Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Size: px
Start display at page:

Download "Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada"

Transcription

1 Department f Ciil ngeerg Applied Mechanics McGill Uniersity, Mntreal, Quebec Canada CI 90 THRMODYNAMICS HAT TRANSFR Assignment #4 SOLUTIONS. A 68-kg man whse aerage bdy temperature is 9 C drks L f cld water at C an effrt t cl dwn. Takg the aerage specific heat f the human bdy t be.6 kj/kg C, determe the drp the aerage bdy temperature f this persn under the fluence f this cld water. A man drks ne liter f cld water at C an effrt t cl dwn. The drp the aerage bdy temperature f the persn under the fluence f this cld water is t be determed. Assumptins Thermal prperties f the bdy and water are cnstant. The effect f metablic heat generatin and the heat lss frm the bdy durg that time perid are negligible. Prperties The density f water is ery nearly kg/l, and the specific heat f water at rm temperature is c 4.8 kj/kg C (Table A-). The aerage specific heat f human bdy is gien t be.6 kj/kg. C. Analysis. The mass f the water is m w ρ ( kg/l)( L) kg We take the man and the water as ur system, and disregard any heat and mass transfer and chemical reactins. Of curse these assumptins may be acceptable nly fr ery shrt time perids, such as the time it takes t drk the water. Then the energy balance can be written as 44 Net energy transfer Δsystem 44 Change ternal, ketic, 0 ΔU ΔU + ΔU bdy water r [ mc ( T T )] + [ mc( T T )] 0 bdy water f T f Substitutg ( 68 kg)(.6 kj/kg C)( T 9) C + ( kg)(4.8 kj/kg C)( ) C 0 It gies T f 8.4 C Then T C Therefre, the aerage bdy temperature f this persn shuld drp ab half a degree celsius.

2 . The diffuser a jet enge is designed t decrease the ketic energy f the air enterg the enge cmpressr with any wrk r heat teractins. Calculate the elcity at the exit f a diffuser when air at 00 kpa and 0 C enters it with a elcity f 500 m/s and the exit state is 00 kpa and 90 C. The ketic energy f a fluid decreases as it is decelerated an adiabatic diffuser. What happens t this lst ketic energy? Air is decelerated an adiabatic diffuser. The elcity at the exit is t be determed. Assumptins This is a steady-flw prcess sce there is n change with time. Air is an ideal gas with cnstant specific heats. Ptential energy changes are negligible. 4 There are n wrk teractins. 5 The diffuser is adiabatic. Prperties The specific heat f air at the aerage temperature f (0+90)/55 C 8 K is c p.007 kj/kg K (Table A-b). Analysis There is nly ne let and ne exit, and thus m. We take diffuser as the system, which is a cntrl lume sce mass crsses the bundary. The energy balance fr this steady-flw system can be expressed the rate frm as 44 Δsystem 0 Rate f change ternal, ketic, ( h + / ) ( h + /) h + / h + / Slg fr exit elcity, 0.5 [ + ( h h )] [ + c ( T T )] (500 m/s) 0. m/s p m /s + (.007 kj/kg K)(0 90)K kj/kg 00 kpa 0 C 500 m/s The lst ketic energy is mstly cnerted t ternal energy as shwn by a rise the fluid temperature. 0.5 AIR 00 kpa 90 C. Refrigerant-4a at 700 kpa and 0 C enters an adiabatic nzzle steadily with a elcity f 0 m/s and leaes at 400 kpa and 0 0 C. Determe a) the exit elcity, and b) the rati f the let t exit area A /A. In the case f a nn-adiabatic nzzle, hw wuld heat transfer affect the fluid elcity at the nzzle exit? R-4a is accelerated a nzzle frm a elcity f 0 m/s. The exit elcity f the refrigerant and the rati f the let-t-exit area f the nzzle are t be determed. Assumptins This is a steady-flw prcess sce there is n change with time. Ptential energy changes are negligible. There are n wrk teractins. 4 The deice is adiabatic and thus heat transfer is negligible. Prperties Frm the refrigerant tables (Table A-) and P 700 kpa m /kg T 0 C h kj/kg R-4a

