the same trend as expected from the simulated data. The second deembedding step in the deembedding procedure is to deembed the bondwire parasitic from the on-chip through trace structure measurement. In order to characterize this bondwire parasitic, another measurement was taken on the bondwire characterization structure and the measured S-parameters along with its simulated S-parameters are shown by the plots in Figure 4.5. The measured return loss and insertion loss of the bondwire characterization structure correlate relatively well below 16 GHz. The measured data showed a better re-

39 24 S Measurement Data Simulation Data (a) S Measurement Data Simulation Data (b) FIGURE 4.5. Simulated and measured S-parameters for the bondwire characterization structure. (a) S 11, (b) S 21. turn loss of 2 db at 17GHz than the simulated data, on the other hand, the measured insertion loss showed artifacts at 18 GHz which are not present in the simulated insertion loss. The consequence of these artifacts are discussed in the upcoming deembedding step, but for the most part the measured data still captured the same trend as expected from the simulated data. Part of the second deembedding step in the deembedding procedure is to deembed the microstrip parasitic from the bondwire characterization structure measurement. The inverted cascade parameters of the microstrip structure obtained from measurement were multiplied to both sides of the inverted cascade parameters of the bondwire characterization structure to obtain the deembedded bondwire parasitic. The S-parameter of the deembedded bondwire parasitic is

40 25 S Measurement Data Simulation Data (a) S Measurement Data Simulation Data (b) FIGURE 4.6. Simulated and measured S-parameters for the bondwire characterization structure following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step 1. shown by the plots in Figure 4.6, along with its simulated S-parameter data. The measured return loss of the deembedded bondwire parasitic correlates well with the simulated return loss of the deembedded bondwire parasitic. In contrast, the measured insertion loss of the deembedded bondwire parasitic showed artifacts at 18 GHz, which are due to the artifacts present in the measured insertion loss of the bondwire characterization structure shown in Figure 4.5(b). The consequence of these artifacts shall be discussed in upcoming deembedded results of the on-chip through trace structure following the second deembedding step. The deembedded return loss and insertion loss of the on-chip through trace structure following the first deembedding step are shown by the plots in Figure 4.7.

41 26 The microstrip parasitics were deembedded from the on-chip through trace structure measurement following the first deembedding step. Since the measured return loss and insertion loss of the microstrip structure contained no artifacts, the deembedded results following the first deembedding step should not yield any added artifacts. This is shown by the deembedded result in Figure 4.7, where the artifacts are contributed only by the artifacts that were already present in the measured insertion loss of the on-chip through trace structure beyond 12 GHz. Moreover, there are also artifacts present in the deembedded return loss, shown as a small peak at 5 GHz, which are due to the sharp dip in the measured return loss of the on-chip through trace structure at 5 GHz as well. The consequence of these artifacts shall be discussed in the upcoming deembedded results of the on-chip through trace structure following the second deembedding step. The deembedded return loss and insertion loss of the on-chip through trace structure following the second deembedding step are shown by the plots in Figure 4.8. The bondwire parasitics were deembedded following the second deembedding step. The artifacts contained in the insertion loss of the bondwire parasitics, as mentioned earlier, were present in the deembedded insertion loss of the on-chip through trace. In other words, the artifacts at 18 GHz in the insertion loss of the bondwire parasitics were the cause of the artifacts at 18 GHz in the deembedded insertion loss of the on-chip through trace. The artifacts in the bondwire parasitics are shown as a sharp dip in the insertion loss at 18 GHz. These artifacts caused a peak in the deembedded insertion loss of the on-chip through trace at 18 GHz. In essence, there are three main artifacts present in the deembedded S- parameter data of the on-chip through trace, which are identified as a peak in the deembedded return loss at 5 GHz due to the sharp dip in the measured return

42 27 S Measurement Data Simulation Data (a) S Measurement Data Simulation Data (b) FIGURE 4.7. Simulated and measured S-parameters for the on-chip through trace structure following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step 1.

43 28 S Measurement Data Simulation Data (a) 2 S Measurement Data Simulation Data (b) FIGURE 4.8. Simulated and measured S-parameters for the on-chip through trace structure following the second deembedding step. (a) S 11 after step 2, (b) S 21 after step 2.

44 29 loss of the on-chip through trace structure, a dip in the deembedded insertion loss at 12 GHz due to the dip in the measured insertion loss of the on-chip through trace structure, and finally the artifacts beyond 18 GHz are due to the sharp dip in the measured insertion loss of the bondwire characterization structure. In this work, the first two main artifacts were investigated and the causes of these two artifacts were identified Four Step Deembedding Result The procedure of deembedding a pair of 1µm x 1µm contact at 2µm separation is described in this subsection. The measured return loss and insertion loss of the pair of 1µm x 1µm contact are shown by the plots in Figure 4.9. Also shown in the figure is the reference data of the 1µm x 1µm contact pair at 2µm separation extracted from the parasitic simulation tool [7] and it represents the end goal of the four step deembedding procedure. The measured S-parameter of this contact pair structure showed parasitics that swamped the embedded two port substrate network of the contact pair. The deembedded return loss and insertion loss of the 1µm x 1µm contact pair structure following the first deembedding procedure are shown by the plots in Figure 4.1. The measured S-parameters of the microstrip characterization structure corresponding to this 1µm x 1µm contact pair structure were used to deembed the microstrip parasitics from the 1µm x 1µm contact pair structure. The measured S-parameters of the microstrip characterization structure correponding to this contact pair structure showed no artifacts and they are similar to the measured S-parameters of the on-chip through trace structure presented in the previous subsection. As mentioned earlier in the previous subsection,

45 3 S Measured Data Reference Data (a) S Measured Data Reference Data (b) FIGURE 4.9. Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation. (a) S 11, (b) S 21.

46 31 S Step 1 Data Reference Data (a) S Step 1 Data Reference Data (b) FIGURE 4.1. Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the first deembedding step. (a) S 11 after step 1, (b) S 21 after step 1. since the measured S-parameters of the microstrip parasitics showed no artifacts, the deembedded results following the first deembedding step should not yield any added artifacts. The deembedded S-parameters following the first deembedding step shown in Figure 4.1 confirmed this, since the trend of both the deembedded return loss and insertion loss are similar to the measured return loss and insertion loss before following the first deembedding step. The deembedded return loss and insertion loss of the 1µm x 1µm contact pair structure following the second deembedding procedure are shown by the plots in Figure The second deembedding step in the deembedding procedure is to deembed the bondwire parasitic from the 1µm x 1µm contact pair structure

47 32 S Step 2 Data Reference Data (a) S Step 2 Data Reference Data (b) FIGURE Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the second deembedding step. (a) S 11 after step 2, (b) S 21 after step 2. measurement. Part of the second deembedding step is to deembed the bondwire parasitics from the bondwire characterization structure corresponding to this contact pair structure. The deembedded bondwire parasitics also contained artifacts beyond 18 GHz in the insertion loss, as in the case of the deembedded bondwire parasitics of the on-chip through trace structure in the previous subsection. Artifacts in the deembedded bondwire parasitics were the main cause of the artifacts seen in the deembedded return loss of the 1µm x 1µm contact pair structure following the second deembedding step. These artifacts in the deembedded return loss of the 1µm x 1µm contact pair structure are shown as a peak close to db at 18.5 GHz.

