4-93 RT RT. He PV n = C = = Then the boundary work for this polytropic process can be determined from. n =

Size: px
Start display at page:

Download "4-93 RT RT. He PV n = C = = Then the boundary work for this polytropic process can be determined from. n ="

Transcription

1 - A cylder i itially filled it eliu ga at a ecified tate. Heliu i creed lytrically t a ecified teerature and reure. e eat tranfer durg te rce i t be detered. Autin Heliu i an ideal ga it cntant ecific eat. e cylder i tatinary and tu te ketic and tential energy cange are negligible. e teral energy tred te cylder itelf i negligible. e crein r exanin rce i quai-equilibriu. rertie e ga cntant f eliu i R.79 ka. /kg.k (able A-. Al, c v. kj/kg.k (able A-. Analyi e a f eliu and te exnent n are detered t be V R n V V R R V ( ka(. (.79 ka /kg K( 9 K n V V V. kg K ka V V. 9 K ka n.. n. en te bundary rk fr ti lytric rce can be detered fr W b, ( V V R dv n n (. kg(.79 kj/kg K( 9K 7.. kj n. He V n We take te cntent f te cylder a te yte. i i a cled yte ce n a enter r leave. akg te directin f eat tranfer t be t te cylder, te energy balance fr ti tatinary cled yte can be exreed a Subtitutg, E E Net energy tranfer by eat, rk, and a Q + W b, Q ange ternal, ketic, tential, etc.energie U ( u ( u c ( v Eyte u W u b, W Q (. kg(. kj/kg K( - 9K - (7. kj -. kj e negative ign dicate tat eat i lt fr te yte. b, Q -9 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

2 - A ell-ulated r i eated by a tea radiatr, and te ar air i ditributed by a fan. e average teerature te r after i t be detered. Autin Air i an ideal ga it cntant ecific eat at r teerature. e ketic and tential energy cange are negligible. e air reure te r rea cntant and tu te air exand a it i eated, and e ar air ecae. rertie e ga cntant f air i R.87 ka. /kg.k (able A-. Al, c. kj/kg.k fr air at r teerature (able A-. Analyi We firt take te radiatr a te yte. i i a cled yte ce n a enter r leave. e energy balance fr ti cled yte can be exreed a E E Net energy tranfer by eat, rk, and a Q Q ange ternal, ketic, tential, etc.energie U ( u ( u Eyte u u (cew KE E Ug data fr te tea table (able A- trug A-, e rertie are detered t be ka v.89 /kg u. kj/kg ka v f., ( v v u 7., u 88. kj/kg x u Subtitutg, v v f v u f V..9 kg v.89 /kg f fg + x u v.9 /kg fg g fg kj/kg Q (.9 kg(. 78.7kJ/kg.8 kj e vlue and te a f te air te r are V 8 and V ( ka( 8 (.87 ka /kg K( 8 K air R e aunt f fan rk dne i W fan, W& fan, t (. kj/( kj 98. kg Stea radiatr We n take te air te r a te yte. e energy balance fr ti cled yte i exreed a Q + W fan, Q E E W + W b, fan, E U yte H c ( ce te bundary rk and U cbe t H fr a cntant reure exanin r crein rce. It can al be exreed a Subtitutg, ic yield Q & + W & t c ( ( fan,,avg. (.8 kj + ( kj (98. kg(. kj/kg ( - erefre, te air teerature te r rie fr t.. - RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

3 -9 Water i t be eated teadily fr t by an electrical reitr ide an ulated ie. e er ratg f te reitance eater and te average velcity f te ater are t be detered. Autin i i a teady-fl rce ce tere i n cange it tie at any t it te yte and tu V and EV. Water i an creible ubtance it cntant ecific eat. e ketic and tential energy cange are negligible, ke e. e ie i ulated and tu te eat le are negligible. rertie e denity and ecific eat f ater at r teerature are ρ kg/ and c.8 kj/kg (able A-. Analyi (a We take te ie a te yte. i i a cntrl vlue ce a cre te yte bundary durg te rce. Al, tere i nly ne let and ne exit and tu & & &. e energy balance fr ti teady-fl yte can be exreed te rate fr a erefre, E& E& Rate f net energy tranfer by eat, rk, and a W& e, E& W& e, Rate f cange ternal, ketic, tential, etc.energie E& + & & (teady E& yte & ( (ce Q& & [ c( e a fl rate f ater trug te ie i & ρv & ( kg/ (. / ke e + v kg/ ] c & (b e average velcity f ater trug te ie i detered fr ( ( W & e, c & (/ kg/(.8 kj/kg ( 7. kw V & V& V A πr. /. / π(. WAER L/ D c W e -9 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

4 -9 e turbcarger f an ternal cbutin enge cnitg f a turbe, a crer, and an aftercler i cnidered. e teerature f te air at te crer let and te iu fl rate f abient air are t be detered. Autin All rcee are teady ce tere i n cange it tie. Ketic and tential energy cange are negligible. Air rertie are ued fr exaut gae. Air i an ideal ga it cntant ecific eat. e ecanical efficiency beteen te turbe and te crer i %. All device are adiabatic. 7 e lcal ateric reure i ka. rertie e cntant reure ecific eat f exaut gae, ar air, and cld abient air are taken t be c.,.8, and. kj/kg K, reectively (able A-b. Analyi (a An energy balance n turbe give W& & c urbe Exaut gae ld air ( (. kg/(. kj/kg K( K. kw ex,ex ex, ex, Air rer Aftercler - i i al te er ut t te crer ce te ecanical efficiency beteen te turbe and te crer i aued t be %. An energy balance n te crer give te air teerature at te crer let W& & a c,a ( a, a,. kw (.8 kg/(.8 kj/kg K( K (b An energy balance n te aftercler give te a fl rate f cld abient air & c a,a ( a, a, & c ca,ca (.8 kg/(.8 kj/kg (8. 8 & ca (. kj/kg ( &.kg/ a, ca e vlu e fl rate ay be detered if e firt calculate ecific vlue f cld abient air at te let f aftercler. at i, v V& R ( ca.87 kj/kg K( + 7 K ka ( ca,.89 /kg a, 8. & (.kg/(.89 /kg.9 /.9 L/ ca v ca ca, RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

5 7- A t ater trea i ixed it a cld ater trea. Fr a ecified ixture teerature, te a fl rate f cld ater trea and te rate f entry eratin are t be detered. Autin Steady eratg cnditin exit. e ixg caber i ell-ulated tat eat l t te urrundg i negligible. ange te ketic and tential energie f fluid trea are negligible. rertie Ntg tat < ka., te ater all tree trea exit a a creed liquid, ic can be arxiated a a aturated liquid at te given teerature. u fr able A-, ka 9.7 kj/kg 7.9 kj/kg K ka @ 8.9 kj/kg.9 kj/kg K 7.9 kj/kg.99 kj/kg K Analyi (a We take te ixg caber a te yte, ic i a cntrl vlue. e a and energy balance fr ti teady-fl yte can be exreed te rate fr a Energy balance: a k f (teady Ma balance: E& & & yte & + & & E E & & Rate f net energy tranfer by eat, rk, and a E & & + & & bg te t relatin give (teady Eyte & Rate f cange ternal, ketic, tential, etc. energie E& ( & & & & + + (ce Q& W& ke e 7. kg/ Slvg fr & and ubtitutg, te a fl rate f cld ater trea i detered t be Al, & ( kJ/kg & (. kg/.8 kg/ ( kJ/kg & & + & kg/ H O ka (b Ntg tat te ixg caber i adiabatic and tu tere i n eat tranfer t te urrundg, te entry balance f te teady-fl yte (te ixg caber can be exreed a S S & & Rate f net entry tranfer by eat and a & + & + S& { Rate f entry eratin & + S& S& yte Subtitutg, te ttal rate f entry eratin durg ti rce bece S & & & & Rate f cange f entry ( 8.8 kg/(.99 kj/kg K (.8 kg/(.9 kj/kg K (. kg/(. kw/k.9 kj/kg K 7-8 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

6 7-9 Air i exanded by an adiabatic turbe it an ientric efficiency f 8%. e let teerature, te rk rduced, and te entry eratin are t be detered. Autin i i a teady-fl rce ce tere i n cange it tie. Ketic and tential energy cange are negligible. e device i adiabatic and tu eat tranfer i negligible. Air i an ideal ga it cntant ecific eat. rertie e rertie f air at te anticiated average teerature f K are c. kj/kg and k.9 (able A-b. Al, R.87 kj/kg K (able A-a. Analyi We take te turbe a te yte, ic i a cntrl vlue ce a cre te bundary. Ntg tat ne fluid trea enter and leave te turbe, te energy balance fr ti teady-fl yte can be exreed te rate fr a E E & & Rate f net energy tranfer by eat, rk, and a W& E& E& & W& a, Rate f cange ternal, ketic, tential, etc. energie a, & ( e ientric exit teerature i (teady Eyte & + & c & (ce Q& ke e (. Ma Air turbe ka Ma 7- ( k / k.9/.9 ka ( + 7 K ka 9. K. Ma Fr te defitin f te ientric efficiency, η η c (.9(. kj/kg K(7 9.K 7. kj/kg a,, ( e actual exit teerature i ten a, c ( a a a c, a c, 7. kj/kg 7 K 8.8 K. kj/kg K e rate f entry eratin te turbe i detered by alyg te rate fr f te entry balance n te turbe: S S & & Rate f net entry tranfer by eat and a & & S { & Rate f entry eratin en, fr te entry cange relatin f an ideal ga, c + ln + S& S& R ln (teady Syte & & ( Rate f cange f entry (ce Q& 8.8 K (. kj/kg Kln (.87 kj/kg Kln 7 K.9 kj/kg K ka ka RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