3 P 400 kpa m /kg T 0 C h kj/kg Analysis (a) There is nly ne let and ne exit, and thus. We take nzzle as the system, which is a cntrl lume sce mass crsses the bundary. The energy balance fr this steady-flw system can be expressed the rate frm as Substitutg, It yields 44 Δsystem 0 0 ( h Rate f change ternal, ketic, 0 h / ) ( h + /) (sce W 0) ( ) m/s h + kj/kg + ( 0 m/s) kj/kg 000 m /s (b) The rati f the let t exit area is determed frm the cnseratin f mass relatin, A A A A ( m /kg)( m/s) ( m /kg)( 0 m/s) 5.65 Heat transfer t the fluid as it flws thrugh a nzzle is desirable sce it will prbably crease the ketic energy f the fluid. Heat transfer frm the fluid will decrease the exit elcity. 4. A steam turbe perates with.6 MPa and 50 C steam at its let and saturated apur at 0 C at its exit. The mass flw rate f the steam is 6 kg/s, and the turbe prduces 9000 kw f pwer. Determe the rate at which heat is lst thrugh the casg f this turbe. Steam expands a turbe whse pwer prductin is 9000 kw. The rate f heat lst frm the turbe is t be determed. Assumptins This is a steady-flw prcess sce there is n change with time. Ketic and ptential energy changes are negligible. Prperties Frm the steam tables (Tables A-6 and A-4) P.6 MPa h 46.0 kj/kg T 50 C T 0 C h kj / kg x.6 MPa 50 C 6 kg/s Analysis We take the turbe as the system, which is a cntrl lume sce mass crsses the bundary. Ntg that there is ne let and ne exiti the energy balance fr this steady-flw system can be expressed the rate frm as Heat Turbe 0 C sat. ap.

4 44 Δsystem 0 Substitutg, Q h Rate f change ternal, ketic, ptential, etc. energies h + W + ( h h ) W (6 kg/s)( ) kj/kg 9000 kw kw 5. Air is cmpressed by an adiabatic cmpressr frm 00 kpa and 0 C t.8 MPa and 400 C. Air enters the cmpressr thrugh a 0.5-m peng with a elcity f 0 m/s. It exits thrugh a 0.08-m peng. Calculate the mass flw rate f air and the required pwer put. Why des the air exit the cmpressr at a higher temperature?.8 MPa 400 C Cmpressr 00 kpa 0 C 0 m/s Air is cmpressed an adiabatic cmpressr. The mass flw rate f the air and the pwer put are t be determed. Assumptins This is a steady-flw prcess sce there is n change with time. The cmpressr is adiabatic. Air is an ideal gas with cnstant specific heats. Prperties The cnstant pressure specific heat f air at the aerage temperature f (0+400)/0 C48 K is c p.06 kj/kg K (Table A-b). The gas cnstant f air is R 0.87 kpa m /kg K (Table A-). Analysis (a) There is nly ne let and ne exit, and thus m. We take the cmpressr as the system, which is a cntrl lume sce mass crsses the bundary. The energy balance fr this steady-flw system can be expressed the rate frm as 44 Δsystem 0 h Rate f change ternal, ketic, ptential, etc. energies Sce 0 W h c p ( T T ) + The specific lume f air at the let and the mass flw rate are RT ( 0.87 kpa m /kg K)(0 + 7 K) m P 00 kpa A (0.5 m )(0 m/s) 5.5kg/s m /kg /kg 4

5 Similarly at the let, RT ( 0.87 kpa m /kg K)( K) 0.07 m P 800 kpa (5.5 kg/s)(0.07 m /kg) 7.77 m/s A 0.08 m (b) Substitutg t the energy balance equatin gies W c p ( T T ) + (7.77 m/s) (0 m/s) (5.5 kg/s) (.06 kj/kg K)(400 0)K kw /kg kj/kg 000 m /s The air exits the cmpressr at a higher temperature because energy ( the frm f shaft wrk) is beg added t the air. 6. An adiabatic capillary tube is used sme refrigeratin systems t drp the pressure f the refrigerant frm the cndenser leel t the eapratr leel. The R-4a enters the capillary tube as a saturated liquid at 50 0 C, and leaes at - C. Determe the quality f the refrigerant at the let f the eapratr. Refrigerant-4a is thrttled by a capillary tube. The quality f the refrigerant at the exit is t be determed. Assumptins This is a steady-flw prcess sce there is n change with time. Ketic and ptential energy changes are negligible. Heat transfer t r frm the fluid is negligible. 4 There are n wrk teractins led. Analysis There is nly ne let and ne exit, and thus m. We take the thrttlg ale as the system, which is a cntrl lume sce mass crsses the bundary. The energy balance fr this steady-flw system can be expressed the rate frm as 50 C Sat. liquid h h Δ system mh mh 0 sce Q W Δke 0. The let enthalpy f R-4a is, frm the refrigerant tables (Table A-), T 50 C h sat. liquid The exit quality is h f.49 kj/kg - C R-4a T h C h h x h h fg f