48 33 The deembedded return loss and insertion loss of the 1µm x 1µm contact pair structure following the third deembedding procedure is shown by the plots in Figure The third deembedding step in the deembedding procedure is to deembed the chain factorized on-chip through trace [8] from the 1µm x 1µm contact pair structure measurement. Part of the third deembedding step is to deembed the on-chip through trace parasitics from the on-chip through trace characterization structure. Since the deembedding of the on-chip through trace parasitics were already discussed in the previous subsection, their deembedded on-chip through trace parasitics following the necessary chain factorization [8] are readily used in this third deembedding step. The deembedded return loss of this contact pair structure following the third deembedding step showed artifacts at 12 GHz represented as a peak above db. This indicates the errors in the deembedded return loss of this contact pair structure, since the return loss of a device under test should never exceed db. Similar errors were are also present in the deembedded return loss of this contact pair structure beyond 18 GHz, showing peaks exceeding db. These artifacts at 12 GHz were caused by the sharp dip at 12 GHz in the deembedded insertion loss of the on-chip through trace parasitics. Similarly, the artifacts beyond 18 GHz were also caused by the artifacts in the deembedded return loss and insertion loss of the on-chip through trace parasitics beyond 18 GHz as well. As mentioned earlier, the artifacts in the on-chip through trace were caused by the artifacts in the deembedded insertion loss of the bondwire parasitics corresponding to the on-chip through trace structure. The deembedded S-parameters for a pair of 1µm x 1µm contact following the final deembedding step is shown by the plots of Figure The deembedded return loss greater than db at 15 GHz and 18.5 GHz indicate the shortcoming of the measurement and the deembedding procedure. Moreover, the deembedded

49 34 S Step 3 Data Reference Data (a) S Step 3 Data Reference Data (b) FIGURE Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the third deembedding step. (a) S 11 after step 3, (b) S 21 after step 3.

50 35 S Deembedded Data Reference Data (a) S Deembedded Data Reference Data (b) FIGURE Simulated and measured S-parameter data for the 1µm x 1µm substrate contacts at 2µm separation following the final deembedding step. (a) S 11 after step 4, (b) S 21 after step 4. insertion loss S-parameters showed many sharp dips at multiple frequencies, which does not represent the substrate coupling between two contact pair. For this reason, the substrate network between a two contact pair could not be extracted for model development. The source of the two main artifacts at 12 GHz and beyond 18 GHz following the third deembedding step needed to be identified and understood before moving to identifying the artifacts following the final deembedding step. The focus of this work is to identify the artifacts at 12 GHz and other minor artifacts that were present in the on-chip through trace structure and the test fixture design itself.

51 36 5. VALIDATION AND REVISED SIMULATION The goal of this chapter is to validate the imperfections observed in the high frequency measurements through revised simulations in HFSS. The key idea is to get reasonable correlations of simulations with measurements in order to identify the problems. Once the problems are identified, they can be used as guidelines to best modify or redesign the probing scheme for high frequency substrate measurements Resonance in Signal Return Path It was determined that measurement artifacts in the insertion loss beyond 12 GHz were caused by poor via connections which resulted in resonance in the path for the signal to return to the ground probe leads on the probe pads. Figure 5.1(a) shows a scenario where the only path for the signal to return to the ground probe leads is through a via that is farthest from where the signal was originally launched from the signal probe leads. The signal return path shown in Figure 5.1 shows a resonance loop characteristic similar to a transmission line terminated in a short circuit. A representation of a short terminated transmission is shown in Figure 5.2(a). The input impedance of a transmission line terminated in a short circuit is seen to be purely imaginary for any length, L, and can take any values between +j and -j at multiple quarter wavelength sections, as shown in Figure 5.3(a). The same case applies to a transmission line terminated in an open circuit (Figure 5.2(b)) at multiple half wavelength sections as shown in Figure 5.3(b). A simple calculation of the quarter and half wavelength frequencies is

52 37 (a) (b) FIGURE 5.1. Signal return path of the on-chip through trace structure forming (a) a long resonance loop, and (b) a parallel resonance loop. f λ/4 = c o 4 l ɛ r,eff (5.1) f λ/2 = c o 2 l ɛ r,eff (5.2) where c o is the speed of light, l is length, and ɛ r,eff is the effective permittivity of the alumina ceramic. The quarter wavelength as a function of frequency is shown in Figure 5.4. Figure 5.1(b) shows all possible combinations of resonance loops forming the signal return path, which depends on the connectivity of the vias and, hence the termination of the loops. At multiple quarter wavelength frequencies, short circuit terminated transmission lines act like a line with an infinite input impedance whereas open circuit terminated transmission lines act like a line with a zero input impedance. Each via can form either an open or a short circuit terminated transmission line and the actual signal return path in measurements would be dependent on the connectivity of the vias. A worst case scenario is replicated in a HFSS simulation structure by disconnecting all other vias except the ones that are farthest from the positions

53 38 (a) (b) FIGURE 5.2. A transmission line terminated in (a) a short circuit, and (b) an open circuit. where the probes are placed. This case will form a resonance loop of length 2 mm that will intersect with the quarter wavelength plot at 12 GHz as shown in Figure 5.4. Apparently at a certain frequency, only a small amount of energy can propagate or insert through the on-chip through trace structure. A revised HFSS simulation result illustrates this increase of insertion loss at 1.5 GHz as shown in Figure 5.5. This simulation result showing a sharp dip in insertion loss at 1.5 GHz correlates with the small dip in insertion loss at 12 GHz in measurement as shown in Figure 4.2. Another worst case scenario is performed in HFSS simulation by adding another via that is second farthest from the position where the probes are placed. In this case, the resonance loop of length 1.5 mm will intersect with the quarter wavelength plot at 16.5 GHz. In general, the sharp dip in insertion loss would be pushed to higher frequencies, as one would expect for quarter wavelength resonance in the signal return path loop. This second scenario is validated by the plot shown in Figure 5.5, where the sharp dip in insertion loss is pushed to a higher frequency at 15 GHz. In an effort to closely mimic the amount of insertion loss present in measurements, another scenario is replicated in a revised HFSS simulation with a finite termination in the farthest via. The simulation result of this case reduces

54 39 1 Im (Z in ) / Z λ / 4 (a) 1 Im (Z in ) / Z λ / 4 (b) FIGURE 5.3. Impedance variation along (a) a short circuited transmission line, and (b) an open circuited transmission line.

55 Quarter wavelength Length to farthest via Length to 2nd farthest via 3 Length (mm) FIGURE 5.4. Quarter wavelength as a function of frequency. the sharp dip in the previous farthest via simulation by 1 db and mimics the insertion loss artifacts in measurements. The simulation result is shown in Figure 5.6. The probe structure of the on-chip through trace was modified by cutting the gold trace that connects to the adjacent vias. The top view of the modified structure is shown in Figure 5.7 and a photomicrograph of the cut on the gold trace is shown in Figure 5.8. By cutting the connection to the adjacent vias, the signal is forced to return through the via under the probe pad. This modification eliminates the formation of signal return loop through the farthest via. The elimination of signal return loop through the farthest via should eliminate the sharp dip in insertion loss at 12 GHz in the measurements of the modified structure. The measurement results of this modified structure are compared against the measurement results of the actual structure and they are shown in the plot of Figure 5.9. The sharp dip eliminated in the insertion loss measurements of the

56 41 S Farthest placed via Two farthest placed vias (a) S Farthest placed via Two farthest placed vias FIGURE 5.5. (b) S-parameters from simulation of the structure shown in Figure 5.1(b). (a) S 11, (b) S 21.

57 42 S Farthest placed via Farthest placed via (finite termination) (a) S FIGURE 5.6. (b) S-parameters from simulation of the structure shown in Figure 5.1(b) with and without finite termination. (a) S 11, (b) S 21.

58 43 FIGURE 5.7. Top view of on-chip through trace for modified probe structure. modified structure confirmed the elimination of the signal return loop through the farthest via. The comparison of the measured and simulated S-parameters of the on-chip through trace for the modified probe structure is shown by the plots in Figure 5.1. The modification of the probe structure, not only eliminates the dips that were present in the insertion losses (S 21 and S 12 ) in the measurements of the actual probe structure, but also eliminates the small dip in the return loss of port 2 (S 22 ) in the measurements of the actual probe structure. This modification allows the return loss and insertion loss from both ports of the test structure to be more symmetric and closely satisfies the symmetric assumption in the deembedding procedure. These three worst case scenarios replicated in the revised HFSS simulations and the measurement of the modified structure suggest that measurement artifacts in the insertion loss beyond 12 GHz were caused by resonance in the signal return path due to parallel combinations of various terminations in the signal return loops, hence the first shortcoming of the test fixture design.