7 e feedater f a tea er lant i reeated ug tea extracted fr te turbe. e rati f te a fl rate f te extracted tea t te feedater and entry eratin er unit a f feedater are t be detered. Autin i i a teady-fl rce ce tere i n cange it tie. Ketic and tential energy cange are negligible. Heat l fr te device t te urrundg i negligible. rertie e rertie f tea and feedater are (able A- trug A- Ma 88. kj/kg.9 kj/kg K Ma at. liquid. Ma 7. kj/kg kj/kg. Ma kj/kg K Ma Ma.8 kj/kg 7 K 79.8 kj/kg.7 kj/kg K Stea fr turbe Ma Feedater. Ma Analyi (a We take te eat excanger a te yte, ic i a cntrl vlue. e a and energy balance fr ti teady-fl yte can be exreed te rate fr a fll: Ma balance (fr eac fluid trea: at. liquid (teady yte & & & & & & & & and & & & Energy balance (fr te eat excanger: E & & & (teady E Eyte Rate f net energy tranfer by eat, rk, and a E & Rate f cange ternal, ketic, tential, etc.energie E& & + & & & + bg te t, & ( & ( Dividg by & f and ubtitutg, f (ce Q & W & ke e f & & f ( ( kj/kg.7 kj/kg (b e ttal entry cange (r entry eratin durg ti rce er unit a f feedater can be detered fr an entry balance exreed te rate fr a & & S & & + & & S& { S + Syte Rate f net entry tranfer by eat and a Rate f entry eratin + S& & ( + & f ( + S& & Rate f cange f entry S& & f & & f ( + ( (.7(. 8. kj/k er kg f feedater.9 + (.7.78 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

8 7- Water i eated fr t by an electric reitance eater laced te ater ie a it fl trug a eread teadily at a rate f L/. e electric er ut t te eater and te rate f entry eratin are t be detered. e reductin er ut and entry eratin a a reult f tallg a % efficient reeratr are al t be detered. Autin i i a teady-fl rce ce tere i n cange it tie at any t it te yte and tu V and EV. Water i an creible ubtance it cntant ecific eat. e ketic and tential energy cange are negligible, ke e. Heat le fr te ie are negligible. rertie e denity f ater i given t be ρ kg/l. e ecific eat f ater at r teerature i c.8 kj/kg (able A-. Analyi ( a We take te ie a te yte. i i a cntrl vlue ce a cre te yte bundary durg te rce. We berve tat tere i nly ne let and ne exit and tu & & &. en te energy balance fr ti teady-fl yte can be exreed te rate fr a ere Subtitutg, & & & (teady E & & E Eyte E E Rate f net energy tranfer by eat, rk, and a W& + & & e, W& e, Rate f cange ternal, ketic, tential, etc. energie & ( c & ( & ρv & kg/l L/ e, (ce ke e ( ( kg/ ( / kg/(.8 kj/kg ( 8.8 kw W & WAER e rate f entry eratin te eatg ectin durg ti rce i detered by alyg te entry balance n te eatg ectin. Ntg tat ti i a teady-fl rce and eat tranfer fr te eatg ectin i negligible, S S & & Rate f net entry tranfer by eat and a + S& { Rate f entry eratin & & + S& S& yte Rate f cange f entry S& & ( Ntg tat ater i an creible ubtance and ubtitutg, S & c & ln (b e energy recvered by te eat excanger i Q & & & ( / kg/(.8 kj/kg K ln. kj/k K 89 K (.( / kg/(.8 kj/kg ( 9 8. kj/ 8. kw aved ε Qax ε ax erefre, 8. kw le energy i needed ti cae, and te required electric er ti cae reduce t akg te cld ater trea te eat excanger a ur cntrl vlue (a teady-fl yte, te teerature at ic te cld ater leave te eat excanger and enter te electric reitance eatg ectin i detered fr Subtitutg, It yield W &, ne W&,ld Q& aved kw Q& c & ( c, 8 kj/ (/ kg/(.8 kj/kg ( c, c, 7-87 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

9 c, 7..K 7-88 e rate f entry eratin te eatg ectin ti cae i detered iilarly t be S & ( / kg/(.8 kj/kg K ln. kj/k u te reductin te rate f entry eratin it te eatg ectin i S & c & ln reductin...7 kw/k K. K RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

10 8-8- Stea and R-a at te ae tate are cnidered. e fluid it te iger exergy cntent i t be identified. Autin Ketic and tential energy cange are negligible. Analyi e rertie f ater at te given tate and at te dead tate are 8 ka 8 u 9.7 kj/kg v.7 u u f v v f ka e exergy f tea i Fr R-a; Φ /kg.7 kj/kg. (able A - /kg.7 kj/kg K [ u u + ( v v ( ] (able A - (9.7.8kJ/kg + ( ka(.7. (kg (98 K(.7.7kJ/kg K.7 kj 8 ka 8 u 8.99 kj/kg v. u u f v v f ka Φ /kg kj/kg (able A -.88 /kg. kj/kg K [ u u + ( v v ( ] (able A - ( kJ/kg + ( ka(..88 (kg (98 K(.7.kJ/kg K. kj e tea can terefre a re rk tential tan te R-a. Stea kg 8 ka 8 kj /kg ka R-a kg 8 ka 8 kj /kg ka RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

11 8- A cylder i itially filled it R-a at a ecified tate. e refrigerant i cled and cndened at cntant reure. e exergy f te refrigerant at te itial and fal tate, and te exergy detryed durg ti rce are t be detered. Autin e ketic and tential energie are negligible. rertie Fr te refrigerant table (able A- trug A-, v.87 / kg.7 Ma u 7. kj/kg. kj/kg K v v f.7 Ma u 8. kj/kg v.78 / kg. Ma u.8 kj/kg. kj/kg K / kg.98 kj/kg K Analyi (a Fr te cled yte exergy relatin, {( u u ( + ( v } X Φ v ( kg{(7..8 kj/kg (97 K(.. kj/kg K R-a.7 Ma cnt. Q 8-7 and + ( ka( kj kj /kg ka {( u u ( + ( v } X Φ v ( kg{(8..8 kj/kg - (97 K(.98. kj/kg K } + ( ka( kj kj /kg ka (b e reverible rk ut, ic rereent te iu rk ut W rev, ti cae can be detered fr te exergy balance by ettg te exergy detructin equal t zer, X X Net exergy tranfer by eat,rk,anda detryed Exergy detructin (reverible X Xyte W rev, X ange exergy X } kj Ntg tat te rce vlve nly bundary rk, te ueful rk ut durg ti rce i ily te bundary rk exce f te rk dne by te urrundg air, W u, W W urr, ( ( v v W ( V V ( V V ( v v ( kg(7 - ka(.87.8 kj / kg ka. kj Kng bt te actual ueful and reverible rk ut, te exergy detructin r irreveribility tat i te difference beteen te t i detered fr it defitin t be X detryed I W W kj u, rev, RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

12 8- An ulated tank cnta O ga at a ecified reure and vlue. A addle-eel te tank tir te ga, and te reure and teerature f O rie. e actual addle-eel rk and te iu addle-eel rk by ic ti rce can be acclied are t be detered. Autin At ecified cnditin, O can be treated a an ideal ga it cntant ecific eat at te average teerature. e urrundg teerature i 98 K. rertie e ga cntant f O i.889 kj/kg K (able A- Analyi (a e itial and fal teerature f O are V ( ka(. 98. K R (. kg(.889 ka / kg K V R ( ka(. (. kg(.889 ka 7.9 K / kg K.. kg O ka W 8- avg v ( + / ( / 8 K c, avg.8 kj/kg K (able A-b e actual addle-eel rk dne i detered fr te energy balance n te O ga te tank, We take te cntent f te cylder a te yte. i i a cled yte ce n a enter r leave. e energy balance fr ti tatinary cled yte can be exreed a E E Net energy tranfer by eat, rk, and a W, Eyte ange ternal, ketic, tential, etc.energie U c ( v r W, (. kg(.8 kj/kg K( K 87. kj (b e iu addle-eel rk it ic ti rce can be acclied i te reverible rk, ic can be detered fr te exergy balance by ettg te exergy detructin equal t zer, (reverible X Xdetryed Xyte Wrev, X X X Net exergy tranfer by eat,rk,anda Exergy detructin ange exergy Subtitutg te cled yte exergy relatin, te reverible rk ut fr ti rce i detered t be W rev, c 7.7 kj ce [( u u ( + ( v v ] [ ( ( ] v,avg (. kg [(.8 kj/kg K( K (98.(. kj/kg K ] v 7.9 K cv,avg ln + R ln (.8 kj/kg K ln. kj/kg K v 98. K RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

13 8-9 arbn teel ball are t be annealed at a rate f / by eatg te firt and ten allg te t cl lly abient air at a ecified rate. e ttal rate f eat tranfer fr te ball t te abient air and te rate f exergy detructin due t ti eat tranfer are t be detered. Autin e teral rertie f te ball are cntant. ere are n cange ketic and tential energie. e ball are at a unifr teerature at te end f te rce. rertie e denity and ecific eat f te ball are given t be ρ 78 kg/ and c. kj/kg.. Analyi (a We take a gle ball a te yte. e energy balance fr ti cled yte can be exreed a E E Net energy tranfer by eat, rk, and a Q Q ange ternal, ketic, tential, etc. energie U ball c ( Eyte ( u u e aunt f eat tranfer fr a gle ball i πd π (.8 ρv ρ (78 kg/. kg Q c ( (.kg(. kj/kg. (9 78J en te ttal rate f eat tranfer fr te ball t te abient air bece Q & n& Q ( ball/ (.78kJ/ball 9 kj/ W ball.78kj (er ball (b e exergy detructin (r irreveribility can be detered fr it defitin X detryed S. e entry erated durg ti rce can be detered by alyg an entry balance n an extended yte tat clude te ball and it iediate urrundg tat te bundary teerature f te extended yte i at at all tie: ere S Subtitutg, S Net entry tranfer by eat and a Q + b S { Entry eratin + S Syte ange entry S Syte ( c yte ln S Q b + S yte + 7 (. kg(. kj/kg.kln. kj/k Q.78 kj S + Syte. kj/k. kj/k 8 K b en te rate f entry eratin bece S & S n& ball (er ball (. kj/k ball( ball/.7 kj/.k.7 kw/k 8- Fally, X & & detryed S (8 K(.7 kw/ K. kw W RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