6 7. A ht-water steam at 80 C enters a mixg chamber with a mass flw rate f 0.5 kg/s where it is mixed with a stream f cld water at 0 C. If it is desired that the mixture leae the chamber at 4 C, determe the mass flw rate f the cld-water stream. Assume all the streams are at a pressure f 50 kpa. When tw streams are mixed a mixg chamber, can the temperature f the exit stream eer be lwer than the temperature f the clder stream? T 80 C m 0.5 kg/s H O (P 50 kpa) T 4 C A ht water stream is mixed with a cld water stream. Fr a specified mixture temperature, the mass flw rate f cld water is t be determed. Assumptins Steady peratg cnditins exist. The mixg chamber is well-sulated s that heat lss t the surrundgs is negligible. Changes the ketic and ptential energies f fluid streams are negligible. 4 Fluid prperties are cnstant. 5 There are n wrk teractins. Prperties Ntg that T < T 50 kpa 7.4 C, the water all three streams exists as a cmpressed liquid, which can be apprximated as a saturated liquid at the gien temperature. Thus, h h 80 C 5.0 kj/kg h h 0 C 8.95 kj/kg h h 4 C kj/kg Analysis We take the mixg chamber as the system, which is a cntrl lume. The mass and energy balances fr this steady-flw system can be expressed the rate frm as Mass balance: nergy balance: Δ system 0 + m 44 0 Δsystem 4444 Rate f change ternal, ketic, 0 h + h h (sce W Δke 0) Cmbg the tw relatins and slg fr m gies m h + h ( + ) h h h h h m Substitutg, the mass flw rate f cld water stream is determed t be ( ) ( ) T 0 C m kj/kg kg/s kj/kg ( 0.5 ) kg/s When tw streams are mixed a mixg chamber, the temperature f the exit stream can be lwer than the temperature f the clder stream if the mixg chamber is lsg heat t the surrundgs. 6

7 8. Steam is t be cndensed n the shell side f a heat exchanger at 85 F. Clg water enters the tubes at 60 F at a rate f 8 lbm/s and leaes at 7 F. Assumg the heat exchanger t be well-sulated, determe the rate f heat transfer the heat exchanger and the rate f cndensatin f the stream. Steam is cndensed by clg water a cndenser. The rate f heat transfer the heat exchanger and the rate f cndensatin f steam are t be determed. Assumptins Steady peratg cnditins exist. The heat exchanger is well-sulated s that heat lss t the surrundgs is negligible and thus heat transfer frm the ht fluid is equal t the heat transfer t the cld fluid. Changes the ketic and ptential energies f fluid streams are negligible. 4 Fluid prperties are cnstant. Prperties The specific heat f water is.0 Btu/lbm. F (Table A- ). The enthalpy f aprizatin f water at 85 F is 045. Btu/lbm (Table A-4). Analysis We take the tube-side f the heat exchanger where cld water is flwg as the system, which is a cntrl lume. The energy balance fr this steady-flw system can be expressed the rate frm as 44 0 Δsystem 4444 Rate f change ternal, ketic, + mh mh (sce Δke 0) mc p( T T ) 85 F Then the rate f heat transfer t the cld water this heat exchanger becmes Q [ mc ( T T )] water (8 lbm/s)(.0 Btu/lbm. F)(7 F 60 F) 794 Btu/s p Or ne culd apprximate the cmpressed liquid as a saturated liquid at the same temperature. Q ( h - h ) Table A-4: h h 60F 8.08 Btu/lbm h h f@7f 4.07 Btu/lbm Q 8 lbm/s ( )Btu/lbm 79 Btu/s 0 Steam 85 F 7 F 60 F Water Ntg that heat ga by the water is equal t the heat lss by the cndensg steam, the rate f cndensatin f the steam the heat exchanger is determed frm 794 Btu/s ( mh fg ) steam steam.7 lbm/s h 045. Btu/lbm fg 7