59 44 FIGURE 5.8. Photomicrograph of the modified probe structure Lack of Isolation In this validation, the via structures were simplified by eliminating the adjacent vias next to the position where the probes landed. Resonance signal return path problem should not exist in this simplified structure, as it was validated by the measurements of the structure shown in Figure 5.7, where adjacent vias were disconnected from the probe pad. This allows the signal to return only through the via under the probe pad. The structure of Figure 5.7 with perfect via connections to the copper block was simulated in HFSS. The S-parameter simulation of this modified structure is compared against the simulation of the actual structure, as shown in Figure 5.11, and both simulation results show little to no difference, in terms of their return loss and insertion loss responses. This validation also reveals that in the actual structure, the shortest signal return path dominates the signal return, as long as perfect via connections under the probe pads are provided.

60 45 1 S Actual probe structure Modified probe structure (a) S Actual probe structure Modified probe structure (b) S Actual probe structure Modified probe structure (c) 1 S Actual probe structure Modified probe structure (d) FIGURE 5.9. S-parameters from measurements of the on-chip through trace for actual structure and modified probe structure. (a) S 11, (b) S 21, (c) S 12, and (d) S 22.

61 46 1 S Measurement Data Simulation Data (a) S Measurement Data Simulation Data (b) S Measurement Data Simulation Data (c) 1 S Measurement Data Simulation Data (d) FIGURE 5.1. S-parameters from simulations and measurements of the on-chip through trace for modified probe structure. (a) S 11, (b) S 21, (c) S 12, and (d) S 22.

62 47 1 S Actual probe structure Modified probe structure (a) S Actual probe structure Modified probe structure (b) S Actual probe structure Modified probe structure (c) 1 S Actual probe structure Modified probe structure (d) FIGURE S-parameters from simulations of the on-chip through trace for actual structure and modified probe structure. (a) S 11, (b) S 21, (c) S 12, and (d) S 22.

63 48 FIGURE Half wavelength transmission line. The input impedance of a half wavelength transmission line is a repeat of the termination at the distant end as shown in Figure When the input impedance of a transmission line is equal to the reference termination, which in this case is 5 Ω, a match termination is satisfied. In such a case, the energy transmitted into the transmission line will be fully absorbed and the return loss of the transmission line will be very small. Sharp drops in the return loss of the on-chip through trace structure look very much like a matched termination in both S 11 and S 22 at 5 GHz in measurement, which correlates with the drops at 4 GHz shown in the simulation. Figure 5.13 shows a plot of half wavelength as a function of frequency along with lines showing the actual length of the on-chip through trace structure and the length of the revised structure shown in Figure 5.14(a). A matched termination is shown at the intersection of the half wavelength plot and the actual length of the on-chip through trace occurring at 5 GHz. Since simulation results correlate well with measurements, a series of revised simulations is performed by modifying and incrementally removing adjacent parts in HFSS simulations to identify the major component contributing to the sharp drops in the return loss. In order to validate a matched termination in the on-chip through trace, a revised HFSS simulation structure is simulated with shorter transmission line lengths as shown in Figure 5.14(a).

64 Half wavelength Length of actual structure Length of revised structure Length (mm) FIGURE Half wavelength as a function of frequency. The return loss simulation plot in Figure 5.15(a) shows the sharp drops in return loss occur at lower frequencies of 3 GHz, as one would not expect for a matched termination, where the revised structure length intersects with the half wave length plot at a higher frequency in Figure The plot shown in Figure 5.15 for the revised structure rules out the case of matched termination as the cause for the sharp drops in the return loss of the on-chip through trace structure. The sharp drops at 3 GHz suggests that other structures perturb the return loss behavior of the device under test. The side ground structures that are meant to bias the heavily doped substrate to ground are apparently coupling with the device under test. This was determined through a method of elimination in a series of revised simulations in HFSS. Incrementally parts of the side ground structures were removed. The top metal part of the side ground structures were eliminated as shown in Figure 5.14(b) and finally all the side ground structures

65 5 (a) (b) (c) FIGURE HFSS structure top view of on-chip through trace for (a) revised structure, (b) removed side ground metals, and (c) removed side ground vias. were completely eliminated including the vias to the copper block as shown in Figure 5.14(c). It is observed that the return loss behavior at 3GHz changes as the side ground structures are incrementally eliminated and the sharp drop in the return loss of the on-chip through trace disappears as the side ground structures were completely eliminated as shown in Figure 5.15(a). The position of the test structures on the die was also contributing to the sharp drops in the return loss response. Simulations have shown that when a test structure is placed in the center of the die, the sharp drops will reappear in the return loss. The cause of this particular behavior was never resolved in this work. The validation in this section reveals another shortcoming of the test fixture design, since the isolated two-port network assumption is violated in the deembedding procedure.

66 51 1 S (a) Revised Structure 4 (b) Removed Side Metals (c) Removed Side Vias (a) S (a) Revised Structure 15 (b) Removed Side Metals (d) Removed Side Vias (b) FIGURE S-parameters from simulation of structures shown in Figure (a) S 11, (b) S 21.

67 52 (a) (b) FIGURE HFSS structure of on-chip through trace (a) including probe pads and vias, and (b) excluding probe pads and vias Incorrect Deembedding Many different kinds of electrical networks and devices can be characterized and identified by measurements in the time domain. These include both Time Domain Reflection (TDR) and Time Domain Transmission (TDT) measurements. By observing the attributes of the waveforms, one can identify the nature of the device under test. A pulse generator is typically used for time domain testing and the most popular test signal is the step function. The TDR waveforms are used to evaluate the impedance quality of a transmission line, whereas the TDT waveforms are used to determine the effect a network has on the transmission of a pulse signal through it. The time domain reflection waveform is of most interest here to determine the location of any impedance discontinuity present in the two-port device under test. S-parameter data can be converted to the time domain in order to obtain the TDR and TDT waveforms. The TDR and TDT waveforms were generated

68 53 by rational fitting of S-parameter data to rational transfer functions [15]. This method is beneficial since phase extrapolation to DC is inherently zero and once the S-parameters were fit to a rational transfer function, a step response is applied to the return loss and insertion loss transfer functions to obtain the time domain reflection and time domain transmission responses, respectively. Figure 5.17 shows the TDR and TDT responses obtained from measurement of the on-chip through trace. Time domain waveforms obtained from HFSS simulation structure shown in Figure 5.16(a) (includes the probe pads and vias connected to the copper block) were included to validate the TDR and TDT waveforms obtained from measurement. Both time domain waveforms from measurement and this simulation structure showed reasonable correlations. Another HFSS simulation structure shown in Figure 5.16(b) (excludes their probe pads and vias) was also simulated and the time domain waveforms are also shown. The TDR simulation waveform from the structure shown in Figure 5.16(a) reveals that the probe pads and vias result in an excess length for the device under test. This excess length, due to the addition of the probe pads and vias, is detected by a 5 ps delay that is observed in the TDR waveform. Figure 5.19 shows the TDR falling edge delay from 45 ps to 5 ps when the probe pads and vias are added to the simulation. A lower peak at 1 ps in the TDR waveform generated from simulation excluding the probe pads and vias raises a further need to validate the major component contributing to this impedance discontinuity, which is suspected to be the probe pad. Hence, another simulation is performed isolating the probe pad structure and the transmission line themselves as shown in Figure The time domain response from this simulation is plotted in Figure The TDR waveform from

69 54.4 Amplitude (V).2 Measurement.2 Simulation (pads & vias included) Simulation (pads & vias excluded) Time (ps) (a) 1.5 Amplitude (V) 1.5 Measurement Simulation (pads & vias included) Simulation (pads & vias excluded) Time (ps) (b) FIGURE Time domain response of the on-chip through trace structure. (a) Time domain reflection. (b) Time domain transmission.