14 8- Stea exand a turbe fr a ecified tate t anter ecified tate. e actual er ut f te turbe i given. e reverible er ut and te ecnd-la efficiency are t be detered. Autin i i a teady-fl rce ce tere i n cange it tie. tential energy cange i negligible. e teerature f te urrundg i given t be. rertie Fr te tea table (able A- trug A- Ma ka 8.8 kj/kg 7.9 kj/kg K 8. kj/kg 7.9 kj/kg K Analyi (b ere i nly ne let and ne exit, and tu & & &. We take te turbe a te yte, ic i a cntrl vlue ce a cre te bundary. e energy balance fr ti teady-fl yte can be exreed te rate fr a Subtitutg, E & & (teady E Eyte Rate f net energy tranfer by eat, rk, and a & ( + V E& W& / Rate f cange ternal, ketic, tential, etc. energie E& W& & + & ( & + V V + V / (8 / kj/ & &. kg/ ( / kj/kg / 8 / Ma SEAM ka / MW e reverible (r axiu er ut i detered fr te rate fr f te exergy balance alied n te turbe and ettg te exergy detructin ter equal t zer, X X & & Ratef net exergy tranfer by eat, rk,and a (reverible (teady X detryed X yte & & Ratef exergy detructin W& X& X& & ψ W& rev, Ratef cange f exergy rev, & ( ψ ψ & [( + & ψ ( ke e ] 8-9 Subtitutg, W & rev, W& & ( kw (. kg/(98 K( kj/kg K 88 kw (b e ecnd-la efficiency f a turbe i te rati f te actual rk ut t te reverible rk, W& η II W& rev, MW.88 MW 8.% Dicuin Nte tat.9% ercent f te rk tential f te tea i ated a it fl trug te turbe durg ti rce. RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

15 8- butin gae exand a turbe fr a ecified tate t anter ecified tate. e exergy f te gae at te let and te reverible rk ut f te turbe are t be detered. Autin i i a teady-fl rce ce tere i n cange it tie. tential energy cange are negligible. e teerature f te urrundg i given t be. e cbutin gae are ideal gae it cntant ecific eat. rertie e cntant reure ecific eat and te ecific eat rati are given t be c. kj/kg.k and k.. e ga cntant R i detered fr R c c c c / k c ( / k (. kj/kg K( /.. kj/kg K v 8- Analyi (a e exergy f te gae at te turbe let i ily te fl exergy, ere u, V ψ ( + + gz c ln R ln 7 K (. kj/kg Kln (. kj/kg Kln 98 K. kj/kg K 8 ka ka 8 ka 9 GAS URBINE ka ( / ψ (. kj/kg.k(9 (98 K(. kj/kg K + kj/kg / 7.8 kj/kg (b e reverible (r axiu rk ut i detered fr an exergy balance alied n te turbe and ettg te exergy detructin ter equal t zer, ere X X & & Ratef net exergy tranfer by eat,rk,anda (reverible (teady Xdetryed Xyte & & Ratef exergy detructin W& X& X& & ψ W& rev, Ratef cange f exergy rev, & ( ψ ψ & [( ( ke e + & ψ ] and V ke V ( / ( / kj/kg / c ln R ln 9 K ka (. kj/kg Kln (. kj/kg Kln 7 K 8 ka.99 kj/kg K 9. kj/kg en te reverible rk ut n a unit a bai bece rev, + ( ke c ( + ( ke (. kj/kg K(9 + (98 K(.99 kj/kg K 9. kj/kg.9 kj/kg RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

16 8-79 A rigid tank itially cnta aturated R-a var. e tank i cnnected t a uly le, and R-a i alled t enter te tank. e a f te R-a tat entered te tank and te exergy detryed durg ti rce are t be detered. Autin i i an unteady rce ce te cnditin it te device are cangg durg te rce, but it can be analyzed a a unifr-fl rce ce te tate f fluid at te let rea cntant. Ketic and tential energie are negligible. ere are n rk teractin vlved. e directin f eat tranfer i t te tank (ill be verified. rertie e rertie f refrigerant are (able A- trug A- 8-7 v v g. Ma u u g at. Ma Ma.7.8 kj/kg / kg.9 kj/kg K R-a. Ma v v f. Ma u u f at. liquid i. Ma i i Ma Ma 9. kj/kg. kj/kg K.9.9 kj/kg / kg. kj/kg K R-a.. Ma Sat. var Analyi We take te tank a te yte, ic i a cntrl vlue. Ntg tat te icrcic energie f flg and nnflg fluid are rereented by entaly and ternal energy u, reectively, te a and energy balance fr ti unifr-fl yte can be exreed a Ma balance: i Energy balance: E E Net energy tranfer by eat, rk, and a Q + i i yte ange ternal, ketic, tential, etc.energie u Eyte u (a e itial and te fal ae te tank are V..98 kg v.7 /kg V v en fr te a balance i. 9. kg.9 /kg kg (ce W ke e e eat tranfer durg ti rce i detered fr te energy balance t be Q + u u (. kg (9. kj/kg + (9.(.9 kj/kg (.98 kg( 7 kj i i.8 kj/kg Q RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

17 (b e exergy detryed durg a rce can be detered fr an exergy balance r directly fr it defitin X S. e entry eratin S ti cae i detered fr an entry balance n an detryed extended yte tat clude te tank and it iediate urrundg tat te bundary teerature f te extended yte i te urrundg teerature urr at all tie. It give S S Net entry tranfer by eat and a Q b, i detered t be X detryed S { Entry eratin + + S i + i S 8. kj Syte ange entry S S (8 K 9. tank ( tank Q i i i i Q Subtitutg, te exergy detructin [ (7 kj/(8 K ] 8-8 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

18 8-8 Liquid ater i eated a caber by ixg it it uereated tea. Fr a ecified ixg teerature, te a fl rate f te tea and te rate f exergy detructin are t be detered. Autin i i a teady-fl rce ce tere i n cange it tie. Ketic and tential energy cange are negligible. ere are n rk teractin. rertie Ntg tat < ka., te cld ater and te exit ixture trea exit a a creed liquid, ic can be arxiated a a aturated liquid at te given teerature. Fr able A- trug A-, ka kj/kg.7 kj/kg K kj/ 8-77 ka ka 8 f 87. kj/kg 7.8 kj/kg kj/kg.7 kj/kg K Analyi (a We take te ixg caber a te yte, ic i a cntrl vlue. e a and energy balance fr ti teady-fl yte can be exreed te rate fr a kg/ MIXING HAMBER ka 8 (teady Ma balance: & & & yte & + & & Energy balance: E & & (teady E Eyte Rate f net energy tranfer by eat, rk, and a E& & + & Rate f cange ternal, ketic, tential, etc.energie E& Q& & + & &Q & + & & + & & + & bg te t relatin give ( ( ( & Q& & ( (/ kj/ ( kg/(.98. ( 87.. kj/kg Slvg fr and ubtitutg, te a fl rate f te uereated tea i detered t be Al, & & & + & kg/ kj/kg.9 kg/ (b e exergy detryed durg a rce can be detered fr an exergy balance r directly fr it defitin X S ere te entry eratin S i detered fr an entry balance n an extended detryed yte tat clude te ixg caber and it iediate urrundg. It give S S & & Rate f net entry tranfer by eat and a & + & & + Q& b,urr S& { Rate f entry eratin + S& S& yte Rate f cange f entry S& Subtitutg, te exergy detructin i detered t be X& detryed & & & Q& + Q& S & & + & & b, urr (98 K( / 98kW/K kw RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

19 8-88 Water i eated by t il a eat excanger. e let teerature f te il and te rate f exergy detructin it te eat excanger are t be detered. Autin Steady eratg cnditin exit. e eat excanger i ell-ulated tat eat l t te urrundg i negligible and tu eat tranfer fr te t fluid i equal t te eat tranfer t te cld fluid. ange te ketic and tential energie f fluid trea are negligible. Fluid rertie are cntant. rertie e ecific eat f ater and il are given t be.8 and. kj/kg., reectively. Analyi We take te cld ater tube a te yte, ic i a cntrl vlue. e energy balance fr ti teady-fl yte can be exreed te rate fr a E E & & Rate f net energy tranfer by eat, rk, and a Q& E& + & Q& Rate f cange ternal, ketic, tential, etc. energie E& & c & (teady Eyte & (ce ke e ( en te rate f eat tranfer t te cld ater ti eat excanger bece Q& [ c & ( ] ater 7 Water. kg/ (. kg/(.8 kj/kg. (7 9. kw Oil 7 kg/ ( tube ae Ntg tat eat ga by te ater i equal t te eat l by te il, te let teerature f te t ater i detered fr Q& [ c & ( ] il Q& c & 9. kw 7 9. ( kg/(. kj/kg. (b e rate f entry eratin it te eat excanger i detered by alyg te rate fr f te entry balance n te entire eat excanger: & ater S S & & Rate f net entry tranfer by eat and a & + & + & il & & ater + & & il S& { Rate f entry eratin + S& + S& S& (teady S& yte & Rate f cange f entry (ce Q ater ( + & Ntg tat bt fluid trea are liquid (creible ubtance, te rate f entry eratin i detered t be S& & ater c ln + & il c ln (. kg/(.8 kj/kg.k ln + ( kg/(. kj/kg.k ln.7 kw/k e exergy detryed durg a rce can be detered fr an exergy balance r directly fr it defitin X S, detryed il ( 8-79 X & detryed S& (98 K(.7 kw/k 9 kw RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

20 8- Ht exaut gae leavg an ternal cbutin enge i t be ued t bta aturated tea an adiabatic eat excanger. e rate at ic te tea i btaed, te rate f exergy detructin, and te ecnd-la efficiency are t be detered. Autin Steady eratg cnditin exit. Ketic and tential energy cange are negligible. Air rertie are ued fr exaut gae. reure dr te eat excanger are negligible. rertie e ga cntant f air i R.87 kjkg.k. e ecific eat f air at te average teerature f exaut gae ( K i c. kj/kg.k (able A-. Analyi (a We dente te let and exit tate f exaut gae by ( and ( and tat f te ater by ( and (. e rertie f ater are (able A- 8.9 kj/kg x.99 kj/kg.k 79. kj/kg x. kj/kg.k An energy balance n te eat excanger give & a + & & a + & & c & ( a ( Ex. ga ka Sat. va. (.8 kg/(. kj/kg ( & ( kJ/kg &.7 kg/ (b e ecific exergy cange f eac trea a it fl te eat excanger i Heat Excanger Water 8-9 a c ln ( + 7 K (.8 kg/(. kj/kg.kln.8 kj/kg.k ( + 7 K ψ c a ψ ( (. kj/kg. ( - ( + 7 K(-.8 kj/kg.k 9. kj/kg 9.9 kj/kg a ( ( kJ/kg ( + 7 K(..99kJ/kg.K e exergy detructin i detered fr an exergy balance n te eat excanger t be r X& X& det det & ψ + & a a 8.98 kw ψ (.8 kg/(-9. kj/kg + (.7 kg/(9.9 kj/kg 8.98 kw (c e ecnd-la efficiency fr a eat excanger ay be defed a te exergy creae f te cld fluid divided by te exergy decreae f te t fluid. at i, & ψ (.7 kg/(9.9 kj/kg ηii. & ψ (.8 kg/(-9. kj/kg a a RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