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances Canges f ure Substances 6-0C Yes, because an ternally reversible, adiabatic prcess vlves n irreversibilities r eat transfer. 6- e radiatr f a steam eatg system is itially filled wit supereated steam. e

More information

300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass

300 kpa 77 C. (d) If we neglect kinetic energy in the calculation of energy transport by mass 6-6- Air flows steadily a ie at a secified state. The diameter of the ie, the rate of flow energy, and the rate of energy transort by mass are to be determed. Also, the error oled the determation of energy

More information

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES 5- Chapter 5 MASS AND ENERGY ANALYSIS OF CONTROL OLUMES Conseration of Mass 5-C Mass, energy, momentum, and electric charge are consered, and olume and entropy are not consered durg a process. 5-C Mass

More information

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK Thermdynamics EAS 204 Spring 2004 Class Mnth Day Chapter Tpic Reading Due 1 January 12 M Intrductin 2 14 W Chapter 1 Cncepts Chapter 1 19 M MLK Hliday n class 3 21 W Chapter 2 Prperties Chapter 2 PS1 4

More information

4-64. Review Problems

4-64. Review Problems 4-64 Reiew Prblems 4-0 Heat is transferred t a pistn-cylinder deice cntaining air. The expansin wrk is t be determined. Assumptins There is n frictin between pistn and cylinder. Air is an ideal gas. Prperties

More information

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26.

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26. CM ROSE-HULMAN INSTITUTE OF TECHNOLOGY Name Circle sectin: 01 [4 th Lui] 02 [5 th Lui] 03 [4 th Thm] 04 [5 th Thm] 05 [4 th Mech] ME301 Applicatins f Thermdynamics Exam 1 Sep 29, 2017 Rules: Clsed bk/ntes

More information

Fill in your name and ID No. in the space above. There should be 11 pages (including this page and the last page which is a formula page).

Fill in your name and ID No. in the space above. There should be 11 pages (including this page and the last page which is a formula page). ENGR -503 Name: Final Exam, Sem. 03C ID N.: /6/003 3:30 5:30 p.m. Rm N.: 7B Fill in yur name and ID N. in the space abve. There shuld be pages (including this page and the last page which is a frmula page).

More information

The average velocity of water in the tube and the Reynolds number are Hot R-134a

The average velocity of water in the tube and the Reynolds number are Hot R-134a hater 0:, 8, 4, 47, 50, 5, 55, 7, 75, 77, 8 and 85. 0- Refrigerant-4a is cooled by water a double-ie heat exchanger. he overall heat transfer coefficient is to be determed. Assumtions he thermal resistance

More information

2-18. (a) For mercury, (b) For water,

2-18. (a) For mercury, (b) For water, -8-5 CD EES Bt a gage and a manmeter are attaced t a gas t measure its pressure. Fr a specified reading f gage pressure, te difference between te fluid levels f te tw arms f te manmeter is t be determined

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k.

Find: a) Mass of the air, in kg, b) final temperature of the air, in K, and c) amount of entropy produced, in kj/k. PROBLEM 6.25 Three m 3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kpa. The air receives 1546 kj of work from the paddle wheel. Assuming the ideal gas model,

More information

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w Islated, Clsed and Open Systems 9.1 Energy as a Reactant r a Prduct 9.2 Transferring Heat and Ding Wrk 9.5 Heats f Reactin and Calrimetry 9.6 Hess s Law and Standard Heats f Reactin 9.7 Heats f Reactin

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING

Delft University of Technology DEPARTMENT OF AEROSPACE ENGINEERING Delft University of Technology DEPRTMENT OF EROSPCE ENGINEERING Course: Physics I (E-04) Course year: Date: 7-0-0 Time: 4:00-7:00 Student name and itials (capital letters): Student number:. You have attended

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected.