70 55 FIGURE HFSS structure for simulation of discontinuity in the probe pad. the probe pad side shows a higher peak at 1 ps than the peak from the side with no probe pad. The higher peak at 1 ps in the TDR waveform confirms the impedance discontinuity contributed by the probe pad. Since all of the other deembedding characterization structures have probe pads and vias, excess lengths and impedance discontinuities would also be present in those structures as well. These excess lengths and impedance discontinuities from the probe pads and vias could potentially cause an incorrect parameter deembedding. Take a simple scenario of deembedding the bondwire characterization structure, where the inverted cascade matrices of the microstrip transmission line structures with excess lengths and impedance discontinuity are multiplied on both sides of the cascade matrix of the bondwire characterization structure. Excess lengths and impedance discontinuities present in both sides of the bondwire characterization cascade matrix would cause errors in deembedding for the bondwire. This incorrectly deembedded bondwire along with the microstrip transmission lines with excess length and impedance discontinuities is used in the rest of the deembedding procedure. This affects the final deembedded results. HFSS structures, shown in Figure 5.2 and 5.21, are simulated and their deembedded results were

71 56 Amplitude (V) Probe pad side No probe pad side Time (ps) (a) 1.5 Amplitude (V) 1.5 Probe pad side No probe pad side Time (ps) (b) FIGURE Time domain response of HFSS simulation for validating the discontinuity in the probe pad. (a) Time domain reflection. (b) Time domain transmission.

72 57 FIGURE 5.2. HFSS simulation structure for simulation of a resistor embedded in test fixture with no probe pads. compared following the exact deembedding procedure for both structures, in order to validate this potential deembedding problem. The HFSS structure shown in Figure 5.2 excludes the probe pad structures along with their vias, whereas the HFSS structure shown in Figure 5.21 includes the probe pad structures and their vias. Deembedded simulation results of both structures following the same deembedding procedure, in terms of admittances to ground and mutual admittances, are shown in Figure The deembedding procedure unsuccessfully deembeds the 1 kω resistor embedded in the simulation having probe pads and vias, with a discrepancy of 4 ff in self susceptance (B gnd ), in Figure In contrast, the deembedding procedure successfully deembeds the 1 kω resistor embedded in the simulation of Figure 5.2, with smaller discrepancies in the self susceptance (B gnd ) and mutual susceptance (B mut ) as shown in Figure 5.22.

73 58 FIGURE HFSS simulation structure for simulation of a resistor embedded in a test fixture with probe pads. A comparison of the simulations illustrate the excess lengths and impedance discontinuities present in the probe pads and vias, which was not accounted for in the previous deembedding scheme. This points to the last shortcoming in the deembedding procedure and the test fixture design.

74 59 2 x 1 4 G gnd (S) 1 Deembedded Data [probe pad excluded] 1 Deembedded Data [probe pad included] Reference Data (a) x 1 4 B gnd (S) 2 1 Deembedded Data [probe pad excluded] Deembedded Data [probe pad included] Reference Data (b) 11 x 1 4 G mut (S) 1 9 Deembedded Data [probe pad excluded] 8 Deembedded Data [probe pad included] Reference Data (c) 2 x 1 4 B mut (S) 1 Deembedded Data [probe pad excluded] 1 Deembedded Data [probe pad included] Reference Data (d) FIGURE Simulated deembedded self and mutual admittances for the 1 kω resistor embedded in the structure shown in Figures 5.2 and (a) Self conductance, (b) self susceptance, (c) mutual conductance, and (d) mutual susceptance.

75 6 6. NEW PROBING SCHEME 6.1. Probing Design High frequency measurements using coplanar-waveguide (CPW) probes are highly repeatable, and have accurate and reliable broadband calibration capability [16]. Prior off-chip probing schemes allow the CPW probes, that provide a ground reference plane, to connect through vias to the copper block, where the back side of the substrate is connected. Since the measurement system ground is the backside of the substrate, the two contact substrate coupling structure is essentially a microstrip circuit. A broadband vialess CPW-microstrip transition for the new probing scheme is suggested for future work of high frequency substrate characterization as shown in Figure 6.2. The structure provides a gradual transformation of electric and magnetic fields and constant impedance along the transition. The transition uses sections of CPW and CPWG (coplanar waveguide with ground) with gradually increasing gaps between the signal and coplanar ground conductors. It also includes a tapered slot in the bottom ground conductor to provide low return loss. The electrical connection between the top ground of the CPW and the bottom ground of the microstrip is realized by electromagnetic coupling, thus no via holes are required [17]. A thorough discussion of the CPW-microstrip transition in [17] is used as a guideline in designing this broadband vialess CPW-microstrip transition for the new probing scheme. This design electromagnetically couples the backside of the die to ground, instead of employing connections through vias in the prior off-chip probing scheme. Not only does it eliminate the interactions with the probe station chuck since the backside is still grounded, but it also decreases the steps in the deembedding

76 61 FIGURE 6.1. New model used for deembedding. procedure and provides a consistent signal return path in the frequency range of interest. The deembedding model for the new probing scheme is shown in Figure 6.1. This model eliminates the removal of the transmission lines and bondwires parasitics from the prior test fixture deembedding model shown in Figure 2.3. The parasitics introduced by the probe pads and interconnects are included by taking into account the effects of the contact resistances and the step discontinuity [18]. On-chip probe pad deembedding also serves to eliminate the similar excess deembedding problem in the off-chip probing scheme. FIGURE 6.2. Vialess CPW-microstrip transition. The open dummy structures shown in Figure 6.3(d), which yield the open S-parameter matrix for the dummy structure, serves to deembed the probe pad

77 on the chip in the first step of the new deembedding procedure. After converting the open-dummy S-parameter matrix to an open-dummy Y-parameter matrix, the pad parasitic chain parameter matrix of the probe pads can be expressed as T pad = 1 Y 11,open + Y 12,open 1 62 (6.1) The on-chip deembedding model maintains the same deembedding procedure developed in prior test fixture design, but bypasses the first two deembedding steps. The new model replaces the first two deembedding steps with an on-chip probe pad deembedding step Probing Simulations The purpose of these simulations is the design and validation of on-chip test structures that enable the new probing measurements. The model used for these simulations includes the on-chip probe pads, the on-chip interconnects, a uniform block of non-conductive silicon substrate and a simplified substrate network that is represented by a 2µm x 2µm resistor. The actual substrate network with two substrate contacts was replaced with a resistor on a non-conductive silicon substrate. In order to represent a reference network model that only has finite mutual admittance and zero self admittance, defined by the resistor, a nonconductive silicon was used instead of a heavily doped silicon substrate. Memory requirements for these simulations were also eased by replacing the model for the silicon substrate with a uniform block of a non-conductive material, whose dielectric constant is chosen to be silicon dioxide. The structure is surrounded by an air box, which defines the boundary over which the electromagnetic fields will be calculated. Stimuli are applied to

78 63 (a) (b) (c) (d) FIGURE 6.3. HFSS structure for simulation of a resistor embedded in the test structure suggested for future work. Structure for simulation of (a) resistor, (b) on-chip empty structure, (c) on-chip through trace, and (d) open dummy pad structure.

Advancements in mm-wave On-Wafer Measurements: A Commercial Multi-Line TRL Calibration Author: Leonard Hayden Presenter: Gavin Fisher

Advancements in mm-wave On-Wafer Measurements: A Commercial Multi-Line TRL Calibration Author: Leonard Hayden Presenter: Gavin Fisher Advancements in mm-wave On-Wafer Measurements: A Commercial Multi-Line TRL Calibration Author: Leonard Hayden Presenter: Gavin Fisher The title of this section is A Commercial Multi-Line TRL Calibration

More information

This section reviews the basic theory of accuracy enhancement for one-port networks.