21 9-9 An ideal Ott cycle it air a te rkg fluid a a crein rati f 9.. e iget reure and teerature te cycle, te aunt f eat tranferred, te teral efficiency, and te ean effective reure are t be detered. Autin e air-tandard autin are alicable. Ketic and tential energy cange are negligible. Air i an ideal ga it cntant ecific eat. rertie e rertie f air at r teerature are c. kj/kg K, c v.78 kj/kg K, R.87 kj/kg K, and k. (able A-. Analyi (a rce -: ientric crein. v v v v k rce -: ientric exanin. k ( 8 K( 9. v v v 9. v rce -: v cntant eat additin K. ( 8 K( 99 K 77.9 K 8 K ( 9. ( ka 8 ka Q Q v 9- (b v v 99 K ka 77.9 K V R ( ka(. (.87 ka /kg K( 8 K ( 8 7 ka.788 kg ( u c ( (.788 kg(.78 kj/kg K( K.9 kj Q u v (c rce -: v cntant eat rejectin. Q v ( (.788 kg(.78 kj/kg K( 8 8 K. kj ( u u c W net Q Q.9.. kj η t W Q net,. kj 9.%.9 kj (d V ax V V r Wnet, Wnet, ME V V V ( / r. kj (. ( /9. ka kj ka RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

22 9- A gale enge erate n an Ott cycle. e crein and exanin rcee are deled a lytric. e teerature at te end f exanin rce, te net rk ut, te teral efficiency, te ean effective reure, te enge eed fr a given net er, and te ecific fuel cnutin are t be detered. Autin e air-tandard autin are alicable. Ketic and tential energy cange are negligible. Air i an ideal ga it cntant ecific eat. rertie e rertie f air at 8 K are c. kj/kg K, c v.8 kj/kg K, R.87 kj/kg K, and k.9 (able A-b. Analyi (a rce -: lytric crein v v n n v v ( K(.-. K. ( ka( 8 ka R( (.87 kj/kg K(. K. kj/kg n. rce -: cntant vlue eat additin 8 ka 8 ka (. K K ( q u u cv (.8 kj/kg K(. K kj/kg rce -: lytric exanin. v v n.- ( K 98 K n v. v ( 8 ka. ka R( (.87 kj/kg K(98 K kj/kg n. rce -: cntant vlue eat rejectin. (b e net rk ut and te teral efficiency are net,. 79 kj/kg net, 79 kj/kg η t. 9 9.% q kj/kg (c e ean effective reure i detered a fll R v (.87 ka /kg K( K ka v ax v v r net, net, ME v v v ( / r 79 kj/kg.8897 (.8897 /kg( / /kg v ka kj ax Q 98 ka Q V 9-9 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

23 9- (d e clearance vlue and te ttal vlue f te enge at te begng f crein rce (tate are r V Vc + V d c Vc c Vc +. V. V V c + Vd e ttal a cntaed te cylder i t V R ( ka/.7 (.87 ka /kg K( K e enge eed fr a net er ut f kw i W n& & t net net.978 kg kj/ ( rev/cycle 8 rev/ (.978 kg(79 kj/kg cycle Nte tat tere are t revlutin ne cycle fur-trke enge. (e e a f fuel burned durg ne cycle i (.978 kg a t f AF f Fally, te ecific fuel cnutin i f f f f. kg fc f t net. kg (.978 kg(79 kj/kg g kj 7 g/kw kg kw RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

24 9- An ideal dual cycle a a crein rati f and cutff rati f.. e teral efficiency, aunt f eat added, and te axiu ga reure and teerature are t be detered. Autin e air-tandard autin are alicable. Ketic and tential energy cange are negligible. Air i an ideal ga it cntant ecific eat. rertie e rertie f air at r teerature are c. kj/kg K, c v.78 kj/kg K, R.87 kj/kg K, and k. (able A-a. Analyi e ecific vlue f te air at te tart f te crein i v R (.87 ka /kg K(9 K. 8 ka and te ecific vlue at te end f te crein i v v /kg.78 r. e reure at te end f te crein i v v k r and te axiu reure i x k (8 ka e teerature at te end f te crein i and /kg. ( 9 ka r (.(9 ka 89 ka k v k r (9 K v x 89 ka (8. K 9 ka Fr te defitin f cutff rati e reag tate teerature are ten. ( 8. K K v r v r v (.(.78 /kg.9 c x x c v.9 ( K K v x.78 v v k.9 ( K.. 7. K Alyg te firt la and rk exrein t te eat additin rcee give q c v e eat rejected i ( x + c ( x (.78 kj/kg K( 8.K + (. kj/kg K( K. kj/kg q v c ( (.78 kj/kg K(7. 9K 97. kj/kg /kg /kg x q v q 9- en, η t q q 97. kj/kg.. kj/kg RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

25 9- A ix-cylder crein ignitin enge erate n te ideal Dieel cycle. e axiu teerature te cycle, te cutff rati, te net rk ut er cycle, te teral efficiency, te ean effective reure, te net er ut, and te ecific fuel cnutin are t be detered. Autin e air-tandard autin are alicable. Ketic and tential energy cange are negligible. Air i an ideal ga it cntant ecific eat. rertie e rertie f air at 8 K are c. kj/kg K, c v.8 kj/kg K, R.87 kj/kg K, and k.9 (able A-b. Analyi (a rce -: Ientric crein 9-8 k v.9- ( K( 9 v k v v 9. K.9 ( 9 ka( 9 ka e clearance vlue and te ttal vlue f te enge at te begng f crein rce (tate are Q V c Vc + V d r V c.778 V V + V c d Vc +. 9 V e ttal a cntaed te cylder i V R (9 ka(.78 (.87 ka /kg K( K e a f fuel burned durg ne cycle i AF a f rce -: cntant reure eat additin Q v f f c.88 kg (.88 kg f 8 f. kg Q f q η (. kg(, kj/kg(.98 e cutff rati i HV c f.7 kj c (.7 kj (.88 kg(.8 kj/kg.k( 9. K K β K 9. K. Q (b V V r 9 (.( V βv V V RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

26 9-9 rce -: ientric exanin. k V.99 ( K V.78 k V V rce - : cntant vue eat rejectin..99 ( ka.9 ka K ( (.88 kg (.8 kj/kg K( 8 K. kj Q cv e net rk ut and te teral efficiency are W net, Q Q.7..7 kj Wnet,.7 kj η t %.7 kj Q (c e ean effective reure i detered t be W net,.7 kj ME V V ( (d e er fr enge eed f 7 r i W& net W net ka kj 87 ka n& 7 (rev/ (.7 kj/cycle 9. kw ( rev/cycle Nte tat tere are t revlutin ne cycle fur-trke enge. (e Fally, te ecific fuel cnutin i fc f W net. kg g kj g/kw.7 kj/kg kg kw RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

27 9-9 A ile Braytn cycle it air a te rkg fluid erate beteen te ecified teerature and reure liit. e effect f nn-ientric crer and turbe n te back-rk rati i t be cared. Autin Steady eratg cnditin exit. e air-tandard autin are alicable. Ketic and tential energy cange are negligible. Air i an ideal ga it cntant ecific eat. rertie e rertie f air at r teerature are c. kj/kg K and k. (able A-a. Analyi Fr te crein rce, ( k / k./. (88 K( 8.8 K η c c Fr te exanin rce, ( + ( η ( k / k./. (87 K K.9 9. K 87 K 88 K q q 9-9 η c ( c ( η ( 87 (.9( K e ientric and actual rk f crer and turbe are W, c ( (. kj/kg K(8.8 88K 99. kj/kg W c ( (. kj/kg K(8.9 88K. kj/kg W urb, c ( (. kj/kg K(87 9.K. kj/kg W urb c ( (. kj/kg K(87 7.K. kj/kg e back rk rati fr 9% efficient crer and ientric turbe cae i r b W W urb,. kj/kg.77. kj/kg e back rk rati fr 9% efficient turbe and ientric crer cae i r b W W, urb 99. kj/kg. kj/kg e t reult are alt identical..7 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

28 9- A ga-turbe lant erate n te ile Braytn cycle. e net er ut, te back rk rati, and te teral efficiency are t be detered. Autin e air-tandard autin are alicable. Ketic and tential energy cange are negligible. Air i an ideal ga it variable ecific eat. rertie e ga cntant f air i R.87 kj/kg K (able A-. Analyi (a Fr ti rble, e ue te rertie fr EES ftare. Reeber tat fr an ideal ga, entaly i a functin f teerature nly erea entry i functin f bt teerature and reure. rce -: rein ka. kj/kg.79 kj/kg K ka.79 kj/kg.k 7.7 kj/kg re. ka 7.7. η.8 8. kj/kg. rce -: Exanin 99. kj/kg η Ma butin caber urbe We cannt fd te entaly at tate directly. Hever, ug te fllg le EES tgeter it te ientric efficiency relatin, e fd 87 kj/kg, º,.7 kj/kg.k. e lutin by and uld require a trialerrr arac. _entaly(air, entry(air, _, entaly(air, _, _ e a fl rate i detered fr V & & R e net er ut i ( ka(7/ / (.87 ka /kg K( + 7 K.99 kg/ W & & (.99 kg/(8..kj/kg kw, ( W & & ( (.99 kg/(87 99.kJ/kg,88 kw W &, net (b e back rk rati i r b W& W&,88 kw W& W&,,,, kw,88 kw. (c e rate f eat ut and te teral efficiency are Q & & ( (.99 kg/(87 8.kJ/kg,788 kw W& net kw η t. 9 9.% Q&,788 kw 9-7 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