Assume that the water in the nozzle is accelerated at a rate such that the frictional effect can be neglected. 1 HW #3: Cnservatin f Linear Mmentum, Cnservatin f Energy, Cnservatin f Angular Mmentum and Turbmachines, Bernulli s Equatin, Dimensinal Analysis, and Pipe Flws Prblem 1. Cnservatins f Mass and Linear

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Chapter 9 Compressible Flow 667

Chapter 9 Compressible Flow 667 Chapter 9 Cmpreible Flw 667 9.57 Air flw frm a tank thrugh a nzzle int the tandard atmphere, a in Fig. P9.57. A nrmal hck tand in the exit f the nzzle, a hwn. Etimate (a) the tank preure; and (b) the ma

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER ES201 - Examinatin 2 Winter 2003-2004 Adams and Richards NAME BOX NUMBER Please Circle One : Richards (Perid 4) ES201-01 Adams (Perid 4) ES201-02 Adams (Perid 6) ES201-03 Prblem 1 ( 12 ) Prblem 2 ( 24

More information

Short notes for Heat transfer

Short notes for Heat transfer Furier s Law f Heat Cnductin Shrt ntes fr Heat transfer Q = Heat transfer in given directin. A = Crss-sectinal area perpendicular t heat flw directin. dt = Temperature difference between tw ends f a blck

More information

The Integral Forms of the Fundamental Laws

The Integral Forms of the Fundamental Laws CHAPTER The Integral Frms f the Fundamental Laws a) N net frce may act n the system: ΣF b) The energy transferred t r frm the system must be zer: Q - W c) If ˆ ˆ n nˆ i ( j) is the same fr all lume elements

More information

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples

Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples Outline Property ealuation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids s A piston-cylinder deice initially contains 0.5m of saturated water apor at 00kPa.

More information

4F-5 : Performance of an Ideal Gas Cycle 10 pts

4F-5 : Performance of an Ideal Gas Cycle 10 pts 4F-5 : Perfrmance f an Cycle 0 pts An ideal gas, initially at 0 C and 00 kpa, underges an internally reversible, cyclic prcess in a clsed system. The gas is first cmpressed adiabatically t 500 kpa, then

More information

MAE 11. Homework 8: Solutions 11/30/2018

MAE 11. Homework 8: Solutions 11/30/2018 MAE 11 Homework 8: Solutions 11/30/2018 MAE 11 Fall 2018 HW #8 Due: Friday, November 30 (beginning of class at 12:00p) Requirements:: Include T s diagram for all cycles. Also include p v diagrams for Ch

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

" 1 = # $H vap. Chapter 3 Problems

 1 = # $H vap. Chapter 3 Problems Chapter 3 rblems rblem At 1 atmsphere pure Ge melts at 1232 K and bils at 298 K. he triple pint ccurs at =8.4x1-8 atm. Estimate the heat f vaprizatin f Ge. he heat f vaprizatin is estimated frm the Clausius

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

ME 200 Thermodynamics 1 Spring Exam 2

ME 200 Thermodynamics 1 Spring Exam 2 Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Sprg 2017 - Exam 2 Circle your structor s last name Ardekani Fisher Hess Naik Sojka (onle and on campus) INSTRUCTIONS This is a closed book and

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q & 8-4 8-4 Air i compreed teadily by a compreor. e air temperature i mataed contant by eat rejection to te urroundg. e rate o entropy cange o air i to be determed. Aumption i i a teady-low proce ce tere i

More information

bulk velocity through orifice,

bulk velocity through orifice, 150A Review Sessin Other Frictin Lsses Bernulli hf accunts fr all types f drag: is drag due t skin frictin is drag due t fittings (tabulated fractin f the velcity head) is drag due t units (a given r calculated

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Solutions First Law Practice Problems. Consider a balloon that has been blown up inside a building and has been allowed to come to equilibrium with the inside temperature of 5 C and

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet EXAMLE HERMAL DAMING wrk in air sealed utlet A BIYLE UM WIH HE OULE EALED When the pistn is depressed, a fixed mass f air is cmpressed mechanical wrk is dne he mechanical wrk dne n the air is cnerted t

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V

ENERGY TRANSFER BY WORK: Electrical Work: When N Coulombs of electrical charge move through a potential difference V Weight, W = mg Where m=mass, g=gravitational acceleration ENERGY TRANSFER BY WOR: Sign convention: Work done on a system = (+) Work done by a system = (-) Density, ρ = m V kg m 3 Where m=mass, V =Volume