This section reviews the basic theory of accuracy enhancement for one-port networks. Vector measurements require both magnitude and phase data. Some typical examples are the complex reflection coefficient, the magnitude and phase of the transfer function, and the group delay. The seminar

More information

Lecture 13. Vector Network Analyzers and Signal Flow Graphs

Lecture 13. Vector Network Analyzers and Signal Flow Graphs HP8510 Lecture 13 Vector Network Analyzers and Signal Flow Graphs 1 Vector Network Analyzers HP8510 Agilent 8719ES R&S ZVA67 VNA 2 ports, 67 GHz port 1 port 2 DUT Agilent N5247A PNA-X VNA, 4 ports, 67

More information

Practical Considerations and Solutions for Temperature-Dependent S-Parameter Measurement for Accurate Parameter Extraction of

Practical Considerations and Solutions for Temperature-Dependent S-Parameter Measurement for Accurate Parameter Extraction of Practical Considerations and Solutions for Temperature-Dependent S-Parameter Measurement for Accurate Parameter Extraction of Advanced RF Devices Gavin Fisher, Application Engineer Andrej Rumiantsev, Product

More information

Boundary and Excitation Training February 2003

Boundary and Excitation Training February 2003 Boundary and Excitation Training February 2003 1 Why are They Critical? For most practical problems, the solution to Maxwell s equations requires a rigorous matrix approach such as the Finite Element Method

More information

Surface Mount Chip Capacitors

Surface Mount Chip Capacitors Features High '' Factor at high frequencies High RF power capabilities Low High self resonant frequencies Excellent stability across temperature range Small size High Frequency Measurement and Performance

More information

PAD MODELING BY USING ARTIFICIAL NEURAL NETWORK

PAD MODELING BY USING ARTIFICIAL NEURAL NETWORK Progress In Electromagnetics Research, PIER 74, 167 180, 2007 PAD MODELING BY USING ARTIFICIAL NEURAL NETWORK X. P. Li School of Telecommunication Engineering Beijing University of Posts and Telecommunications

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

On-Wafer Characterization of Electromagnetic Properties of Thin-Film RF Materials

On-Wafer Characterization of Electromagnetic Properties of Thin-Film RF Materials On-Wafer Characterization of Electromagnetic Properties of Thin-Film RF Materials Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School

More information

Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS Link

Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS Link Syracuse University SURFACE Electrical Engineering and Computer Science Technical Reports College of Engineering and Computer Science 5-9-2011 Electromagnetic-Thermal Analysis Study Based on HFSS-ANSYS

More information

Broad-band space conservative on wafer network analyzer calibrations with more complex SOLT definitions

Broad-band space conservative on wafer network analyzer calibrations with more complex SOLT definitions University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 24 Broad-band space conservative on wafer network analyzer calibrations with more complex SOLT definitions

More information

IPC-TM-650 TEST METHODS MANUAL

IPC-TM-650 TEST METHODS MANUAL ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES 3000 Lakeside Drive, Suite 309S Bannockburn, IL 60015-1219 TEST METHODS MANUAL Number High Frequency Testing to Determine Permittivity and Loss Originating

More information

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix

Accounting for High Frequency Transmission Line Loss Effects in HFSS. Andrew Byers Tektronix Accounting for High Frequency Transmission Line Loss Effects in HFSS Andrew Byers Tektronix Transmission Line Refresher γ = α + j β = (R + jωl) * (G + jωc) Zo = Zr + j Zi = (R + jωl) / (G + jωc) Transmission

More information

Comparison of MLCC and X2Y Technology for Use in Decoupling Circuits

Comparison of MLCC and X2Y Technology for Use in Decoupling Circuits Comparison of MLCC and X2Y Technology for Use in Decoupling Circuits Dale L. Sanders James P. Muccioli Anthony A. Anthony X2Y Attenuators, LLC 37554 Hills Tech Dr. Farmington Hills, MI 48331 248-489-0007

More information

Substrate Selection Can Simplify Thermal Management

Substrate Selection Can Simplify Thermal Management highfrequencyelectronics.com NOVEMBER2017 Substrate Selection Can Simplify Thermal Management IN THIS ISSUE: Concepts of RF Power Amplification App Note: Holdover Oscillators In the News Market Reports

More information

Electrical Characterization of 3D Through-Silicon-Vias

Electrical Characterization of 3D Through-Silicon-Vias Electrical Characterization of 3D Through-Silicon-Vias F. Liu, X. u, K. A. Jenkins, E. A. Cartier, Y. Liu, P. Song, and S. J. Koester IBM T. J. Watson Research Center Yorktown Heights, NY 1598, USA Phone:

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

Svetlana Carsof Sejas García

Svetlana Carsof Sejas García Characterization and modeling of passive components and interconnects using microwave techniques By Svetlana Carsof Sejas García A thesis Submitted to the Program in Electronics Science, Electronic Department,

More information

Analysis of TSV-to-TSV Coupling with High-Impedance Termination in 3D ICs

Analysis of TSV-to-TSV Coupling with High-Impedance Termination in 3D ICs Analysis of -to- Coupling with -Impedance Termination in 3D ICs Taigon Song, Chang Liu, Dae Hyun Kim, and Sung Kyu Lim School of Electrical and Computer Engineering, Georgia Institute of Technology, U.S.A.

More information

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free)

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free) 1W, 1206, (Lead free / Halogen Free) 1. Scope This specification applies to 1.6mm x 3.2mm size 1W, fixed metal film chip resistors rectangular type for use in electronic equipment. 2. Type Designation

More information

An On-Wafer Deembedding Procedure for Devices under Measurement with Error-Networks Containing Arbitrary Line Lengths

An On-Wafer Deembedding Procedure for Devices under Measurement with Error-Networks Containing Arbitrary Line Lengths An On-Wafer Deembedding Procedure for Devices under Measurement with Error-Networks Containing Arbitrary Line Lengths Thomas-Michael Winkel, Lohit Sagar Dutta, Hartmut Grabinski Laboratorium fur Informationstechnologie,

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

PARAMETRIC ANALYSIS ON THE DESIGN OF RF MEMS SERIES SWITCHES

PARAMETRIC ANALYSIS ON THE DESIGN OF RF MEMS SERIES SWITCHES PARAMETRIC ANALYSIS ON THE DESIGN OF RF MEMS SERIES SWITCHES Julio A. Lonac, Prof. Gustavo A. Merletti, PhD student MicroLAB-RF-microwave and MEMS research center of the Universidad Nacional de San Martín,

More information

3D Silicon Capacitors

3D Silicon Capacitors 3D Silicon Capacitors Integrated Passive Devices Product Line High Stability Silicon Capacitors Low Profile Silicon Capacitors High Temperature Silicon Capacitors Xtreme Temperature Silicon Capacitors

More information

Solutions to Problems in Chapter 6

Solutions to Problems in Chapter 6 Appendix F Solutions to Problems in Chapter 6 F.1 Problem 6.1 Short-circuited transmission lines Section 6.2.1 (book page 193) describes the method to determine the overall length of the transmission line

More information

HSG-IMIT Application AG

HSG-IMIT Application AG B4.1 Acceleration Sensors IP-Blocks for MEMS Foundry Surface Micromachining Process R. Knechtel, S. Dempwolf S. Hering X-FAB Semiconductor Foundries AG Haarberstraße 67 99097 Erfurt / Germany T. Link J.

More information

D-Pack 3D Interposer Decoupling System

D-Pack 3D Interposer Decoupling System D-Pack 3D Interposer Decoupling System Michael Randall, John Prymak, Mark Laps, Garry Renner, Peter Blais, Paul Staubli, Aziz Tajuddin KEMET Electronics Corporation, P.O. Box 5928, Greenville, SC 29606

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN 1, HAROON LAIS 1, ZHEN YU 1, SHENGDONG LI 1, WILLIAM C. TANG 1,2, AND PETER J. BURKE 1,2 1 Electrical Engineering

More information

ECE 497 JS Lecture -07 Planar Transmission Lines

ECE 497 JS Lecture -07 Planar Transmission Lines ECE 497 JS Lecture -07 Planar Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Microstrip ε Z o w/h < 3.3 2 119.9 h h =

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Madhulatha Bonu for the degree of Master of Science in Electrical and Computer Engineering presented on November 8, 006. Title: Noise Coupling Techniques in Multi-Cell Delta-Sigma

More information

Analytic Solutions for Periodically Loaded Transmission Line Modeling

Analytic Solutions for Periodically Loaded Transmission Line Modeling Analytic Solutions for Periodically Loaded Transmission Line Modeling Paul G. Huray, huray@sc.edu Priya Pathmanathan, Intel priyap@qti.qualcomm.com Steve Pytel, Intel steve.pytel@ansys.com April 4, 2014

More information

Progress In Electromagnetics Research M, Vol. 20, 73 80, 2011

Progress In Electromagnetics Research M, Vol. 20, 73 80, 2011 Progress In Electromagnetics Research M, Vol. 20, 73 80, 2011 COPLANAR METAMATERIAL MICRO-RESONATOR S. Nemer 1, 2, *, B. Sauviac 1, B. Bayard 1, J. J. Rousseau 1, C. Nader 2, J. Bechara 2, and A. Khoury

More information

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines.  Where transmission lines arise?  Lossless Transmission Line. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Lab #8 Two Port Networks

Lab #8 Two Port Networks Cir cuit s 212 Lab Lab #8 Two Port Networks Network parameters are used to characterize a device. Given the network parameters of a device, the voltage and current characteristics of the device can be

More information

Application of EM- Simulators for Extraction of Line Parameters

Application of EM- Simulators for Extraction of Line Parameters Chapter - 2 Application of EM- Simulators for Extraction of Line Parameters 2. 1 Introduction The EM-simulators-2D, 2.5D and 3D, are powerful tools for the analysis of the planar transmission lines structure.