29 A Braytn cycle it reeratin ug air a te rkg fluid i cnidered. e air teerature at te turbe exit, te net rk ut, and te teral efficiency are t be detered. Autin e air tandard autin are alicable. Air i an ideal ga it variable ecific eat. Ketic and tential energy cange are negligible. rertie e rertie f air are given able A-7. Analyi (a e rertie f air at variu tate are u, (b r r K η K r r η ( 7( K net. kj/kg r. r (..88. ( / η. + (.. /(.7 9. kj/kg η. kj/kg 7.8 kj/kg 8. kj/kg ( 9. (.8( kj/kg,, ( ( ( ( kj/kg. K K q (c en, ε + ε 8. q η t q net ( + (.( 8.9 kj/kg.% 8.8 kj/kg kj/kg kj/kg RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

30 9-9 An ideal ga-turbe cycle it t tage f crein and t tage f exanin i cnidered. e back rk rati and te teral efficiency f te cycle are t be detered fr te cae f it and it a reeratr. Autin e air tandard autin are alicable. Air i an ideal ga it variable ecific eat. Ketic and tential energy cange are negligible. rertie e rertie f air are given able A-7. Analyi (a e rk ut t eac tage f crer are identical, are te rk ut f eac tage f te turbe ce ti i an ideal cycle. en, u, r q η K r,, b net t r K ((.8 ( kj/kg 79. ( (..9. kj/kg ( ( kj/kg,, r r.9 kj/kg r r. kj/kg.%.8 kj/kg 7 8. kj/kg 9. kj/kg ( + ( ( ( q, net 7,.8..7 kj/kg.7 kj/kg.8% 97.9 kj/kg K K 97.9 kj/kg (b Wen a reeratr i ued, r b rea te ae. e teral efficiency ti cae bece q q η re t q ε q ( (.7( 9..,ld net 8 q re kj/kg.7 kj/kg.% 79. kj/kg. kj/kg 9 q RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

31 9- A turbfan enge eratg n an ideal cycle rduce, N f trut. e air teerature at te fan let needed t rduce ti trut i t be detered. Autin Steady eratg cnditin exit. e air tandard autin are alicable. Air i an ideal ga it cntant ecific eat at r teerature. e turbe rk ut i equal t te crer rk ut. rertie e rertie f air at r teerature are R.87 ka /kg K, c. kj/kg K and k. (able A- a. Analyi e ttal a fl rate i 9- N, v R AV & v & e (.87 ka ( K. ka πd V π (. v 7. kg/ & 8. kg/ 8 8 /kg / 7. kg/. /kg q q e a fl rate trug te fan i & f & & e kg/ In rder t rduce te ecified trut frce, te velcity at te fan exit ill be F & f V ( Vexit let V, N kg / ( / + 9. kg/ N F exit V let + & f 8. / An energy balance n te trea ag trug te fan give c ( V exit V V exit let V c let (8. / ( / K (. kj/kg K. K kj/kg / RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

32 9- A ure jet enge eratg n an ideal cycle i cnidered. e velcity at te nzzle exit and te trut rduced are t be detered. Autin Steady eratg cnditin exit. e air tandard autin are alicable. Air i an ideal ga it cntant ecific eat at r teerature. e turbe rk ut i equal t te crer rk ut. rertie e rertie f air at r teerature are R.87 ka /kg K, c. kj/kg K and k. (able A- a. Analyi (a We aue te aircraft i tatinary and te air i vg tard te aircraft at a velcity f V /. Ideally, te air ill leave te diffuer it a negligible velcity (V. Diffuer: q E& E& + V / c E& (teady yte + V ( V + c rer: urbe: c, / k / V K + ( k / ( r ( ( (.88 ka ( k / k turb, E& E& V + ( / ( (. kj/kg K 88.7 K K kj/kg / ( ka.88 ka 8. ka./. ( 88.7 K(.7 K r K Nzzle: ( k / k ka ( 8 K 8. ka (teady E& E& E& E& E& r V + V V exit / yte + V / V V + e a fl rate trug te enge i πd c V./. c 88.7 K ( c (./. ( + V / 9. K ( (. kj/kg K( K.8 / (.8 ka ( K R 7 v.8 ka AV & v V π (. v e trut frce erated i ten F & ( V V exit let / kj/kg /kg / 9. kg/.8 /kg N (9. kg/(.8 / kg / 9, N q 9-7 RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

33 9- A turbjet aircraft flyg at an altitude f 9 i eratg n te ideal jet rulin cycle. e velcity f exaut gae, te rulive er develed, and te rate f fuel cnutin are t be detered. Autin Steady eratg cnditin exit. e air tandard autin are alicable. Air i an ideal ga it cntant ecific eat at r teerature. Ketic and tential energie are negligible, excet at te diffuer let and te nzzle exit. e turbe rk ut i equal t te crer rk ut. rertie e rertie f air at r teerature are c. kj/kg.k and k. (able A-a. Analyi (a We aue te aircraft i tatinary and te air i vg tard te aircraft at a velcity f V /. Ideally, te air ill leave te diffuer it a negligible velcity (V. Diffuer: E& E& + V rer: urbe: r Nzzle: c, / c E& (teady yte + V ( V + c / k / V K + ( k / ( r ( ( (. ka ( k / k turb, E& E& V + ( / ( (. kj/kg K 9.9 K K kj/kg / ( ka. ka 7. ka V./../. ( 9.9 K( 9.7 K K E& E& + V / E& ( k (teady yte + V / V + / k V ( K c c ka 7. ka E& E& 9.9 K ( c ( ( + V /./. 8. K Q i 9-8 r (b (c V / kj/kg & W Q& & fuel ( (. kj/kg K( K / & V ( V V ( kg/( /( /,7 kw exit & let aircraft kj/kg / ( c & ( ( kg/(. kj/kg K( 9.7 Q& 8, kj/. kg/ HV,7 kj/kg K 8, kj/ RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

34 9- A turbjet aircraft tat a a reure rate f 9 i tatinary n te grund. e frce tat ut be alied n te brake t ld te lane tatinary i t be detered. Autin Steady eratg cnditin exit. e air tandard autin are alicable. Air i an ideal ga it variable ecific eat. Ketic and tential energie are negligible, excet at te nzzle exit. rertie e rertie f air are given able A-7. Analyi (a Ug variable ecific eat fr air, rer: q 9 K r Q& & fuel Q& & r 9. kj/kg r (( 9. HV..8 (. kg/(,7 kj/kg, kj/ 7. kj/kg kg/.7 kj/kg, kj/ q 9- q + q kj/kg r 8. urbe: r c, + turb, kj/kg Nzzle: r E& E& + V r E& / r E& E& / ( 8. (teady yte + V V + V kj/kg V / kj/kg ( ( ( kj/kg 98. / Brake frce rut & ( V V ( kg/( 98. / 9,7 N exit let N kg / RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

35 9- e ttal exergy detructin aciated it te Braytn cycle decribed rb. 9- and te exergy at te exaut gae at te turbe exit are t be detered. rertie e ga cntant f air i R.87 kj/kg K (able A-. Analyi Fr rb. 9-, q 8.8, q 7.7 kj/kg, and K 8. kj/kg K 8. kj/kg 78. kj/kg.798 kj/kg K.7 kj/kg K.9 kj/kg K.97 kj/kg K.8 kj/kg K and, fr an energy balance n te eat excanger, K K q 9- u, 8. ( kj/kg.8 kj/kg K x x x detryed, detryed, detryed, re x x detryed, detryed, ( ( 9 K ( (.87 kj/kg K ln( 7 ( ( 9 K (.97.9 (.87kJ/kg K ln( /7,re ( + ( + ( 9 K( ( 9 K,,,, [ ] [( ( ] 8.8 kj/kg K qr qr +, R, R Rln Rln 7.7 kj/kg 9 K Rln Rln 8.9 kj/kg.8.7 kj/kg q kj/kg q + ( 9 K kj/kg N tg 9 K 9. kj/kg and 9 K.8 kj/kg K, te trea exergy at te exit f te reeratr (tate i detered fr H L kj/kg ere u, φ ( ( + + gz V Rln kj/kg K φ ( 9 K(.89 kj/kg. kj/kg K RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

36 9-79 A ga-turbe lant erate n te reerative Braytn cycle it reeatg and terclg. e back rk rati, te net rk ut, te teral efficiency, te ecnd-la efficiency, and te exergie at te exit f te cbutin caber and te reeratr are t be detered. Autin e air-tandard autin are alicable. Ketic and tential energy cange are negligible. Air i an ideal ga it variable ecific eat. rertie e ga cntant f air i R.87 kj/kg K. Analyi (a Fr ti rble, e ue te rertie fr EES ftare. Reeber tat fr an ideal ga, entaly i a functin f teerature nly erea entry i functin f bt teerature and reure. Otiu terclg and reeatg reure i ((. ka rce -, -: rein K K ka. kj/kg.7 kj/kg K. ka.7 kj/kg.k 8.79 kj/kg η.8. K K. ka.78 kj/kg ka. kj/kg.k. kj/kg K. kj/kg..78 η.8.78 rce -7, 8-9: Exanin K K ka. kj/kg K 7. ka 7. kj/kg.k η 8 K K 8 8. ka 8.9 kj/kg kj/kg kj/kg.99 kj/kg K.88 kj/kg 7.8 kj/kg 7. kj/kg 7 q ka kj/kg.k kj/kg RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

37 ycle analyi: η kj/kg , + 7. kj/kg 9-, kj/kg r b,, 7... net kj/kg,, Reeratr analyi: ε re 9 7. K ka.7 kj/kg K (b q kj/kg 7. kj/kg q re kj/kg η t q net (c e ecnd-la efficieny f te cycle i defed a te rati f actual teral efficiency t te axiu ible teral efficiency (arnt efficiency. e axiu teerature fr te cycle can be taken t be te turbe let teerature. at i, and K η ax.78 K η II η t η ax (d e exergie at te cbutin caber exit and te reeratr exit are x x (.9.kJ/kg ( K(..7kJ/kg.K 9.7 kj/kg ( (7..kJ/kg ( K(.7.7kJ/kg.K 8.8 kj/kg ( RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

38 - A -MW cal-fired tea er lant erate n a ile ideal Ranke cycle beteen te ecified reure liit. e verall lant efficiency and te required rate f te cal uly are t be detered. Autin Steady eratg cnditin exit. Ketic and tential energy cange are negligible. Analyi (a Fr te tea table (able A-, A-, and A-, v v, ka ka.9 kj/kg. /kg v( (. /kg( 9 ka kj ka 9. kj/kg kj/kg, 9 Ma. kj/kg.8 kj/kg K ka f.8.79 x.88 fg 7. + x.9 + e teral efficiency i detered fr f fg (.88( kj/kg 9Ma Q ka Q -8 and u, q q η verall η t q η t q kj/kg kj/kg η cb η.99 (.99(.7( % (b en te required rate f cal uly bece and & Q& cal W& η Q& net verall cal, kj/.8, kj/, kj/. kg/.9 tn/ 9, kj/kg RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