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P Thermchemistry The study energy changes that ccur during chemical : at cnstant vlume ΔU = q V n at cnstant pressure = q P nly wrk Fr practical reasns mst measurements are made at cnstant, s thermchemistry

More information

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit. Both the Kelvin and Fahrenheit scales are absolute temperature scales. Specific volume, v, is an intensive property,

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Readings for this homework assignment and upcoming lectures

Readings for this homework assignment and upcoming lectures Homework #3 (group) Tuesday, February 13 by 4:00 pm 5290 exercises (individual) Thursday, February 15 by 4:00 pm extra credit (individual) Thursday, February 15 by 4:00 pm Readings for this homework assignment

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

Aircraft Performance - Drag

Aircraft Performance - Drag Aircraft Perfrmance - Drag Classificatin f Drag Ntes: Drag Frce and Drag Cefficient Drag is the enemy f flight and its cst. One f the primary functins f aerdynamicists and aircraft designers is t reduce

More information

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity. Problem 44 A closed system of mass of 10 kg undergoes a process during which there is energy transfer by work from the system of 0147 kj per kg, an elevation decrease of 50 m, and an increase in velocity

More information

Nonisothermal Chemical Reactors

Nonisothermal Chemical Reactors he 471 Fall 2014 LEUE 7a Nnithermal hemical eactr S far we have dealt with ithermal chemical reactr and were able, by ug nly a many pecie ma balance a there are dependent react t relate reactr ize, let

More information

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N Q1. A transverse sinusidal wave travelling n a string is given by: y (x,t) = 0.20 sin (2.5 x 80 t) (SI units). The length f the string is 2.0 m and its mass is 1.5 g. What is the magnitude f the tensin

More information

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008 Phy 1: General Physics II 1 hapter 18 rksheet 3/0/008 Thermal Expansin: 1. A wedding ring cmpsed f pure gld (inner diameter = 1.5 x 10 - m) is placed n a persn s finger (diameter = 1.5 x 10 - m). Bth the

More information

Chemistry 114 First Hour Exam

Chemistry 114 First Hour Exam Chemistry 114 First Hur Exam Please shw all wrk fr partial credit Name: (4 pints) 1. (12 pints) Espress is made by frcing very ht water under high pressure thrugh finely grund, cmpacted cffee. (Wikipedia)

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

Chemical Engineering Thermodynamics Spring 2002

Chemical Engineering Thermodynamics Spring 2002 10.213 Chemical Engineering Thermodynamics Spring 2002 Test 2 Solution Problem 1 (35 points) High pressure steam (stream 1) at a rate of 1000 kg/h initially at 3.5 MPa and 350 ºC is expanded in a turbine

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit : TRANSFORMERS Definitin : Transfrmers can be defined as a static electric machine which cnverts electric energy frm ne ptential t anther at the same frequency. It can als be defined as cnsists f tw electric

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

The special theory of relativity

The special theory of relativity The special thery f relatiity The preliminaries f special thery f relatiity The Galilean thery f relatiity states that it is impssible t find the abslute reference system with mechanical eperiments. In

More information

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow 1. Consider subsonic Rayleigh flow of air with a Mach number of 0.92. Heat is now transferred to the fluid and the Mach number increases to 0.95.

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

Lecture 02 CSE 40547/60547 Computing at the Nanoscale PN Junctin Ntes: Lecture 02 CSE 40547/60547 Cmputing at the Nanscale Letʼs start with a (very) shrt review f semi-cnducting materials: - N-type material: Obtained by adding impurity with 5 valence elements

More information

OPTIMIZATION OF A TRANSCRITICAL N 2 O REFRIGERATION/HEAT PUMP CYCLE

OPTIMIZATION OF A TRANSCRITICAL N 2 O REFRIGERATION/HEAT PUMP CYCLE NIK 06-T1-14 OPTIMIZATION OF A TRANSRITIAL N O REFRIGERATION/HEAT PUMP YLE JAHAR SARKAR (a), SOUVIK BHATTAHARYYA (b) (a) Department f Mechanical Engineering Institute f Technlgy-BHU, Varanasi 1005, India

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Entropy. Chapter The Clausius Inequality and Entropy

Entropy. Chapter The Clausius Inequality and Entropy Chapter 7 Entrpy In the preceding chapter we btained a number f imprtant results by applying the secnd law t cyclic prcesses assciated with heat engines and reversed heat engines perating with ne and tw