More information

74HC1GU04GV. 1. General description. 2. Features. 3. Ordering information. Marking. 5. Functional diagram. Inverter

74HC1GU04GV. 1. General description. 2. Features. 3. Ordering information. Marking. 5. Functional diagram. Inverter Rev. 5 1 July 27 Product data sheet 1. General description 2. Features 3. Ordering information The is a high-speed Si-gate CMOS device. It provides an inverting single stage function. The standard output

More information

ECE 451 Transmission Lines & Packaging

ECE 451 Transmission Lines & Packaging Transmission Lines & Packaging Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Radio Spectrum Bands The use of letters to designate bands has long ago

More information

Transmission Lines. Author: Michael Leddige

Transmission Lines. Author: Michael Leddige Transmission Lines Author: Michael Leddige 1 Contents PCB Transmission line structures Equivalent Circuits and Key Parameters Lossless Transmission Line Analysis Driving Reflections Systems Reactive Elements

More information

MEASURE THE COMPLEX PERMEABILITY OF FER- ROMAGNETIC THIN FILMS: COMPARISON SHORTED MICROSTRIP METHOD WITH MICROSTRIP TRANS- MISSION METHOD

MEASURE THE COMPLEX PERMEABILITY OF FER- ROMAGNETIC THIN FILMS: COMPARISON SHORTED MICROSTRIP METHOD WITH MICROSTRIP TRANS- MISSION METHOD Progress In Electromagnetics Research Letters, Vol. 11, 173 181, 2009 MEASURE THE COMPLEX PERMEABILITY OF FER- ROMAGNETIC THIN FILMS: COMPARISON SHORTED MICROSTRIP METHOD WITH MICROSTRIP TRANS- MISSION

More information

IN order to characterize the

IN order to characterize the D E S G N F E A T U R E VERFY WAFER-PROBE REFERENCE PLANES FOR MMC TESTNG Three techniques for verification of planar calibration standards agree within ko.1 ps of electrical length. N order to characterize

More information

Case Study: Parallel Coupled- Line Combline Filter

Case Study: Parallel Coupled- Line Combline Filter MICROWAVE AND RF DESIGN MICROWAVE AND RF DESIGN Case Study: Parallel Coupled- Line Combline Filter Presented by Michael Steer Reading: 6. 6.4 Index: CS_PCL_Filter Based on material in Microwave and RF

More information

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts.

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts. 15 2. Basic Electrical Parameters of Semiconductors: Sheet Resistivity, Resistivity and Conduction Type 2.1 Objectives 1. Familiarizing with experimental techniques used for the measurements of electrical

More information

Transmission-Reflection Method to Estimate Permittivity of Polymer

Transmission-Reflection Method to Estimate Permittivity of Polymer Transmission-Reflection Method to Estimate Permittivity of Polymer Chanchal Yadav Department of Physics & Electronics, Rajdhani College, University of Delhi, Delhi, India Abstract In transmission-reflection

More information

ACCURATE, HIGH SPEED PREDICTIVE MODELING OF PASSIVE DEVICES

ACCURATE, HIGH SPEED PREDICTIVE MODELING OF PASSIVE DEVICES ACCURATE, HIGH SPEED PREDICTIVE MODELING OF PASSIVE DEVICES A Thesis Presented to The Academic Faculty by Ravi Poddar In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In

More information

TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES

TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES SEMI G38-0996 N/A SEMI 1987, 1996 TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES 1 Purpose The purpose of this test is to determine

More information

CHIP RESISTOR. Chip Resistors Selection Guide. General Purpose Chip Resistor. Zero Ohm Jumper Resistor. Chip Resistor Array MAX WORKING VOLTAGE

CHIP RESISTOR. Chip Resistors Selection Guide. General Purpose Chip Resistor. Zero Ohm Jumper Resistor. Chip Resistor Array MAX WORKING VOLTAGE Chip Resistors Selection Guide General Purpose Chip Resistor SIZE/ mm POWER RATING MAX WORKING VOLTAGE TOLERANCE RESISTANCE RANGE 0402 1.00*0.50 0603 1.60*0.80 1/10W 0. 0805 2.00*1.25 1/8W 1 0. 1206 3.10*1.60

More information

Impedance Matching and Tuning

Impedance Matching and Tuning C h a p t e r F i v e Impedance Matching and Tuning This chapter marks a turning point, in that we now begin to apply the theory and techniques of previous chapters to practical problems in microwave engineering.

More information

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Steven Brinser IBM Microelectronics Abstract Thermal characterization of a semiconductor device is

More information

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004 Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation Agilent EEsof RFIC Seminar Spring Overview Spiral Inductor Models Availability & Limitations Momentum

More information

November MVP R&S FSW Analyzer. Vol. 54 No. 11. Founded in mwjournal.com

November MVP R&S FSW Analyzer. Vol. 54 No. 11. Founded in mwjournal.com Vol. 54 No. 11 November 211 MVP R&S FSW Analyzer Founded in 1958 mwjournal.com Improved Thermal Management of Microwave PCBs Using Advanced Circuit Materials Thermal management in microwave printed-circuit

More information

IH5341, IH5352. Dual SPST, Quad SPST CMOS RF/Video Switches. Description. Features. Ordering Information. Applications. Pinouts.

IH5341, IH5352. Dual SPST, Quad SPST CMOS RF/Video Switches. Description. Features. Ordering Information. Applications. Pinouts. SEMICONDUCTOR IH, IH2 December Features Description Dual SPST, Quad SPST CMOS RF/Video Switches R DS(ON) < Ω Switch Attenuation Varies Less Than db From DC to 00MHz "OFF" Isolation > 0dB Typical at 0MHz

More information

High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components

High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components High Speed Communication Circuits and Systems Lecture 4 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components Michael H. Perrott February 11, 2004 Copyright 2004 by Michael H.