39 - A tea er lant tat erate n a reeat Ranke cycle i cnidered. e cndener reure, te net er ut, and te teral efficiency are t be detered. Autin Steady eratg cnditin exit. Ketic and tential energy cange are negligible. Analyi (a Fr te tea table (able A-, A-, and A-,. Ma Ma η kj/kg? η? x.9 Ma η 7..7 kj/kg K 98. kj/kg ( (.8( kj/kg 7.8 kj/kg K (Eq. (Eq. η kj/kg ( 8. (.8( 8. (Eq. Biler. Ma? u ndener urbe e reure at tate ay be detered by a trial-errr arac fr te tea table r by ug EES fr te abve tree equatin: (b en, 9.7 ka,. kj/kg, v v, ycle analyi: q q W& net 9.7 ka ka v( / η kj (. /kg(, 9.7 ka / (.9. + kj/kg, 89.7 kj/kg ( + ( & ( q q. /kg ka kj/kg kj/kg kj/kg (c e teral efficiency i η t (7.7 kg/(.8-7.7kj/kg q 7.7 kj/kg. 9.9% q.8 kj/kg, kw - RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

40 - - A tea er lant erate n an ideal reerative Ranke cycle it t en feedater eater. e net er ut f te er lant and te teral efficiency f te cycle are t be detered. Autin Steady eratg cnditin exit. Ketic and tential energy cange are negligible. Analyi 7 urbe Biler 8 9 f II f I ndener III II I Ma. Ma. Ma ka y y 9 - y - z (a Fr te tea table (able A-, A-, and A-, v v I, v ka ka 7.7 kj/kg. /kg ( (. /kg( ka + I,. Ma f at.liquid v v II, kj/kg ( (. /kg( ka. kj/kg. Ma f at.liquid v v III, v v + II, kj ka ( (. /kg(, ka. kj/kg + III, 7 Ma 7 8. Ma Ma x kj/kg Ma Ma Ma.8 kj/kg.9 kj/kg K 8.8 kj/kg 7.8 kj/kg kj/kg 9 9 f f fg + x 9.7+ /kg /kg fg kj ka kj ka. kj/kg (.9(. 8.7 kj/kg RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

41 ka 7 x f f fg + x fg (.89(.. kj/kg - e fractin f tea extracted i detered fr te teady-fl energy balance equatin alied t te feedater eater. Ntg tat Q & W & ke e, FWH-: E& E& E& i i E& E& & (teady yte & e e & & & y 8 + ( y ( ere y i te fractin f tea extracted fr te turbe ( & 8/ &. Slvg fr y, FWH-: y & ii & ee &.7 & & ( y z ( y z 9 + ere z i te fractin f tea extracted fr te turbe ( & 9/ & at te ecnd tage. Slvg fr z, en, and z y q q W & net ( ( kj/kg ( y z( (.7.7(. 7.7 q q kj/kg ( kg/( 88. kj/kg,. MW & kw net net (b e teral efficiency i η t q q.8 kj/kg 7.% 9. kj/kg.8 kj/kg RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

42 - An ideal reerative Ranke cycle it a cled feedater eater i cnidered. e rk rduced by te turbe, te rk cnued by te u, and te eat added te biler are t be detered. Autin Steady eratg cnditin exit. Ketic and tential energy cange are negligible. Analyi Fr te tea table (able A-, A-, and A-, v v, ka ka. kj/kg.7 /kg v ( kj (.7 /kg( ka ka. kj/kg kj/kg, ka ka ka x. kj/kg.7 kj/kg K 8.9 kj/kg f fg + x f (.87(7..7 kj/kg Fr an ideal cled feedater eater, te feedater i eated t te exit teerature f te extracted tea, ic ideally leave te eater a a aturated liquid at te extractin reure. 7 ka 7 7. kj/kg x kj/kg 8 7 ka fg 7. kj/kg An energy balance n te eat excanger give te fractin f tea extracted fr te turbe ( & / & fr cled feedater eater: & ii & ee & + & & + & Rearrangg, en, Al, y y,, q + + y 7. kj/kg ( y( kj/kg net,, 7.9. η 77.8 t net q. Biler led f q 7 Ma Ma 7 8 ka q y u (.7( kj/kg 77.8 kj/kg 8 -y urbe ndener - RORIEARY MAERIAL. e McGra-Hill anie, Inc. Liited ditributin eritted nly t teacer and educatr fr cure rearatin. If yu are a tudent ug ti Manual, yu are ug it it eriin.

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q & 8-4 8-4 Air i compreed teadily by a compreor. e air temperature i mataed contant by eat rejection to te urroundg. e rate o entropy cange o air i to be determed. Aumption i i a teady-low proce ce tere i

More information

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is

1 = The rate at which the entropy of the high temperature reservoir changes, according to the definition of the entropy, is 8-7 8-9 A reverible eat um wit eciied reervoir temerature i conidered. e entroy cange o two reervoir i to be calculated and it i to be determed i ti eat um atiie te creae entroy rcile. Aumtion e eat um

More information

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances Canges f ure Substances 6-0C Yes, because an ternally reversible, adiabatic prcess vlves n irreversibilities r eat transfer. 6- e radiatr f a steam eatg system is itially filled wit supereated steam. e

More information

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where 6.55 Given: An inulated cylinder i initially divided int halve y a itn. On either ide the itn i a ga at a knwn tate. The itn i releaed and equiliriu i attained. Find: Deterine the inal reure, inal teerature,

More information

The Second Law implies:

The Second Law implies: e Send Law ilie: ) Heat Engine η W in H H L H L H, H H ) Ablute eerature H H L L Sale, L L W ) Fr a yle H H L L H 4) Fr an Ideal Ga Cyle H H L L L δ reerible ree d Claiu Inequality δ eerible Cyle fr a

More information

Solutions to Homework #10

Solutions to Homework #10 Solution to Homeork #0 0-6 A teady-lo Carnot enge it ater a te orkg luid operate at peciied condition. e termal eiciency, te preure at te turbe let, and te ork put are to be determed. Aumption Steady operatg

More information

Special Topic: Binary Vapor Cycles

Special Topic: Binary Vapor Cycles 0- Special opic: Bary Vapor ycle 0- Bary poer cycle i a cycle ic i actually a combation o to cycle; one te ig temperature region, and te oter te lo temperature region. It purpoe i to creae termal eiciency.

More information

Chapter 8 EXERGY A MEASURE OF WORK POTENTIAL

Chapter 8 EXERGY A MEASURE OF WORK POTENTIAL 8- Chapter 8 EXERGY A MEAURE OF ORK POENIAL Exergy, Irreveribility, Reverible ork, and econd-law Efficiency 8-C Reverible work differ from the ueful work by irreveribilitie. For reverible procee both are

More information

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0.

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0. - - A team poer plant operate on an ideal regenerative anke cycle it to open feedater eater. e poer put of te poer plant and te termal efficiency of te cycle are to be determed. Aumption Steady operatg

More information

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are . A team poer plant operate on a imple ideal Ranke cycle beteen te peciied preure limit. e termal eiciency o te cycle, te ma lo rate o te team, and te temperature rie o te coolg ater are to be determed.

More information

v v = = Mixing chamber: = 30 or, = s6 Then, and = 52.4% Turbine Boiler process heater Condenser 7 MPa Q in 0.6 MPa Q proces 10 kpa Q out

v v = = Mixing chamber: = 30 or, = s6 Then, and = 52.4% Turbine Boiler process heater Condenser 7 MPa Q in 0.6 MPa Q proces 10 kpa Q out 0-0- A cogeneration plant i to generate poer and proce eat. art o te team extracted rom te turbe at a relatively ig preure i ued or proce eatg. e poer produced and te utilization actor o te plant are to

More information

(b) The heat transfer can be determined from an energy balance on the system

(b) The heat transfer can be determined from an energy balance on the system 8-5 Heat is transferred to a iston-cylinder device wit a set of stos. e work done, te eat transfer, te exergy destroyed, and te second-law efficiency are to be deterined. Assutions e device is stationary

More information

Nonisothermal Chemical Reactors

Nonisothermal Chemical Reactors he 471 Fall 2014 LEUE 7a Nnithermal hemical eactr S far we have dealt with ithermal chemical reactr and were able, by ug nly a many pecie ma balance a there are dependent react t relate reactr ize, let

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

CONVECTION IN MICROCHANNELS

CONVECTION IN MICROCHANNELS CAPER. Intrductin CONVECION IN MICROCANNELS.. Cntinuu and hernaic ythei. Previu chater are baed n tw fundaental autin: () Cntinuu: Navier-Stke equatin, and the energy equatin are alicable () hernaic equilibriu:

More information

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada Department f Ciil ngeerg Applied Mechanics McGill Uniersity, Mntreal, Quebec Canada CI 90 THRMODYNAMICS HAT TRANSFR Assignment #4 SOLUTIONS. A 68-kg man whse aerage bdy temperature is 9 C drks L f cld

More information

2-18. (a) For mercury, (b) For water,

2-18. (a) For mercury, (b) For water, -8-5 CD EES Bt a gage and a manmeter are attaced t a gas t measure its pressure. Fr a specified reading f gage pressure, te difference between te fluid levels f te tw arms f te manmeter is t be determined

More information

Chapter 7 ENTROPY. 7-3C The entropy change will be the same for both cases since entropy is a property and it has a fixed value at a fixed state.

Chapter 7 ENTROPY. 7-3C The entropy change will be the same for both cases since entropy is a property and it has a fixed value at a fixed state. 7- Chapter 7 ENROY Entropy and the Increae of Entropy rciple 7-C No. he δ Q repreent the net heat tranfer durg a cycle, which could be poitive. 7-C No. A ytem may produce more (or le) work than it receive

More information

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION ME 315 Exa edneday, Nveber 11, 015 Thi i a cled-bk, cled-nte exainatin. There i a frula heet rvided. Yu are al allwed t bring yur wn ne-age letter ize, dubleided crib heet. Yu ut turn ff all cunicatin

More information

7-84. Chapter 7 External Forced Convection

7-84. Chapter 7 External Forced Convection Chapter 7 External Frced Cnvectin 7-99 Wind i blwing ver the rf f a hue. The rate f heat tranfer thrugh the rf and the ct f thi heat l fr -h perid are t be deterined. Auptin Steady perating cnditin exit.