More information

MAE 110A. Homework 3: Solutions 10/20/2017

MAE 110A. Homework 3: Solutions 10/20/2017 MAE 110A Homework 3: Solutions 10/20/2017 3.10: For H 2O, determine the specified property at the indicated state. Locate the state on a sketch of the T-v diagram. Given a) T 140 C, v 0.5 m 3 kg b) p 30MPa,

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

2015 Regional Physics Exam Solution Set

2015 Regional Physics Exam Solution Set 05 Reginal hysics Exa Slutin Set. Crrect answer: D Nte: [quantity] dentes: units f quantity WYSE Acadeic Challenge 05 Reginal hysics Exa SOLUTION SET r F r a lengthass length / tie ass length / tie. Crrect

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa,

2-21. for gage pressure, the high and low pressures are expressed as. Noting that 1 psi = kpa, - -58E The systolic and diastolic pressures of a healthy person are given in mmhg. These pressures are to be expressed in kpa, psi, and meter water column. Assumptions Both mercury and water are incompressible

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel,

th th th The air-fuel ratio is determined by taking the ratio of the mass of the air to the mass of the fuel, Cheical Reactins 14-14 rpane is burned wi 75 percent excess during a cbustin prcess. The AF rati is t be deterined. Assuptins 1 Cbustin is cplete. The cbustin prducts cntain CO, H O, O, and N nly. rperties

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

ME Thermodynamics I

ME Thermodynamics I Homework - Week 01 HW-01 (25 points) Given: 5 Schematic of the solar cell/solar panel Find: 5 Identify the system and the heat/work interactions associated with it. Show the direction of the interactions.

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI)

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI) HCB- Editin 12.1 Slutins Chapter 12 Prbles GIVEN: Fllwing table fr water: T (C p (kpa v ( /kg Phase 60 (1.25 (2 ( 175 (4 Saturated vapr 00 00 (5 (6 100 10 (7 (8 (9 (10 0.001097 Saturated vapr 1000 10 (11

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Study Guide Physics Pre-Comp 2013

Study Guide Physics Pre-Comp 2013 I. Scientific Measurement Metric Units S.I. English Length Meter (m) Feet (ft.) Mass Kilgram (kg) Pund (lb.) Weight Newtn (N) Ounce (z.) r pund (lb.) Time Secnds (s) Secnds (s) Vlume Liter (L) Galln (gal)

More information

& out. R-134a 34 C

& out. R-134a 34 C 5-9 5-76 Saturated refrigerant-4a vapor at a saturation temperature of T sat 4 C condenses side a tube. Te rate of eat transfer from te refrigerant for te condensate exit temperatures of 4 C and 0 C are

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Thermodynamics Lecture Series

Thermodynamics Lecture Series Thermodynamics Lecture Series Second Law uality of Energy Applied Sciences Education Research Group (ASERG) Faculty of Applied Sciences Universiti Teknologi MARA email: drjjlanita@hotmail.com http://www.uitm.edu.my/faculties/fsg/drjj.html

More information

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe. 4.3 Steam enters a.6-cm-diameter pipe at 80 bar and 600 o C with a velocity of 50 m/s. Determine the mass flow rate, in kg/s. KNOWN: Pressure, temperature, and velocity of steam entering a.6-cm-diameter

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K

convection coefficient. The different property values of water at 20 C are given by: u W/m K, h=8062 W/m K Practice rblems fr Cnvective Heat Transfer 1. Water at 0 C flws ver a flat late 1m 1m at 10 C with a free stream velcity f 4 m/s. Determine the thickness f bndary layers, lcal and average vale f drag cefficient

More information

Chapter 4. Energy Analysis of Closed Systems

Chapter 4. Energy Analysis of Closed Systems Chapter 4 Energy Analysis of Closed Systems The first law of thermodynamics is an expression of the conservation of energy principle. Energy can cross the boundaries of a closed system in the form of heat

More information

NAME TEMPERATURE AND HUMIDITY. I. Introduction

NAME TEMPERATURE AND HUMIDITY. I. Introduction NAME TEMPERATURE AND HUMIDITY I. Intrductin Temperature is the single mst imprtant factr in determining atmspheric cnditins because it greatly influences: 1. The amunt f water vapr in the air 2. The pssibility

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information