More information

Analytic Solutions for Periodically Loaded Transmission Line Modeling

Analytic Solutions for Periodically Loaded Transmission Line Modeling DesignCon 2013 Analytic Solutions for Periodically Loaded Transmission Line Modeling Priya Pathmanathan, Intel Corporation priya.pathmanathan@intel.com Paul G. Huray, University of South Carolina huray@sc.edu

More information

A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode

A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode Progress In Electromagnetics Research C, Vol. 67, 59 69, 2016 A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode Hassan Aldeeb and Thottam S. Kalkur * Abstract A novel

More information

Reducing AC impedance measurement errors caused by the DC voltage dependence of broadband high-voltage bias-tees

Reducing AC impedance measurement errors caused by the DC voltage dependence of broadband high-voltage bias-tees 27 IEEE International Conference on Microelectronic Test Structures, March 19-22, Tokyo, Japan. 8.11 Reducing AC impedance measurement errors caused by the DC voltage dependence of broadband high-voltage

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. DS0026 Dual High-Speed MOS Driver General Description DS0026 is a low cost

More information

GHz 6-Bit Digital Phase Shifter

GHz 6-Bit Digital Phase Shifter 180 90 45 22.5 11.25 5.625 ASL 2004P7 3.1 3.5 GHz 6-Bit Digital Phase Shifter Features Functional Diagram Frequency Range: 3.1 to 3.5 GHz RMS Error < 2 deg. 5 db Insertion Loss TTL Control Inputs 0.5-um

More information

RTAC104 AFM References in Package

RTAC104 AFM References in Package Radiant Technologies, Inc. 2835D Pan American Freeway NE Albuquerque, NM 87107 Tel: 505-842-8007 Fax: 505-842-0366 e-mail: radiant@ferrodevices.com www.ferrodevices.com RTAC104 AFM References in Package

More information

Surface Mount RF Schottky Barrier Diodes. Technical Data. GUx. HSMS-281x Series

Surface Mount RF Schottky Barrier Diodes. Technical Data. GUx. HSMS-281x Series Surface Mount RF Schottky Barrier Diodes Technical Data HSMS-28x Series Features Surface Mount Packages Low Flicker Noise Low FIT (Failure in Time) Rate* Six-sigma Quality Level Single, Dual and Quad Versions

More information

NC7SB3157 TinyLogic Low Voltage UHS Analog Switch 2-Channel Multiplexer/Demultiplexer (Preliminary)

NC7SB3157 TinyLogic Low Voltage UHS Analog Switch 2-Channel Multiplexer/Demultiplexer (Preliminary) September 1999 Revised November 1999 TinyLogic Low Voltage UHS Analog Switch 2-Channel Multiplexer/Demultiplexer (Preliminary) General Description The is a high performance, Analog Switch 2- channel CMOS

More information

Lecture 21: Packaging, Power, & Clock

Lecture 21: Packaging, Power, & Clock Lecture 21: Packaging, Power, & Clock Outline Packaging Power Distribution Clock Distribution 2 Packages Package functions Electrical connection of signals and power from chip to board Little delay or

More information

A Guide to Board Layout for Best Thermal Resistance for Exposed Packages

A Guide to Board Layout for Best Thermal Resistance for Exposed Packages A Guide to Board Layout for Best Thermal Resistance for Exposed Packages Table of Contents 1.0 Abstract... 2 2.0 Introduction... 2 3.0 DOE of PCB (Printed Circuit Board) Design... 2 4.0 Test Methodology...

More information

High-Supply-Voltage, Precision Voltage Reference in SOT23 MAX6035

High-Supply-Voltage, Precision Voltage Reference in SOT23 MAX6035 19-2606; Rev 3; 11/06 High-Supply-Voltage, Precision General Description The is a high-voltage, precision micropower voltage reference. This three-terminal device is available with output voltage options

More information

HOW TO CHOOSE & PLACE DECOUPLING CAPACITORS TO REDUCE THE COST OF THE ELECTRONIC PRODUCTS

HOW TO CHOOSE & PLACE DECOUPLING CAPACITORS TO REDUCE THE COST OF THE ELECTRONIC PRODUCTS HOW TO CHOOSE & PLACE DECOUPLING CAPACITORS TO REDUCE THE COST OF THE ELECTRONIC PRODUCTS Zhen Mu and Heiko Dudek Cadence Design Systems, Inc. Kun Zhang Huawei Technologies Co., Ltd. With the edge rates

More information

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B PRODUCT FAMILY SPEFICIFATION SCB10H Series Pressure Elements SCB10H Series Pressure Elements Doc. No. 82 1250 00 B Table of Contents 1 General Description... 3 1.1 Introduction... 3 1.2 General Description...

More information

Compact Equivalent Circuit Models for the Skin Effect

Compact Equivalent Circuit Models for the Skin Effect Microelectromagnetic Devices Group The University of Texas at Austin Compact Equivalent Circuit Models for the Skin Effect Sangwoo Kim, Beom-Taek Lee, and Dean P. Neikirk Department of Electrical and Computer

More information

Quantifying and Verifying trace stability of vector network analyzers at frequencies below 1GHz

Quantifying and Verifying trace stability of vector network analyzers at frequencies below 1GHz 1 Quantifying and Verifying trace stability of vector network analyzers at frequencies below 1GHz Hamdi Mani, Chris Groppi, Judd Bowman Abstract we describe measurements done to check the low frequency

More information

Specification For LTCC Doherty Coupler

Specification For LTCC Doherty Coupler Specification For Model Name : Customer : Title: Name : APPROVED By Date : Signature : RN2 Technologies co., Ltd. RN2 Technologies co., Ltd. 284-2, Galgot-ri, Jinwe-myeon, Pyeongtaek-si, Kyunggi-do, KOREA

More information

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Frank Y. Yuan Viewlogic Systems Group, Inc. 385 Del Norte Road

More information

Technique for the electric and magnetic parameter measurement of powdered materials

Technique for the electric and magnetic parameter measurement of powdered materials Computational Methods and Experimental Measurements XIV 41 Technique for the electric and magnetic parameter measurement of powdered materials R. Kubacki,. Nowosielski & R. Przesmycki Faculty of Electronics,

More information

Distributed SPICE Circuit Model for Ceramic Capacitors

Distributed SPICE Circuit Model for Ceramic Capacitors Published in Conference Record, Electrical Components Technology Conference (ECTC), Lake Buena Vista, Florida, pp. 53-58, May 9, 00. Distributed SPICE Circuit Model for Ceramic Capacitors Larry D Smith,

More information

NEW CAD MODEL OF THE MICROSTRIP INTERDIGITAL CAPACITOR

NEW CAD MODEL OF THE MICROSTRIP INTERDIGITAL CAPACITOR Active and Passive Electronic Components December 2004, Vol. 27, pp. 237 245 NEW CAD MODEL OF THE MICROSTRIP INTERDIGITAL CAPACITOR NIHAD DIB a, *,y, QIU ZHANG b and ULRICH ROHDE c a Electrical Engineering

More information

WTSC144.xxx Wire Bonding Temperature Silicon Vertical Capacitor

WTSC144.xxx Wire Bonding Temperature Silicon Vertical Capacitor WTSC144.xxx Wire Bonding Temperature Silicon Vertical Capacitor Rev 3.1 Key features Full compatible to monolithic ceramic capacitors Ultra high stability of capacitance value: Temperature ±1.5% (-55 C

More information

ME 4/549 Lab Assignment 5: Single Block Experiment Spring 2006 due 1 June 2006

ME 4/549 Lab Assignment 5: Single Block Experiment Spring 2006 due 1 June 2006 ME 4/549 Lab Assignment 5: Single Block Experiment Spring 2006 due 1 June 2006 version May 23, 2006 1 Objective The objective of the laboratory exercise is to measure the convective heat transfer coefficient

More information

THE ANALYSIS OF NOISE VOLTAGE COUPLING BETWEEN RIGHT-HANDED AND META-MATERIALS INSPIRED TRANSMISSION LINES ON PRINTED CIRCUIT BOARDS

THE ANALYSIS OF NOISE VOLTAGE COUPLING BETWEEN RIGHT-HANDED AND META-MATERIALS INSPIRED TRANSMISSION LINES ON PRINTED CIRCUIT BOARDS THE ANALYSIS OF NOISE VOLTAGE COUPLING BETWEEN RIGHT-HANDED AND META-MATERIALS INSPIRED TRANSMISSION LINES ON PRINTED CIRCUIT BOARDS A Thesis Submitted to the Graduate Faculty of the North Dakota State

More information

Microwave Loss Reduction in Cryogenically Cooled Conductors R. Finger and A. R. Kerr

Microwave Loss Reduction in Cryogenically Cooled Conductors R. Finger and A. R. Kerr NATIONAL RADIO ASTRONOMY OBSERVATORY ELECTRONICS DIVISION INTERNAL REPORT NO. 321 Microwave Loss Reduction in Cryogenically Cooled Conductors R. Finger and A. R. Kerr July 3, 2008 NATIONAL RADIO ASTRONOMY

More information

LAB I WHAT IS IN IT AND WHY?