More information

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle.

Step 1: Draw a diagram to represent the system. Draw a T-s process diagram to better visualize the processes occurring during the cycle. ENSC 61 Tutorial, eek#8 Ga Refrigeration Cycle A refrigeration yte ug a the workg fluid, conit of an ideal Brayton cycle run revere with a teperature and preure at the let of the copreor of 37C and 100

More information

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction Chapter 8 Sectin 8.4 thrugh 8.6 Internal Flw: Heat Tranfer Crrelatin T v cu p cp ( rt) k r T T k x r r r r r x In fully-develped regin Neglect axial cnductin u ( rt) r x r r r r r x T v T T T T T u r x

More information

Frequency Response of Amplifiers

Frequency Response of Amplifiers 類比電路設計 (3349-004 Frequency epne f Aplifier h-uan an Natinal hun-h Univerity epartent f Electrical Eneer Overview ead B azavi hapter 6 ntrductin n thi lecture, we tudy the repne f le-tae and differential

More information

Developing Transfer Functions from Heat & Material Balances

Developing Transfer Functions from Heat & Material Balances Colorado Sool of Mine CHEN43 Stirred ank Heater Develoing ranfer untion from Heat & Material Balane Examle ranfer untion Stirred ank Heater,,, A,,,,, We will develo te tranfer funtion for a tirred tank

More information

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b .6 A upercritical team power plant ha a high preure of 0 Ma and an exit condener temperature of 50 C. he maximum temperature in the boiler i 000 C and the turbine exhaut i aturated vapor here i one open

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions:

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions: NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flw Reactr T T T T F j, Q F j T m,q m T m T m T m Aumptin: 1. Hmgeneu Sytem 2. Single Reactin 3. Steady State Tw type f prblem: 1. Given deired prductin rate,

More information

å Q d = 0 T dq =0 ò T reversible processes 1

å Q d = 0 T dq =0 ò T reversible processes 1 δ reeribe ree d Caiu Inequaity fr an Irreeribe Cye eeribe Cye fr a CaiuInequaity fr a yemed f a reeribe andan irreeribe re irre re Entry Definitin and Cange DEFINE A POPEY S S re irre S S S ENOPY reeribe

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Termodynamics Lecture Series Ideal Ranke Cycle Te Practical Cycle Applied Sciences Education Researc Group (ASERG) Faculty of Applied Sciences Universiti Teknologi MARA email: drjjlanita@otmail.com ttp://www5.uitm.edu.my/faculties/fsg/drjj1.tml

More information

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes. Name Student ID II. [25 pt] Thi quetin cnit f tw unrelated part. Part 1. In the circuit belw, bulb 1-5 are identical, and the batterie are identical and ideal. Bxe,, and cntain unknwn arrangement f linear

More information

SOLUTION MANUAL CHAPTER 12

SOLUTION MANUAL CHAPTER 12 SOLUION MANUAL CHAPER CONEN SUBSECION PROB NO. In-ext Concept Quetion a-g Concept problem - Brayton cycle, ga turbine - Regenerator, Intercooler, nonideal cycle 5-9 Ericon cycle 0- Jet engine cycle -5

More information

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known. PROBLEM.7 A hown in Fig. P.7, 0 ft of air at T = 00 o R, 00 lbf/in. undergoe a polytropic expanion to a final preure of 5.4 lbf/in. The proce follow pv. = contant. The work i W = 94.4 Btu. Auming ideal

More information

Today lecture. 1. Entropy change in an isolated system 2. Exergy

Today lecture. 1. Entropy change in an isolated system 2. Exergy Today lecture 1. Entropy change in an isolated system. Exergy - What is exergy? - Reversible Work & Irreversibility - Second-Law Efficiency - Exergy change of a system For a fixed mass For a flow stream

More information

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + =

Problem 1 The turbine is an open system. We identify the steam contained the turbine as the control volume. dt + + = ME Fall 8 HW olution Problem he turbe i an open ytem. We identiy the team contaed the turbe a the control volume. Ma conervation: t law o thermodynamic: Aumption: dm m m m dt + + de V V V m h + + gz +

More information

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING Delft University of Technology DEPRTMENT OF EROSPCE ENGINEERING Course: Physics I (E-04) Course year: Date: 7-0-0 Time: 4:00-7:00 Student name and itials (capital letters): Student number:. You have attended

More information

300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass

300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass 6-6- Air flows steadily a ie at a secified state. The diameter of the ie, the rate of flow energy, and the rate of energy transort by mass are to be determed. Also, the error oled the determation of energy

More information

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft SIMPLE RANKINE CYCLE um boiler exander condener Steady Flow, Oen Sytem - region ace Steady Flow Energy Equation for Procee m (u Pum Proce,, Boiler Proce,, V ρg) 0, 0, Exanion Proce,, 0, Condener Proce,,

More information

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k. PROBLEM 6.25 Three m 3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kpa. The air receives 1546 kj of work from the paddle wheel. Assuming the ideal gas model,

More information

In the next lecture...

In the next lecture... 16 1 In the next lecture... Solve problems from Entropy Carnot cycle Exergy Second law efficiency 2 Problem 1 A heat engine receives reversibly 420 kj/cycle of heat from a source at 327 o C and rejects

More information

since (Q H /T H ) = (Q L /T L ) for reversible cycles. Also, since Q diff is a positive quantity. Thus,

since (Q H /T H ) = (Q L /T L ) for reversible cycles. Also, since Q diff is a positive quantity. Thus, 7-5 7-84 he alidity o the Clai eqality i to be demontrated g a reerible and an irreerible heat enge operatg between the ame temperatre limit. Analyi Conider two heat enge, one reerible and one irreerible,

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19.

Answer Key THERMODYNAMICS TEST (a) 33. (d) 17. (c) 1. (a) 25. (a) 2. (b) 10. (d) 34. (b) 26. (c) 18. (d) 11. (c) 3. (d) 35. (c) 4. (d) 19. HERMODYNAMICS ES Answer Key. (a) 9. (a) 7. (c) 5. (a). (d). (b) 0. (d) 8. (d) 6. (c) 4. (b). (d). (c) 9. (b) 7. (c) 5. (c) 4. (d). (a) 0. (b) 8. (b) 6. (b) 5. (b). (d). (a) 9. (a) 7. (b) 6. (a) 4. (d).

More information

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln 0. (a) Sol: Section A A refrigerator macine uses R- as te working fluid. Te temperature of R- in te evaporator coil is 5C, and te gas leaves te compressor as dry saturated at a temperature of 40C. Te mean

More information

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel,

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel, Cheical Reactins 14-14 rpane is burned wi 75 percent excess during a cbustin prcess. The AF rati is t be deterined. Assuptins 1 Cbustin is cplete. The cbustin prducts cntain CO, H O, O, and N nly. rperties

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555.

rcrit (r C + t m ) 2 ] crit + t o crit The critical radius is evaluated at a given axial location z from the equation + (1 , and D = 4D = 555. hapter 1 c) When the average bld velcity in the capillary is reduced by a factr f 10, the delivery f the slute t the capillary is liited s that the slute cncentratin after crit 0.018 c is equal t er at

More information

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D).

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D). MAE0-W7A The homework i due Monday, November 4, 06. Each problem i worth the point indicated. Copying o the olution rom another i not acceptable. (). Multiple choice (0 point) a). Which tatement i invalid

More information

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points) HW-1 (25 points) (a) Given: 1 for writing given, find, EFD, etc., Schematic of a household piping system Find: Identify system and location on the system boundary where the system interacts with the environment

More information

& out. R-134a 34 C

& out. R-134a 34 C 5-9 5-76 Saturated refrigerant-4a vapor at a saturation temperature of T sat 4 C condenses side a tube. Te rate of eat transfer from te refrigerant for te condensate exit temperatures of 4 C and 0 C are

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES 5- Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL OLUMES Conseration of Mass 5-C Mass, energy, momentum, and electric charge are consered, and olume and entropy are not consered durg a process. 5-C Mass

More information

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law

Kelvin Planck Statement of the Second Law. Clausius Statement of the Second Law Kelv Planck Statement of te Second aw It is imossible to construct an enge wic, oeratg a cycle, will roduce no oter effect tan te extraction of eat from a sgle reservoir and te erformance of an equivalent

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS CHAPTER HYDROSTATICS. INTRODUCTION Hydraulic engineers have any engineering applicatins in hich they have t cpute the frce being exerted n suberged surfaces. The hydrstatic frce n any suberged plane surface

More information

EVAPORATION. Robert evaporator. Balance equations Material balance (total) Component balance. Heat balance

EVAPORATION. Robert evaporator. Balance equations Material balance (total) Component balance. Heat balance EAPORATION Roert eorator Balance equation Material alance (total) S S=Solution =aor =Steam K=Steam condenate S Comonent alance S S Heat alance S S v Merkel lot can e ued for otaining entaly data Heat ower

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

Heat Effects of Chemical Reactions

Heat Effects of Chemical Reactions * eat Effect f hemical Reactin Enthalpy change fr reactin invlving cmpund Enthalpy f frmatin f a cmpund at tandard cnditin i btained frm the literature a tandard enthalpy f frmatin Δ O g = -9690 J/mle

More information

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK Thermdynamics EAS 204 Spring 2004 Class Mnth Day Chapter Tpic Reading Due 1 January 12 M Intrductin 2 14 W Chapter 1 Cncepts Chapter 1 19 M MLK Hliday n class 3 21 W Chapter 2 Prperties Chapter 2 PS1 4

More information

ADARSHA H G. EDUSAT PROGRAMME 15 Turbomachines (Unit 3) Axial flow compressors and pumps

ADARSHA H G. EDUSAT PROGRAMME 15 Turbomachines (Unit 3) Axial flow compressors and pumps EDSA PROGRAMME 5 urbmacines (nit 3) Axial flw cmressrs and ums Axial flw cmressrs and ums are wer absrbing turbmacines. ese macines absrb external wer and tereby increase te entaly f te flwing fluid. Axial

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006 Brug f Manattan unity llege urse Pysics 110 Sec 721 nstructr: Dr. Hulan E. Jack Jr. Date Deceber 19, 2006 inal Exa NSTRUTONS - D 7 prbles : D Prble 1, 2 fr Prble 2,3 and 4, 2 fr Prbles 5,6 and 7, 2 fr

More information

Circle your instructor s last name

Circle your instructor s last name ME 00 Thermodynamics Fall 07 Exam Circle your structor s last name Division : Naik Division : Wassgren Division 6: Braun Division : Sojka Division 4: Goldenste Division 7: Buckius Division 8: Meyer INSTRUCTIONS

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information

The maximum heat transfer rate is for an infinite area counter flow heat exchanger.