LAB I WHAT IS IN IT AND WHY? LAB I WHAT IS IN IT AND WHY? Study (Pre-Lab) Questions (Complete these BEFORE coming to lab, there will be Study/Pre-Lab Questions for each lab this quarter): 1. Make a list of 3 examples for each of the

More information

FPF1003A / FPF1004 IntelliMAX Advanced Load Management Products

FPF1003A / FPF1004 IntelliMAX Advanced Load Management Products August 2012 FPF1003A / FPF1004 IntelliMAX Advanced Load Management Products Features 1.2 V to 5.5 V Input Voltage Operating Range Typical R DS(ON) : - 30 mω at V IN =5.5 V - 35 mω at V IN =3.3 V ESD Protected:

More information

Hermetic connectors are used throughout

Hermetic connectors are used throughout Measurement of the Anisotropic Dielectric Constant of a Glass Bead in a Coaxial Test Fixture By Bruce Bullard Atmel Corporation Hermetic connectors are used throughout the microwave industry, in applications

More information

Coplanar Microwave Integrated Circuits

Coplanar Microwave Integrated Circuits Ingo Wolff Coplanar Microwave Integrated Circuits Verlagsbuchhandlung Dr. Wolff GmbH Content Chapter I. 1.1 Chapter II. II. 1 n.1.1 n.1.2 n.1.3 n.1.3.1 n.1.3.2 n.2 n.2.1 n.2.2 n.2.3 n.2.4 n.2.5 n.2.6 n.2.7

More information

800mA and 1A Low Dropout Positive Regulator 2.85V, 3V, 3.3V, 5V, and Adjustable

800mA and 1A Low Dropout Positive Regulator 2.85V, 3V, 3.3V, 5V, and Adjustable A 8mA and A Low Dropout Positive Regulator.85V, 3V, 3.3V, 5V, and Adjustable FEATURES.85V, 3V, 3.3V, 5V, and ADJUSTABLE VERSIONS.85V MODEL FOR SCSI- ACTIVE TERMINATION OUTPUT CURRENT: : 8mA max A: A max

More information

SI Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. Layout Guidelines for adding ESD Protection in HDMI Receiver Applications

SI Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. Layout Guidelines for adding ESD Protection in HDMI Receiver Applications Layout Guidelines for adding ESD Protection in HDMI Receiver Applications The High Definition Multimedia Interface (HDMI) video signals are transmitted on very high speed differential pairs. These lines

More information

Efficiency and Bandwidth Improvement Using Metamaterial of Microstrip Patch Antenna

Efficiency and Bandwidth Improvement Using Metamaterial of Microstrip Patch Antenna Efficiency and Bandwidth Improvement Using Metamaterial of Microstrip Patch Antenna Aakash Mithari 1, Uday Patil 2 1Student Department of Electronics Technology Engg., Shivaji University, Kolhapur, Maharashtra,

More information

Equivalent Circuit Model Extraction for Interconnects in 3D ICs

Equivalent Circuit Model Extraction for Interconnects in 3D ICs Equivalent Circuit Model Extraction for Interconnects in 3D ICs A. Ege Engin Assistant Professor, Department of ECE, San Diego State University Email: aengin@mail.sdsu.edu ASP-DAC, Jan. 23, 213 Outline

More information

RP mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RP mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information RP122 3mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator General Description The RP122 is designed for portable RF and wireless applications with demanding performance and space requirements. The RP122

More information

Announcements. EE141- Fall 2002 Lecture 25. Interconnect Effects I/O, Power Distribution

Announcements. EE141- Fall 2002 Lecture 25. Interconnect Effects I/O, Power Distribution - Fall 2002 Lecture 25 Interconnect Effects I/O, Power Distribution Announcements Homework 9 due next Tuesday Hardware lab this week Project phase 2 due in two weeks 1 Today s Lecture Impact of interconnects»

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLU86 UHF power transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLU86 UHF power transistor DISCRETE SEMICONDUCTORS DATA SHEET September 1991 FEATURES SMD encapsulation Emitter-ballasting resistors for optimum temperature profile Gold metallization ensures excellent reliability. DESCRIPTION NPN

More information

WW12C, WW08C, WW06C, WW04C, WW02C. Low ohm chip resistors ( power ) Size 1206, 0805, 0603, 0402, 0201

WW12C, WW08C, WW06C, WW04C, WW02C. Low ohm chip resistors ( power ) Size 1206, 0805, 0603, 0402, 0201 WW12C, WW08C, WW06C, WW04C, WW02C ±5%, ±1%, ±0.5% Low ohm chip resistors ( power ) Size 1206, 0805, 0603, 0402, 0201 *Contents in this sheet are subject to change without prior notice. Page 1 of 8 ASC_WWxxC_V05

More information

PURPOSE: See suggested breadboard configuration on following page!

PURPOSE: See suggested breadboard configuration on following page! ECE4902 Lab 1 C2011 PURPOSE: Determining Capacitance with Risetime Measurement Reverse Biased Diode Junction Capacitance MOSFET Gate Capacitance Simulation: SPICE Parameter Extraction, Transient Analysis

More information

EFFICIENT STRATEGIES TO OPTIMIZE A POWER DISTRIBUTION NETWORK

EFFICIENT STRATEGIES TO OPTIMIZE A POWER DISTRIBUTION NETWORK EFFICIENT STRATEGIES TO OPTIMIZE A POWER DISTRIBUTION NETWORK Raul FIZEŞAN, Dan PITICĂ Applied Electronics Department of UTCN 26-28 Baritiu Street, Cluj-Napoca, raul.fizesan@ael.utcluj.ro Abstract: One

More information

MIL-STD-883E METHOD THERMAL CHARACTERISTICS

MIL-STD-883E METHOD THERMAL CHARACTERISTICS THERMAL CHARACTERISTICS 1. PURPOSE. The purpose of this test is to determine the thermal characteristics of microelectronic devices. This includes junction temperature, thermal resistance, case and mounting

More information

MEASURING THE LOSS IN VARIABLE AIR CAPACITORS

MEASURING THE LOSS IN VARIABLE AIR CAPACITORS MEASURING THE LOSS IN VARIABLE AIR CAPACITORS The resistance of variable air capacitors is difficult to measure because they have a very high reactance. This is tuned-out here with a transmission line

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

Calibration Uncertainty Estimation. at the Wafer Level

Calibration Uncertainty Estimation. at the Wafer Level Calibration Uncertainty Estimation for the S-Parameter S Measurements at the Wafer Level A. Rumiantsev SUSS MicroTec Test Systems GmbH Sussstr. 1, Sacka, D-01561, Germany a.rumiantsev@ieee.org Outline

More information

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design

More information

FREQUENTLY ASKED QUESTIONS RF & MICROWAVE PRODUCTS

FREQUENTLY ASKED QUESTIONS RF & MICROWAVE PRODUCTS FREQUENTLY ASKED QUESTIONS RF & MICROWAVE PRODUCTS WHAT IS RF? RF stands for Radio Frequency, which has a frequency range of 30KHz - 300GHz. RF capacitors help tune antenna to the correct frequency. The

More information

SM98A Harsh Media Backside Absolute Pressure Series

SM98A Harsh Media Backside Absolute Pressure Series SM98A Harsh Media Backside Absolute Pressure Series SM98A Series FEATURES Pressure Range: 10 Bar (145 PSIA), 20 Bar (290 PSIA) On-Board temperature sensing diode Small die (1.2 mm x 1.33 mm) Backside entry

More information

Open-Thru de-embedding for Graphene RF devices

Open-Thru de-embedding for Graphene RF devices Open-Thru de-embedding for Graphene RF devices Giancarlo Vincenzi, Georgios Deligeorgis, Fabio Coccetti, Patrick Pons To cite this version: Giancarlo Vincenzi, Georgios Deligeorgis, Fabio Coccetti, Patrick

More information

TECHNICAL INFORMATION

TECHNICAL INFORMATION TECHNICAL INFORMATION THE EFFECTS OF ESR AND ESL IN DIGITAL DECOUPLING APPLICATIONS by Jeffrey Cain, Ph.D. AVX Corporation Abstract: It is common place for digital integrated circuits to operate at switching

More information