The maximum heat transfer rate is for an infinite area counter flow heat exchanger. IAM Heat Exangers 9. Aendix Illustratin f se nets in eat exangers 9.. Heat Exanger Effetiveness is is defined as: Atual Heat ransfer ate Maxiu Pssible Heat ransfer ate q q ax e axiu eat transfer rate is

More information

Unit 12 Refrigeration and air standard cycles November 30, 2010

Unit 12 Refrigeration and air standard cycles November 30, 2010 Unit Rerigeration and air tandard cycle Noveber 0, 00 Unit Twelve Rerigeration and Air Standard Cycle Mechanical Engineering 70 Therodynaic Larry Caretto Noveber 0, 00 Outline Two oewhat related topic

More information

Fundamental concept of metal rolling

Fundamental concept of metal rolling Fundamental cncept metal rlling Assumptins 1) Te arc cntact between te rlls and te metal is a part a circle. v x x α L p y y R v 2) Te ceicient rictin, µ, is cnstant in tery, but in reality µ varies alng

More information

(SP 1) DLLL. Given: In a closed rigid tank,

(SP 1) DLLL. Given: In a closed rigid tank, (SP 1) Given: In a closed rigid tank, State 1: m 1,ice = 1, m 1,g = 0.05 P1= 0.0381 kpa, T1= -30 o C State 2: the liquid vapor equilibrium line, either saturated liquid or saturated vapor Find: (a) The

More information

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit .005 ermal Fluids Engineering I Fall`08 roblem Set 8 Solutions roblem ( ( a e -D eat equation is α t x d erfc( u du π x, 4αt te first derivative wit respect to time is obtained by carefully applying te

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Chapter 3. Electric Flux Density, Gauss s Law and Divergence Chapter 3. Electric Flu Denity, Gau aw and Diergence Hayt; 9/7/009; 3-1 3.1 Electric Flu Denity Faraday Eperiment Cncentric phere filled with dielectric material. + i gien t the inner phere. - i induced

More information

Chapter 8. Root Locus Techniques

Chapter 8. Root Locus Techniques Chapter 8 Rt Lcu Technique Intrductin Sytem perfrmance and tability dt determined dby cled-lp l ple Typical cled-lp feedback cntrl ytem G Open-lp TF KG H Zer -, - Ple 0, -, -4 K 4 Lcatin f ple eaily fund

More information

LEARNING FROM MISTAKES

LEARNING FROM MISTAKES AP Central Quetion of te Mont May 3 Quetion of te Mont By Lin McMullin LEARNING FROM MISTAKES Ti i te firt Quetion of te Mont tat ill appear on te Calculu ection of AP Central. Tee are not AP Exam quetion,

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Continuous Flow Stirred Tank Reactor (CSTR)

NONISOTHERMAL OPERATION OF IDEAL REACTORS Continuous Flow Stirred Tank Reactor (CSTR) he 47 Fall 2005 LEURE 7 NONISOHERML OPERION OF IDEL REORS ntinuu Flw Stirred ank Reactr (SR) F, Q V F r F, Q V F Figure : Scheatic f SR with acket and cil uptin: Hgeneu yte a) Single Reactin υ 0 b) Steady

More information

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa,

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa, - -58E The systolic and diastolic pressures of a healthy person are given in mmhg. These pressures are to be expressed in kpa, psi, and meter water column. Assumptions Both mercury and water are incompressible

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

The average velocity of water in the tube and the Reynolds number are Hot R-134a

The average velocity of water in the tube and the Reynolds number are Hot R-134a hater 0:, 8, 4, 47, 50, 5, 55, 7, 75, 77, 8 and 85. 0- Refrigerant-4a is cooled by water a double-ie heat exchanger. he overall heat transfer coefficient is to be determed. Assumtions he thermal resistance

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011 Excluive Technlgy Feature Eliminate The Guewrk When Selecting Primary Switch DD aacitr by Ed Wenzel, STMicrelectrnic, Schaumburg, ll. SSUE: May 2011 A rimary witch, ued fr ff-line alicatin, ften cntain

More information

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t

Momentum. Momentum. Impulse. Impulse Momentum Theorem. Deriving Impulse. v a t. Momentum and Impulse. Impulse. v t Moentu and Iule Moentu Moentu i what Newton called the quantity of otion of an object. lo called Ma in otion The unit for oentu are: = oentu = a = elocity kg Moentu Moentu i affected by a and elocity eeding

More information

Number of extra papers used if any

Number of extra papers used if any Last Nae: First Nae: Thero no. ME 00 Therodynaics 1 Fall 018 Exa Circle your structor s last nae Diision 1 (7:0): Naik Diision (1:0): Wassgren Diision 6 (11:0): Sojka Diision (9:0): Choi Diision 4 (8:0):

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

MAE 320 Thermodynamics HW 5 Assignment

MAE 320 Thermodynamics HW 5 Assignment MAE 0 Therodynaics HW 5 Assignent The hoework is due Wednesday, October 9, 06. Each proble is worth the pots dicated. Copyg o the solution ro another is not acceptable.. Multiple choices questions. There

More information

ME 200 Thermodynamics 1 Fall 2017 Exam 3

ME 200 Thermodynamics 1 Fall 2017 Exam 3 ME 200 hermodynamics 1 Fall 2017 Exam Circle your structor s last name Division 1: Naik Division : Wassgren Division 6: Braun Division 2: Sojka Division 4: Goldenste Division 7: Buckius Division 8: Meyer

More information

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K Practice rblems fr Cnvective Heat Transfer 1. Water at 0 C flws ver a flat late 1m 1m at 10 C with a free stream velcity f 4 m/s. Determine the thickness f bndary layers, lcal and average vale f drag cefficient

More information

Solutions to Homework #9

Solutions to Homework #9 9- Soltions to Homewok #9 9-5 he fo pocesses of an ai-standad cycle ae descibed. he cycle is to be shown on - and -s diagams, and e net wok pt and e emal efficiency ae to be detemed. Assmptions he ai-standad

More information

Lecture 38: Vapor-compression refrigeration systems

Lecture 38: Vapor-compression refrigeration systems ME 200 Termodynamics I Lecture 38: Vapor-compression refrigeration systems Yong Li Sangai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Cuan Road Sangai, 200240, P. R. Cina Email

More information

CHAPTER SEVEN 7.1. h L 1 kj heat 3600 s 1 k J s kw 10 W hp 1 kw 1 W. 7.2 All kinetic energy dissipated by friction.

CHAPTER SEVEN 7.1. h L 1 kj heat 3600 s 1 k J s kw 10 W hp 1 kw 1 W. 7.2 All kinetic energy dissipated by friction. CHAPTER SEVEN 7.1 4 8. L 5. 1 J. J wr 1 h 1 W. W. W h L 1 J heat 6 1 J. W 1 W 1.41 1 h 1. h.1 h 1 W 1 W 7. All etic enery diiated y frict (a) E u 4 55 l 55 ile 58 ft 1 h 1 l f 9. 486 1 Btu h 1 ile 6.174

More information

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79.

Chapter 7: 17, 20, 24, 25, 32, 35, 37, 40, 47, 66 and 79. hapter 7: 17, 0,, 5,, 5, 7, 0, 7, 66 and 79. 77 A power tranitor mounted on the wall diipate 0.18 W. he urface temperature of the tranitor i to be determined. Aumption 1 Steady operating condition exit.

More information

NEWCOMEN ATMOSPHERIC ENGINE

NEWCOMEN ATMOSPHERIC ENGINE NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m F 7 stroke 5 sia steam 8 50 F water NECMEN AMSPERIC ENGINE atmoseric ressure Ford Museum, 760 strokes/m 5 sia steam 8 F 50 F water 7

More information

Fundamentals of Thermodynamics. Chapter 8. Exergy

Fundamentals of Thermodynamics. Chapter 8. Exergy Fundamentals of Thermodynamics Chapter 8 Exergy Exergy Availability, available energy Anergy Unavailable energy Irreversible energy, reversible work, and irreversibility Exergy analysis : Pure Thermodynamics

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 20 June 2005 Midterm Examination R. Culham & M. Bahrami This is a 90 minute, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Unit B-1: List of Subjects

Unit B-1: List of Subjects ES31 Energy Transfer Fundamentals Unit B: The First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

Then the amount of water that flows through the pipe during a differential time interval dt is (1) 4

Then the amount of water that flows through the pipe during a differential time interval dt is (1) 4 5-98 Review Problems 5-45 A tank oen to te atmosere is itially filled wit. e tank discarges to te atmosere troug a long ie connected to a valve. e itial discarge velocity from te tank and te time required

More information

3. Internal Flow General Concepts:

3. Internal Flow General Concepts: 3. Internal Flow General Concet: ρ u u 4 & Re Re, cr 2300 μ ν π μ Re < 2300 lainar 2300 < Re < 4000 tranitional Flow Regie : Re > 4000 turbulent Re > 10,000 fully turbulent (d) 1 (e) Figure 1 Boundary

More information

ME 200 Thermodynamics 1 Spring Exam 2

ME 200 Thermodynamics 1 Spring Exam 2 Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Sprg 2017 - Exam 2 Circle your structor s last name Ardekani Fisher Hess Naik Sojka (onle and on campus) INSTRUCTIONS This is a closed book and

More information

Conservation of Momentum

Conservation of Momentum Cnervatin f Mmentum PES 1150 Prelab Quetin Name: Lab Statin: 003 ** Diclaimer: Thi re-lab i nt t be cied, in whle r in art, unle a rer reference i made a t the urce. (It i trngly recmmended that yu ue

More information